51
|
Abolhasani Khaje N, Mobley CK, Misra SK, Miller L, Li Z, Nudler E, Sharp JS. Variation in FPOP Measurements Is Primarily Caused by Poor Peptide Signal Intensity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1901-1907. [PMID: 29943081 PMCID: PMC6087495 DOI: 10.1007/s13361-018-1994-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 05/27/2023]
Abstract
Fast photochemical oxidation of proteins (FPOP) may be used to characterize changes in protein structure by measuring differences in the apparent rate of peptide oxidation by hydroxyl radicals. The variability between replicates is high for some peptides and limits the statistical power of the technique, even using modern methods controlling variability in radical dose and quenching. Currently, the root cause of this variability has not been systematically explored, and it is unknown if the major source(s) of variability are structural heterogeneity in samples, remaining irreproducibility in FPOP oxidation, or errors in LC-MS quantification of oxidation. In this work, we demonstrate that coefficient of variation of FPOP measurements varies widely at low peptide signal intensity, but stabilizes to ≈ 0.13 at higher peptide signal intensity. We dramatically reduced FPOP variability by increasing the total sample loaded onto the LC column, indicating that the major source of variability in FPOP measurements is the difficulties in quantifying oxidation at low peptide signal intensities. This simple method greatly increases the sensitivity of FPOP structural comparisons, an important step in applying the technique to study subtle conformational changes and protein-ligand interactions. Graphical Abstract ᅟ.
Collapse
|
research-article |
7 |
8 |
52
|
Mitra S, Prakash D, Rajabimoghadam K, Wawrzak Z, Prasad P, Wu T, Misra SK, Sharp JS, Garcia-Bosch I, Chakraborty S. De Novo Design of a Self-Assembled Artificial Copper Peptide that Activates and Reduces Peroxide. ACS Catal 2021; 11:10267-10278. [DOI: 10.1021/acscatal.1c02132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
|
4 |
8 |
53
|
Sharp JS, Tomer KB. Formation of [b(n-1) + OH + H]+ ion structural analogs by solution-phase chemistry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:607-621. [PMID: 15862763 DOI: 10.1016/j.jasms.2005.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 01/24/2005] [Accepted: 01/24/2005] [Indexed: 05/24/2023]
Abstract
Derivatization of a variety of peptides by a method known to enhance anhydride formation is demonstrated by mass spectrometry to yield ions that have elemental composition and fragmentation properties identical to [b(n-1) + OH + H]+ ions formed by gas-phase rearrangement and fragmentation. The [b(n-1) + OH + H]+ ions formed by gas-phase rearrangement and fragmentation and the solution-phase [b(n-1) + OH + H]+ ion structural analogs formed by derivatization chemistry show two different forms of dissociation using multiple-collision CAD in a quadrupole ion trap and unimolecular decomposition in a TOF-TOF; one group yields identical product ions as a truncated form of the peptide with a free C-terminal carboxylic acid and fragments at the same activation energy; the other group fragments differently from the truncated peptide, being more resistant to fragmentation than the truncated peptide and yielding primarily the [b(n-2) + OH + H]+ product ion. Nonergodic electron capture dissociation MS/MS suggests that any structural differences between the specific-fragmenting [b(n-1) + OH + H]+ ions and the truncated peptide is at the C-terminus of the peptide. The specific-fragmentation can be readily observed by MS(n) experiments to occur in an iterative fashion, suggesting that the C-terminal structure of the original [b(n-1) + OH + H]+ ion is maintained after subsequent rearrangement and fragmentation events in peptides which fragment specifically. A mechanism for the formation of specific-fragmenting and nonspecific-fragmenting [b(n-1) + OH + H]+ ions is proposed.
Collapse
|
Comparative Study |
20 |
8 |
54
|
Liu H, Joshi A, Chopra P, Liu L, Boons GJ, Sharp JS. Salt-free fractionation of complex isomeric mixtures of glycosaminoglycan oligosaccharides compatible with ESI-MS and microarray analysis. Sci Rep 2019; 9:16566. [PMID: 31719635 PMCID: PMC6851191 DOI: 10.1038/s41598-019-53070-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/26/2019] [Indexed: 11/18/2022] Open
Abstract
Heparin and heparan sulfate (Hp/HS) are linear complex glycosaminoglycans which are involved in diverse biological processes. The structural complexity brings difficulties in separation, making the study of structure-function relationships challenging. Here we present a separation method for Hp/HS oligosaccharide fractionation with cross-compatible solvent and conditions, combining size exclusion chromatography (SEC), ion-pair reversed phase chromatography (IPRP), and hydrophilic interaction chromatography (HILIC) as three orthogonal separation methods that do not require desalting or extensive sample handling. With this method, the final eluent is suitable for structure-function relationship studies, including tandem mass spectrometry and microarray printing. Our data indicate that high resolution is achieved on both IPRP and HILIC for Hp/HS isomers. In addition, the fractions co-eluted in IPRP could be further separated by HILIC, with both separation dimensions capable of resolving some isomeric oligosaccharides. We demonstrate this method using both unpurified reaction products from isomeric synthetic hexasaccharides and an octasaccharide fraction from enoxaparin, identifying isomers resolved by this multi-dimensional separation method. We demonstrate both structural analysis by MS, as well as functional analysis by microarray printing and screening using a prototypical Hp/HS binding protein: basic-fibroblast growth factor (FGF2). Collectively, this method provides a strategy for efficient Hp/HS structure-function characterization.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
7 |
55
|
Higgins AM, Sferrazza M, Jones RAL, Jukes PC, Sharp JS, Dryden LE, Webster J. The timescale of spinodal dewetting at a polymer/polymer interface. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2002; 8:137-143. [PMID: 15010963 DOI: 10.1140/epje/i2001-10061-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We investigate the dynamics of spinodal dewetting in liquid-liquid polymer systems. Dewetting of poly(methyl-methacrylate) (PMMA) thin films on polystyrene (PS) "substrates" is followed in situ using neutron reflectivity. By following the development of roughness at the PS/PMMA interface and the PMMA surface we extract characteristic growth times for the dewetting process. These characteristic growth times are measured as a function of the molecular weight of the two polymers. By also carrying out experiments in the regime where the dynamics are independent of the PS molecular weight, we are able to use dewetting to probe the scaling of the PMMA thin film viscosity with temperature and molecular weight. We find that this scaling reflects bulk behaviour. However, absolute values are low compared to bulk viscosities, which we suggest may be due in part to slippage at the polymer/polymer interface.
Collapse
|
|
23 |
7 |
56
|
Riaz M, Misra SK, Sharp JS. Towards high-throughput fast photochemical oxidation of proteins: Quantifying exposure in high fluence microtiter plate photolysis. Anal Biochem 2018; 561-562:32-36. [PMID: 30240591 PMCID: PMC6186496 DOI: 10.1016/j.ab.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 01/15/2023]
Abstract
Protein structural analysis by mass spectrometry has gained significant popularity in recent years, including high-resolution protein topographical mapping by fast photochemical oxidation of proteins (FPOP). The ability to provide protein topographical information at moderate spatial resolution makes FPOP an attractive technology for the protein pharmaceutical discovery and development processes. However, current technology limits the throughput and requires significant manual sample manipulation. Similarly, as FPOP is being used on larger samples, sample flow through the capillary becomes challenging. No systematic comparison of the performance of static flash photolysis with traditional flow FPOP has been reported. Here, we evaluate a 96-well microtiter-based laser flash photolysis method for the topographical probing of proteins, which subsequently could be used to analyze higher order structure of the protein in a high-throughput fashion with minimal manual sample manipulation. We used multiple metrics to compare microtiter FPOP performance with that of traditional flow FPOP: adenine-based hydroxyl radical dosimetry, oxidation efficiency of a model peptide, and hydroxyl radical protein footprint of myoglobin. In all cases, microtiter plate FPOP performed comparably with traditional flow FPOP, requiring a small fraction of the time for exposure. This greatly reduced sample exposure time, coupled with automated sample handling in 96-well microtiter plates, makes microtiter-based FPOP an important step in achieving the throughput required to adapt hydroxyl radical protein footprinting for screening purposes.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
7 |
57
|
Bezerra FF, Vignovich WP, Aderibigbe AO, Liu H, Sharp JS, Doerksen RJ, Pomin VH. Conformational properties of l-fucose and the tetrasaccharide building block of the sulfated l-fucan from Lytechinus variegatus. J Struct Biol 2019; 209:107407. [PMID: 31698075 DOI: 10.1016/j.jsb.2019.107407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 01/19/2023]
Abstract
Although the 3D structure of carbohydrates is known to contribute to their biological roles, conformational studies of sugars are challenging because their chains are flexible in solution and consequently the number of 3D structural restraints is limited. Here, we investigate the conformational properties of the tetrasaccharide building block of the Lytechinus variegatus sulfated fucan composed of the following structure [l-Fucp4(SO3-)-α(1-3)-l-Fucp2,4(SO3-)-α(1-3)-l-Fucp2(SO3-)-α(1-3)-l-Fucp2(SO3-)] and the composing monosaccharide unit Fucp, primarily by nuclear magnetic resonance (NMR) experiments performed at very low temperatures and using H2O as the solvent for the sugars rather than using the conventional deuterium oxide. By slowing down the fast chemical exchange rates and forcing the protonation of labile sites, we increased the number of through-space 1H-1H distances that could be measured by NMR spectroscopy. Following this strategy, additional conformational details of the tetrasaccharide and l-Fucp in solution were obtained. Computational molecular dynamics was performed to complement and validate the NMR-based measurements. A model of the NMR-restrained 3D structure is offered for the tetrasaccharide.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
6 |
58
|
Koh S, Wiles AM, Sharp JS, Naider FR, Becker JM, Stacey G. An oligopeptide transporter gene family in Arabidopsis. PLANT PHYSIOLOGY 2002. [PMID: 11788749 DOI: 10.1104/pp.128.1.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We have identified nine oligopeptide transporter (OPT) orthologs (AtOPT1 to AtOPT9) in Arabidopsis. These proteins show significant sequence similarity to OPTs of Candida albicans (CaOpt1p), Schizosaccharomyces pombe (Isp4p), and Saccharomyces cerevisiae (Opt1p and Opt2p). Hydrophilicity plots of the OPTs suggest that they are integral membrane proteins with 12 to 14 transmembrane domains. Sequence comparisons showed that the AtOPTs form a distinct subfamily when compared with the fungal OPTs. Two highly conserved motifs (NPG and KIPPR) were found among all OPT members. The identification of multiple OPTs in Arabidopsis suggests that they may play different functional roles. This idea is supported by the fact that AtOPTs have a distinct, tissue-specific expression pattern. The cDNAs encoding seven of the AtOPTs were cloned into a yeast vector under the control of a constitutive promoter. AtOPT4 expressed in S. cerevisiae mediated the uptake of KLG-[3H]L. Similarly, expression of five of the seven AtOPT proteins expressed in yeast conferred the ability to uptake tetra- and pentapeptides as measured by growth. This study provides new evidence for multiple peptide transporter systems in Arabidopsis, suggesting an important physiological role for small peptides in plants.
Collapse
|
|
23 |
6 |
59
|
Khaje NA, Eletsky A, Biehn SE, Mobley CK, Rogals MJ, Kim Y, Mishra SK, Doerksen RJ, Lindert S, Prestegard JH, Sharp JS. Validated determination of NRG1 Ig-like domain structure by mass spectrometry coupled with computational modeling. Commun Biol 2022; 5:452. [PMID: 35551273 PMCID: PMC9098640 DOI: 10.1038/s42003-022-03411-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 01/03/2023] Open
Abstract
High resolution hydroxyl radical protein footprinting (HR-HRPF) is a mass spectrometry-based method that measures the solvent exposure of multiple amino acids in a single experiment, offering constraints for experimentally informed computational modeling. HR-HRPF-based modeling has previously been used to accurately model the structure of proteins of known structure, but the technique has never been used to determine the structure of a protein of unknown structure. Here, we present the use of HR-HRPF-based modeling to determine the structure of the Ig-like domain of NRG1, a protein with no close homolog of known structure. Independent determination of the protein structure by both HR-HRPF-based modeling and heteronuclear NMR was carried out, with results compared only after both processes were complete. The HR-HRPF-based model was highly similar to the lowest energy NMR model, with a backbone RMSD of 1.6 Å. To our knowledge, this is the first use of HR-HRPF-based modeling to determine a previously uncharacterized protein structure. A mass spectrometry-based method guides computational modeling for de novo protein structure prediction.
Collapse
|
|
3 |
6 |
60
|
Li X, Li Z, Xie B, Sharp JS. Supercharging by m-NBA Improves ETD-Based Quantification of Hydroxyl Radical Protein Footprinting. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1424-1427. [PMID: 25916598 PMCID: PMC4598181 DOI: 10.1007/s13361-015-1129-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
Hydroxyl radical protein footprinting (HRPF) is an MS-based technique for analyzing protein structure based on measuring the oxidation of amino acid side chains by hydroxyl radicals diffusing in solution. Spatial resolution of HRPF is limited by the smallest portion of the protein for which oxidation amounts can be accurately quantitated. Previous work has shown electron transfer dissociation (ETD) to be the most reliable method for quantifying the amount of oxidation of each amino acid side chain in a mixture of peptide oxidation isomers, but efficient ETD requires high peptide charge states, which limits its applicability for HRPF. Supercharging reagents have been used to enhance peptide charge state for ETD analysis, but previous work has shown supercharging reagents to enhance charge state differently for different peptides sequences; it is currently unknown if different oxidation isomers will experience different charge enhancement effects. Here, we report the effect of m-nitrobenzyl alcohol (m-NBA) on the ETD-based quantification of peptide oxidation. The addition of m-NBA to both a defined mixture of synthetic isomeric oxidized peptides and Robo-1 protein subjected to HRPF increased the abundance of higher charge state ions, improving our ability to perform efficient ETD of the mixture. No differences in the reported quantitation by ETD were noted in the presence or absence of m-NBA, indicating that all oxidation isomers were charge-enhanced to a similar extent. These results indicate the utility of m-NBA for residue-level quantification of peptide oxidation in HRPF and other applications.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
6 |
61
|
Maurya AK, Sharma P, Samanta P, Shami AA, Misra SK, Zhang F, Thara R, Kumar D, Shi D, Linhardt RJ, Sharp JS, Doerksen RJ, Tandon R, Pomin VH. Structure, anti-SARS-CoV-2, and anticoagulant effects of two sulfated galactans from the red alga Botryocladia occidentalis. Int J Biol Macromol 2023; 238:124168. [PMID: 36963552 PMCID: PMC10175164 DOI: 10.1016/j.ijbiomac.2023.124168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
The structure of the sulfated galactan from the red alga Botryocladia occidentalis (BoSG) was originally proposed as a simple repeating disaccharide of alternating 4-linked α-galactopyranose (Galp) and 3-linked β-Galp units with variable sulfation pattern. Abundance was estimated only for the α-Galp units: one-third of 2,3-disulfation and one-third of 2-monosulfation. Here, we isolated again the same BoSG fractions from the anion-exchange chromatography, obtaining the same NMR profile of the first report. More careful NMR analysis led us to revise the structure. A more complex sulfation pattern was noted along with the occurrence of 4-linked α-3,6-anhydro-Galp (AnGalp) units. Interestingly, the more sulfated BoSG fraction showed slightly reduced in vitro anti-SARS-CoV-2 activities against both wild-type and delta variants, and significantly reduced anticoagulant activity. The BoSG fractions showed no cytotoxic effects. The reduction in both bioactivities is attributed to the presence of the AnGalp unit. Docking scores from computational simulations using BoSG disaccharide constructs on wild-type and delta S-proteins, and binding analysis through competitive SPR assays using blood (co)-factors (antithrombin, heparin cofactor II and thrombin) and four S-proteins (wild-type, delta, gamma, and omicron) strongly support the conclusion about the deleterious impact of the AnGalp unit.
Collapse
|
research-article |
2 |
6 |
62
|
Kim SB, Farrag M, Mishra SK, Misra SK, Sharp JS, Doerksen RJ, Pomin VH. Selective 2-desulfation of tetrasaccharide-repeating sulfated fucans during oligosaccharide production by mild acid hydrolysis. Carbohydr Polym 2023; 301:120316. [PMID: 36436858 PMCID: PMC9745898 DOI: 10.1016/j.carbpol.2022.120316] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
Sulfated fucans (SFs) from echinoderms, such as sea cucumbers and sea urchins, present linear and regular sulfation patterns within defined oligosaccharide building blocks. The high molecular weights of these polymers pose a problem in advanced structure-activity relationship studies for which derived oligosaccharides are more appropriate tools for investigation. However, enzymes capable of specifically depolymerizing SFs, fucanases, are not very common. Scarce abundance and unknown catalytic activities are additional barriers to exploiting fucanases. Oligosaccharide production by controlled chemical reactions such as mild acid hydrolysis then becomes a convenient strategy. As a consequence, physicochemical studies are necessary to understand the structural modifications caused on SFs by this chemical hydrolysis. Hence, in this work, we subjected three tetrasaccharide-repeating SFs from sea cucumbers, Isostichopus badionotus (IbSF), Holothuria floridana (HfSF), and Lytechinus variegatus (LvSF) to mild acid hydrolysis for oligosaccharide production. Interestingly, selective 2-desulfation reaction was observed in all three SFs. Through our study, we indicate that selective 2-desulfation is a common and expected phenomenon in oligosaccharide production by mild acid hydrolysis of SFs, including those composed of tetrasaccharide-repeating units.
Collapse
|
research-article |
2 |
6 |
63
|
Weinberger SR, Chea EE, Sharp JS, Misra SK. Laser-free Hydroxyl Radical Protein Footprinting to Perform Higher Order Structural Analysis of Proteins. J Vis Exp 2021. [PMID: 34152327 DOI: 10.3791/61861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Hydroxyl Radical Protein Footprinting (HRPF) is an emerging and promising higher order structural analysis technique that provides information on changes in protein structure, protein-protein interactions, or protein-ligand interactions. HRPF utilizes hydroxyl radicals (▪OH) to irreversibly label a protein's solvent accessible surface. The inherent complexity, cost, and hazardous nature of performing HRPF have substantially limited broad-based adoption in biopharma. These factors include: 1) the use of complicated, dangerous, and expensive lasers that demand substantial safety precautions; and 2) the irreproducibility of HRPF caused by background scavenging of ▪OH that limit comparative studies. This publication provides a protocol for operation of a laser-free HRPF system. This laser-free HRPF system utilizes a high energy, high-pressure plasma light source flash oxidation technology with in-line radical dosimetry. The plasma light source is safer, easier to use, and more efficient in generating hydroxyl radicals than laser-based HRPF systems, and the in-line radical dosimeter increases the reproducibility of studies. Combined, the laser-free HRPF system addresses and surmounts the mentioned shortcomings and limitations of laser-based techniques.
Collapse
|
Video-Audio Media |
4 |
5 |
64
|
Cheng Z, Misra SK, Shami A, Sharp JS. Structural Analysis of Phosphorylation Proteoforms in a Dynamic Heterogeneous System Using Flash Oxidation Coupled In-Line with Ion Exchange Chromatography. Anal Chem 2022; 94:18017-18024. [PMID: 36512753 PMCID: PMC9912381 DOI: 10.1021/acs.analchem.2c04365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein posttranslational modifications (PTMs) are key modulators of protein structure and function that often change in a dynamic fashion in response to cellular stimuli. Dynamic PTMs are very challenging to structurally characterize using modern techniques, including covalent labeling methods, due to the presence of multiple proteoforms and conformers together in solution. We have coupled an ion exchange high-performance liquid chromatography separation with a flash oxidation system [ion exchange chromatography liquid chromatography-flash oxidation (IEX LC-FOX)] to successfully elucidate structural changes among three phosphoproteoforms of ovalbumin (OVA) during dephosphorylation with alkaline phosphatase. Real-time dosimetry indicates no difference in the effective radical dose between peaks or across the peak, demonstrating both the lack of scavenging of the NaCl gradient and the lack of a concentration effect on radical dose between peaks of different intensities. The use of IEX LC-FOX allows us to structurally probe into each phosphoproteoform as it elutes from the column, capturing structural data before the dynamics of the system to reintroduce heterogeneity. We found significant differences in the residue-level oxidation between the hydroxyl radical footprint of nonphosphorylated, monophosphorylated, and diphosphorylated OVA. Not only were our data consistent with the previously reported stabilization of OVA structure by phosphorylation, but local structural changes were also consistent with the measured order of dephosphorylation of Ser344 being removed first. These results demonstrate the utility of IEX LC-FOX for measuring the structural effects of PTMs, even in dynamic systems.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
5 |
65
|
Smith MI, Sharp JS. Origin of contact line forces during the retraction of dilute polymer solution drops. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5455-5459. [PMID: 24786826 DOI: 10.1021/la5005159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The forced dewetting of water and dilute poly(ethylene oxide) solution (PEO) drops is investigated for syringe-driven flow. Comparisons are made with the free dewetting observed during drop impact. We provide strong evidence that during droplet retraction, polymer deposited on the substrate results in a velocity-dependent force at the contact line. These findings are in stark contrast to previous studies which attributed dissipation to bulk viscoelastic effects or normal stress effects at the contact line.
Collapse
|
|
11 |
4 |
66
|
Sharp JS, Vader D, Forrest JA, Smith MI, Khomenko M, Dalnoki-Veress K. Spinodal wrinkling in thin-film poly(ethylene oxide)/polystyrene bilayers. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2006; 19:423-32. [PMID: 16612561 DOI: 10.1140/epje/i2005-10057-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 01/23/2006] [Indexed: 05/08/2023]
Abstract
Optical microscopy and atomic force microscopy were used to study a novel roughness-induced wrinkling instability in thin-film bilayers of poly(ethylene oxide) (PEO) and polystyrene (PS). The observed wrinkling morphology is manifested as a periodic undulation at the surface of the samples and occurs when the bilayers are heated above the melting temperature of the semi crystalline PEO (T(m) = 63 Celsius) layer. During the wrinkling of the glassy PS capping layers the system selects a characteristic wavelength that has the largest amplitude growth rate. This initial wavelength is shown to increase monotonically with increasing thickness of the PEO layer. We also show that for a given PEO film thickness, the wavelength can be varied independently by changing the thickness of the PS capping layers. A model based upon a simple linear stability analysis was developed to analyse the data collected for the PS and PEO film thickness dependences of the fastest growing wavelength in the system. The predictions of this theory are that the strain induced in the PS layer caused by changes in the area of the PEO/PS interface during the melting of the PEO are sufficient to drive the wrinkling instability. A consideration of the mechanical response of the PEO and PS layers to the deformations caused by wrinkling then allows us to use this simple theory to predict the fastest growing wavelength in the system.
Collapse
|
|
19 |
4 |
67
|
Liu Y, Sharp JS, Do DHT, Kahn RA, Schwalbe H, Buhr F, Prestegard JH. Mistakes in translation: Reflections on mechanism. PLoS One 2017; 12:e0180566. [PMID: 28662217 PMCID: PMC5491249 DOI: 10.1371/journal.pone.0180566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/16/2017] [Indexed: 01/25/2023] Open
Abstract
Mistakes in translation of messenger RNA into protein are clearly a detriment to the recombinant production of pure proteins for biophysical study or the biopharmaceutical market. However, they may also provide insight into mechanistic details of the translation process. Mistakes often involve the substitution of an amino acid having an abundant codon for one having a rare codon, differing by substitution of a G base by an A base, as in the case of substitution of a lysine (AAA) for arginine (AGA). In these cases one expects the substitution frequency to depend on the relative abundances of the respective tRNAs, and thus, one might expect frequencies to be similar for all sites having the same rare codon. Here we demonstrate that, for the ADP-ribosylation factor from yeast expressed in E. coli, lysine for arginine substitutions frequencies are not the same at the 9 sites containing a rare arginine codon; mis-incorporation frequencies instead vary from less than 1 to 16%. We suggest that the context in which the codons occur (clustering of rare sites) may be responsible for the variation. The method employed to determine the frequency of mis-incorporation involves a novel mass spectrometric analysis of the products from the parallel expression of wild type and codon-optimized genes in 15N and 14N enriched media, respectively. The high sensitivity and low material requirements of the method make this a promising technology for the collection of data relevant to other mis-incorporations. The additional data could be of value in refining models for the ribosomal translation elongation process.
Collapse
|
|
8 |
4 |
68
|
Akbar S, Phillips KE, Misra SK, Sharp JS, Stevens DC. Differential response to prey quorum signals indicates predatory specialization of myxobacteria and ability to predate Pseudomonas aeruginosa. Environ Microbiol 2021; 24:1263-1278. [PMID: 34674390 PMCID: PMC9257966 DOI: 10.1111/1462-2920.15812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/20/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022]
Abstract
Multiomic analysis of transcriptional and metabolic responses from the predatory myxobacteria Myxococcus xanthus and Cystobacter ferrugineus exposed to prey signalling molecules of the acylhomoserine lactone and quinolone quorum signalling classes provided insight into predatory specialization. Acylhomoserine lactone quorum signals elicited a general response from both myxobacteria. We suggest that this is likely due to the generalist predator lifestyles of myxobacteria and ubiquity of acylhomoserine lactone signals. We also provide data that indicates the core homoserine lactone moiety included in all acylhomoserine lactone scaffolds to be sufficient to induce this general response. Comparing both myxobacteria, unique transcriptional and metabolic responses were observed from Cystobacter ferrugineus exposed to the quinolone signal 2‐heptylquinolin‐4(1H)‐one (HHQ) natively produced by Pseudomonas aeruginosa. We suggest that this unique response and ability to metabolize quinolone signals contribute to the superior predation of P. aeruginosa observed from C. ferrugineus. These results further demonstrate myxobacterial eavesdropping on prey signalling molecules and provide insight into how responses to exogenous signals might correlate with prey range of myxobacteria.
Collapse
|
|
4 |
4 |
69
|
Adaikpoh BI, Akbar S, Albataineh H, Misra SK, Sharp JS, Stevens DC. Myxobacterial Response to Methyljasmonate Exposure Indicates Contribution to Plant Recruitment of Micropredators. Front Microbiol 2020; 11:34. [PMID: 32047489 PMCID: PMC6997564 DOI: 10.3389/fmicb.2020.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/09/2020] [Indexed: 11/25/2022] Open
Abstract
Chemical exchanges between plants and microbes within rhizobiomes are critical to the development of community structure. Volatile root exudates such as the phytohormone methyljasmonate (MeJA) contribute to various plant stress responses and have been implicated to play a role in the maintenance of microbial communities. Myxobacteria are competent predators of plant pathogens and are generally considered beneficial to rhizobiomes. While plant recruitment of myxobacteria to stave off pathogens has been suggested, no involved chemical signaling processes are known. Herein we expose predatory myxobacteria to MeJA and employ untargeted mass spectrometry, motility assays, and RNA sequencing to monitor changes in features associated with predation such as specialized metabolism, swarm expansion, and production of lytic enzymes. From a panel of four myxobacteria, we observe the most robust metabolic response from plant-associated Archangium sp. strain Cb G35 with 10 μM MeJA impacting the production of at least 300 metabolites and inducing a ≥ fourfold change in transcription for 56 genes. We also observe that MeJA induces A. sp. motility supporting plant recruitment of a subset of the investigated micropredators. Provided the varying responses to MeJA exposure, our observations indicate that MeJA contributes to the recruitment of select predatory myxobacteria suggesting further efforts are required to explore the microbial impact of plant exudates associated with biotic stress.
Collapse
|
research-article |
5 |
4 |
70
|
Tadi S, Misra SK, Sharp JS. Inline Liquid Chromatography-Fast Photochemical Oxidation of Proteins for Targeted Structural Analysis of Conformationally Heterogeneous Mixtures. Anal Chem 2021; 93:3510-3516. [PMID: 33560821 DOI: 10.1021/acs.analchem.0c04872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Structural analysis of proteins in a conformationally heterogeneous mixture has long been a difficult problem in structural biology. In structural analysis by covalent labeling mass spectrometry, conformational heterogeneity results in data reflecting a weighted average of all conformers, complicating data analysis and potentially causing misinterpretation of results. Here, we describe a method coupling size-exclusion chromatography (SEC) with hydroxyl radical protein footprinting using inline fast photochemical oxidation of proteins (FPOP). Using a controlled synthetic mixture of holomyoglobin and apomyoglobin, we validate that we can achieve accurate footprints of each conformer using LC-FPOP when compared to offline FPOP of each pure conformer. We then applied LC-FPOP to analyze the adalimumab heat-shock aggregation process. We found that the LC-FPOP footprint of unaggregated adalimumab was consistent with a previously published footprint of the native IgG. The LC-FPOP footprint of the aggregation product indicated that heat-shock aggregation primarily protected the hinge region, suggesting that this region is involved with the heat-shock aggregation process of this molecule. LC-FPOP offers a new method to probe dynamic conformationally heterogeneous mixtures that can be separated by SEC such as biopharmaceutical aggregates and to obtain accurate information on the topography of each conformer.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
3 |
71
|
Tadi S, Sharp JS. Top-Down ETD-MS Provides Unreliable Quantitation of Methionine Oxidation. J Biomol Tech 2020; 30:50-57. [PMID: 31662705 DOI: 10.7171/jbt.19-3004-002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methionine oxidation plays a critical role in many processes of biologic and biomedical importance, including cellular redox responses and stability of protein pharmaceuticals. Bottom-up methods for analysis of methionine oxidation can suffer from incomplete sequence coverage, as well as an inability to readily detect correlated oxidation between 2 or more methionines. However, the methodology for quantifying protein oxidation in top-down analyses is lacking. Previous work has shown that electron transfer dissociation (ETD)-based tandem mass spectrometry (MS/MS) fragmentation offers accurate and precise quantification of amino acid oxidation in peptides, even in complex samples. However, the ability of ETD-based MS/MS fragmentation to accurately quantify amino acid oxidation of proteins in a top-down manner has not been reported. Using apomyoglobin and calmodulin as model proteins, we partially converted methionines into methionine sulfoxide by incubation in H2O2. Using top-down ETD-based fragmentation, we quantified the amount of oxidation of various ETD product ions and compared the quantified values with those from traditional bottom-up analysis. We find that overall quantification of methionine oxidation by top-down MS/MS ranges from good agreement with traditional bottom-up methods to vast differences between the 2 techniques, including missing oxidized product ions and large differences in measured oxidation quantities. Care must be taken in transitioning ETD-based quantitation of oxidation from the peptide level to the intact protein level.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
3 |
72
|
Mitra S, Talukdar K, Prasad P, Misra SK, Khan S, Sharp JS, Jurss JW, Chakraborty S. Rational Design of a Cu Chelator That Mitigates Cu-Induced ROS Production by Amyloid Beta. Chembiochem 2022; 23:e202100485. [PMID: 34878720 PMCID: PMC9040527 DOI: 10.1002/cbic.202100485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/07/2021] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease severely perturbs transition metal homeostasis in the brain leading to the accumulation of excess metals in extracellular and intraneuronal locations. The amyloid beta protein binds these transition metals, ultimately causing severe oxidative stress in the brain. Metal chelation therapy is an approach to sequester metals from amyloid beta and relieve the oxidative stress. Here we have designed a mixed N/O donor Cu chelator inspired by the proposed ligand set of Cu in amyloid beta. We demonstrate that the chelator effectively removes Cu from amyloid beta and suppresses reactive oxygen species (ROS) production by redox silencing and radical scavenging both in vitro and in cellulo. The impact of ROS on the extent of oxidation of the different aggregated forms of the peptide is studied by mass spectrometry, which, along with other ROS assays, shows that the oligomers are pro-oxidants in nature. The aliphatic Leu34, which was previously unobserved, has been identified as a new oxidation site.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
3 |
73
|
Khaje NA, Sharp JS. Rapid Quantification of Peptide Oxidation Isomers From Complex Mixtures. Anal Chem 2020; 92:3834-3843. [PMID: 32039584 DOI: 10.1021/acs.analchem.9b05268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hydroxyl radical protein footprinting (HRPF) is a powerful technique for probing changes in protein topography, based on quantifying the amount of oxidation of different regions of a protein. While quantification of HRPF oxidation at the peptide level is relatively common and straightforward, quantification at the residue level is challenging because of the influence of oxidation on MS/MS fragmentation and the large number of complex and only partially chromatographically resolved isomeric peptide oxidation products. HRPF quantification of isomeric peptide oxidation products (where the peptide sequence is the same but isomeric oxidation products are formed at different sites) at the residue level by electron transfer dissociation tandem mass spectrometry (ETD MS/MS) has been demonstrated in both model peptides and HRPF products, but the method is hampered by the partial separation of oxidation isomers by reversed phase chromatography. This requires custom MS/MS methods to equally sample all isomeric oxidation products across their elution window, greatly increasing method development time and reducing the oxidation products quantified in a single LC-MS/MS run. Here, we present a zwitterionic hydrophilic interaction capillary chromatography (ZIC-HILIC) method to ideally coelute all isomeric peptide oxidation products while separating different peptides. This allows us to relatively quantify peptide oxidation isomers using an ETD MS/MS spectrum acquired at any point across the single peptide oxidation isomer peak, greatly simplifying data acquisition and data analysis.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
3 |
74
|
Cheng Z, Mobley C, Misra SK, Gadepalli RS, Hammond RI, Brown LS, Rimoldi JM, Sharp JS. Self-Organized Amphiphiles Are Poor Hydroxyl Radical Scavengers in Fast Photochemical Oxidation of Proteins Experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1155-1161. [PMID: 33881849 PMCID: PMC8790760 DOI: 10.1021/jasms.0c00457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Analysis of membrane protein topography using fast photochemical oxidation of proteins (FPOP) has been reported in recent years but is still underrepresented in literature. Based on the hydroxyl radical reactivity of lipids and other amphiphiles, it is believed that the membrane environment acts as a hydroxyl radical scavenger decreasing effective hydroxyl radical doses and resulting in less observed oxidation of proteins. We found no significant change in bulk solvent radical scavenging activity upon the addition of disrupted cellular membranes up to 25600 cells/μL using an inline radical dosimeter. We confirmed the nonscavenging nature of the membrane in bulk solution with the FPOP results of a soluble model protein in the presence of cell membranes, which showed no significant difference in oxidation with or without membranes. The use of detergents revealed that, while soluble detergent below the critical micelle concentration is a potent hydroxyl radical scavenger, additional detergent has little to no hydroxyl radical scavenging effect once the critical micelle concentration is reached. Examination of both an extracellular peptide of the integral membrane protein bacteriorhodopsin as well as a novel hydroxyl radical dosimeter tethered to a Triton X-series amphiphile indicate that proximity to the membrane surface greatly decreases reaction with hydroxyl radicals, even though the oxidation target is equally solvent accessible. These results suggest that the observed reduced oxidation of solvent-accessible surfaces of integral membrane proteins is due to the high local concentration of radical scavengers in the membrane or membrane mimetics competing for the local concentration of hydroxyl radicals.
Collapse
|
research-article |
4 |
3 |
75
|
Avula B, Parveen I, Zhao J, Wang M, Techen N, Wang YH, Riaz M, Bae JY, Shami AA, Chittiboyina AG, Khan IA, Sharp JS. A Comprehensive Workflow for the Analysis of Bio-Macromolecular Supplements: Case Study of 20 Whey Protein Products. J Diet Suppl 2021; 19:515-533. [PMID: 33764265 DOI: 10.1080/19390211.2021.1897724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The presence of bio-macromolecules as major ingredients is a primary factor in marketing many biologically derived macromolecular supplements. Workflows for analyzing these supplements for quality assurance, adulteration, and other supply-chain difficulties must include a qualitative assessment of small-molecule and macromolecular components; however, no such integrated protocol has been reported for these bio-macromolecular supplements. Twenty whey protein supplements were analyzed using an integrated workflow to identify protein content, protein adulteration, inorganic elemental content, and macromolecular and small-molecule profiles. Orthogonal analytical methods were employed, including NMR profiling, LC-DAD-QToF analysis of small-molecule components, ICP-MS analysis of inorganic elements, determination of total protein content by a Bradford assay, SDS-PAGE protein profiling, and bottom-up shotgun proteomic analysis using LC-MS-MS. All 20 supplements showed a reduced protein content compared to the claimed content but no evidence of adulteration with protein from an unclaimed source. Many supplements included unlabeled small-molecule additives (but nontoxic) and significant deviations in metal content, highlighting the importance of both macromolecular and small-molecule analysis in the comprehensive profiling of macromolecular supplements. An orthogonal, integrated workflow allowed the detection of crucial product characteristics that would have remained unidentified using traditional workflows involving either analysis of small-molecule nutritional supplements or protein analysis.
Collapse
|
|
4 |
2 |