51
|
Walker SE, Fredrick K. Recognition and positioning of mRNA in the ribosome by tRNAs with expanded anticodons. J Mol Biol 2006; 360:599-609. [PMID: 16730356 PMCID: PMC2602952 DOI: 10.1016/j.jmb.2006.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 04/28/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022]
Abstract
Mutant tRNAs containing an extra nucleotide in the anticodon loop are known to suppress +1 frameshift mutations, but in no case has the molecular mechanism been clarified. It has been proposed that the expanded anticodon pairs with a complementary mRNA sequence (the frameshift sequence) in the A site, and this quadruplet "codon-anticodon" helix is translocated to the P site to restore the correct reading frame. Here, we analyze the ability of tRNA analogs containing expanded anticodons to recognize and position mRNA in ribosomal complexes in vitro. In all cases tested, 8 nt anticodon loops position the 3' three-quarters of the frameshift sequence in the P site, indicating that the 5' bases of the expanded anticodon (nucleotides 33.5, 34, and 35) pair with mRNA in the P site. We also provide evidence that four base-pairs can form between the P-site tRNA and mRNA, and the fourth base-pair involves nucleotide 36 of the tRNA and lies toward (or in) the 30 S E site. In the A site, tRNA analogs with the expanded anticodon ACCG are able to recognize either CGG or GGU. These data imply a flexibility of the expanded anticodon in the A site. Recognition of the 5' three-quarters of the frameshift sequence in the A site and subsequent translocation of the expanded anticodon to the P site results in movement of mRNA by four nucleotides, explaining how these tRNAs can change the mRNA register in the ribosome to restore the correct reading frame.
Collapse
|
52
|
McGarry KG, Walker SE, Wang H, Fredrick K. Destabilization of the P site codon-anticodon helix results from movement of tRNA into the P/E hybrid state within the ribosome. Mol Cell 2006; 20:613-22. [PMID: 16307924 PMCID: PMC2631382 DOI: 10.1016/j.molcel.2005.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/02/2005] [Accepted: 10/05/2005] [Indexed: 10/25/2022]
Abstract
Retention of the reading frame in ribosomal complexes after single-round translocation depends on the acylation state of the tRNA. When tRNA lacking a peptidyl group is translocated to the P site, the mRNA slips to allow re-pairing of the tRNA with a nearby out-of-frame codon. Here, we show that this ribosomal activity results from movement of tRNA into the P/E hybrid state. Slippage of mRNA is suppressed by 3' truncation of the translocated tRNA, increased MgCl2 concentration, and mutation C2394A of the 50S E site, and each of these conditions inhibits P/E-state formation. Mutation G2252U of the 50S P site stimulates mRNA slippage, suggesting that decreased affinity of tRNA for the P/P state also destabilizes mRNA in the complex. The effects of G2252U are suppressed by C2394A, further implicating the P/E state in mRNA destabilization. This work uncovers a functional attribute of the P/E state crucial for understanding translation.
Collapse
|
53
|
Yassin A, Fredrick K, Mankin AS. Deleterious mutations in small subunit ribosomal RNA identify functional sites and potential targets for antibiotics. Proc Natl Acad Sci U S A 2005; 102:16620-5. [PMID: 16269538 PMCID: PMC1283848 DOI: 10.1073/pnas.0508444102] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many clinically useful antibiotics interfere with protein synthesis in bacterial pathogens by inhibiting ribosome function. The sites of action of known drugs are limited in number, are composed primarily of ribosomal RNA (rRNA), and coincide with functionally critical centers of the ribosome. Nucleotide alterations within such sites are often deleterious. To identify functional sites and potential sites of antibiotic action in the ribosome, we prepared a random mutant library of rRNA genes and selected dominant mutations in 16S rRNA that interfere with cell growth. Fifty-three 16S rRNA positions were identified whose mutation inhibits protein synthesis. Mutations were ranked according to the severity of the phenotype, and the detrimental effect of several mutations on translation was verified in a specialized ribosome system. Analysis of the polysome profiles of mutants suggests that the majority of the mutations directly interfered with ribosome function, whereas a smaller fraction of mutations affected assembly of the small ribosomal subunit. Twelve of the identified mutations mapped to sites targeted by known antibiotics, confirming that deleterious mutations can be used to identify antibiotic targets. About half of the mutations coincided with known functional sites in the ribosome, whereas the rest of the mutations affected ribosomal sites with less clear functional significance. Four clusters of deleterious mutations in otherwise unremarkable ribosomal sites were identified, suggesting their functional importance and potential as antibiotic targets.
Collapse
|
54
|
Abdi NM, Fredrick K. Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli. RNA (NEW YORK, N.Y.) 2005; 11:1624-32. [PMID: 16177132 PMCID: PMC1370848 DOI: 10.1261/rna.2118105] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 07/20/2005] [Indexed: 05/04/2023]
Abstract
Many contacts between the ribosome and its principal substrates, tRNA and mRNA, involve universally conserved rRNA nucleotides, implying their functional importance in translation. Here, we measure the in vivo translation activity conferred by substitution of each 16S rRNA base believed to contribute to the A or P site. We find that the 30S P site is generally more tolerant of mutation than the 30S A site. In the A site, A1493C or any substitution of G530 or A1492 results in complete loss of translation activity, while A1493U and A1493G decrease translation activity by >20-fold. Among the P-site nucleotides, A1339 is most critical; any mutation of A1339 confers a >18-fold decrease in translation activity. Regarding all other P-site bases, ribosomes harboring at least one substitution retain considerable activity, >10% that of control ribosomes. Moreover, several sets of multiple substitutions within the 30S P site fail to inactivate the ribosome. The robust nature of the 30S P site indicates that its interaction with the codon-anticodon helix is less stringent than that of the 30S A site. In addition, we show that G1338A suppresses phenotypes conferred by m(2)G966A and several multiple P-site substitutions, suggesting that adenine at position 1338 can stabilize tRNA interaction in the P site.
Collapse
|
55
|
Noller HF, Hoang L, Fredrick K. The 30S ribosomal P site: a function of 16S rRNA. FEBS Lett 2005; 579:855-8. [PMID: 15680962 DOI: 10.1016/j.febslet.2004.11.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Accepted: 11/02/2004] [Indexed: 11/24/2022]
Abstract
The 30S ribosomal P site serves several functions in translation. It must specifically bind initiator tRNA during formation of the 30S initiation complex; bind the anticodon stem-loop of peptidyl-tRNA during the elongation phase; and help to maintain the translational reading frame when the A site is unoccupied. Early experiments provided evidence that 16S rRNA was an important component of the 30S P site. Footprinting and crosslinking studies later implicated specific nucleotides in interactions with tRNA. The crystal structures of the 30S subunit and 70S ribosome-tRNA complexes confirmed the interactions between 16S rRNA and tRNA, but also revealed contacts between tRNA and the C-terminal tails of proteins S9 and S13. Deletion of these tails now shows that the 16S rRNA contacts alone are sufficient to support protein synthesis in living cells.
Collapse
|
56
|
Hoang L, Fredrick K, Noller HF. Creating ribosomes with an all-RNA 30S subunit P site. Proc Natl Acad Sci U S A 2004; 101:12439-43. [PMID: 15308780 PMCID: PMC515080 DOI: 10.1073/pnas.0405227101] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribosome crystal structures have revealed that two small subunit proteins, S9 and S13, have C-terminal tails, which, together with several features of 16S rRNA, contact the anticodon stem-loop of P-site tRNA. To test the functional importance of these protein tails, we created genomic deletions of the C-terminal regions of S9 and S13. All of the tail deletions, including double mutants containing deletions in both S9 and S13, were viable, showing that Escherichia coli cells can synthesize all of their proteins by using ribosomes that contain 30S P sites composed only of RNA. However, these mutants have slower growth rates, indicating that the tails may play a supporting functional role in translation. In vitro analysis shows that 30S subunits purified from the S13 deletion mutants have a generally decreased affinity for tRNA, whereas deletion of the S9 tail selectively affects the binding of tRNAs whose anticodon stem sequences are most divergent from that of initiator tRNA.
Collapse
|
57
|
Noller HF, Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Lancaster L, Dallas A, Fredrick K, Earnest TN, Cate JH. Structure of the ribosome at 5.5 A resolution and its interactions with functional ligands. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:57-66. [PMID: 12762008 DOI: 10.1101/sqb.2001.66.57] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
58
|
Abstract
During protein synthesis, transfer RNAs (tRNAs) are translocated from the aminoacyl to peptidyl to exit sites of the ribosome, coupled to the movement of messenger RNA (mRNA), in a reaction catalyzed by elongation factor G (EF-G) and guanosine triphosphate (GTP). Here, we show that the peptidyl transferase inhibitor sparsomycin triggers accurate translocation in vitro in the absence of EF-G and GTP. Our results provide evidence that translocation is a function inherent to the ribosome and that the energy to drive this process is stored in the tRNA-mRNA-ribosome complex after peptide-bond formation. These findings directly implicate the peptidyl transferase center of the 50S subunit in the mechanism of translocation, a process involving large-scale movement of tRNA and mRNA in the 30S subunit, some 70 angstroms away.
Collapse
|
59
|
Fredrick K, Noller HF. Accurate translocation of mRNA by the ribosome requires a peptidyl group or its analog on the tRNA moving into the 30S P site. Mol Cell 2002; 9:1125-31. [PMID: 12049747 DOI: 10.1016/s1097-2765(02)00523-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ribosome must accurately translocate mRNA to maintain the reading frame. Here, we monitor the position of mRNA within the ribosome before and after EF-G-catalyzed translocation near the initiation site. When a deacylated tRNA that is translocated to the 30S P site recognizes other nearby codons, movement of tRNA and mRNA often becomes uncoupled. Instead of moving in the 5' direction by 3 nucleotides, the mRNA slips backward, repositioning the tRNA on an out-of-frame codon more optimally spaced from the Shine-Dalgarno sequence. In contrast, when peptidyl-tRNA or its analog (N-acetyl-aminoacyl-tRNA) is translocated in the same context, translocation of mRNA is highly accurate. If aminoacyl-tRNA is translocated, an intermediate level of translocational accuracy is observed. Thus, translocational accuracy depends on the acylation state of the tRNA entering the 30S P site.
Collapse
|
60
|
Fredrick K, Dunny GM, Noller HF. Tagging ribosomal protein S7 allows rapid identification of mutants defective in assembly and function of 30 S subunits. J Mol Biol 2000; 298:379-94. [PMID: 10772857 DOI: 10.1006/jmbi.2000.3563] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ribosomal protein S7 nucleates folding of the 16 S rRNA 3' major domain, which ultimately forms the head of the 30 S ribosomal subunit. Recent crystal structures indicate that S7 lies on the interface side of the 30 S subunit, near the tRNA binding sites of the ribosome. To map the functional surface of S7, we have tagged the protein with a Protein Kinase A recognition site and engineered alanine substitutions that target each exposed, conserved residue. We have also deleted conserved features of S7, using its structure to guide our design. By radiolabeling the tag sequence using Protein Kinase A, we are able to track the partitioning of each mutant protein into 30 S, 70 S, and polyribosome fractions in vivo. Overexpression of S7 confers a growth defect, and we observe a striking correlation between this phenotype and proficiency in 30 S subunit assembly among our collection of mutants. We find that the side chain of K35 is required for efficient assembly of S7 into 30 S subunits in vivo, whereas those of at least 17 other conserved exposed residues are not required. In addition, an S7 derivative lacking the N-terminal 17 residues causes ribosomes to accumulate on mRNA to abnormally high levels, indicating that our approach can yield interesting mutant ribosomes.
Collapse
|
61
|
Fredrick K, Helmann JD. RNA polymerase sigma factor determines start-site selection but is not required for upstream promoter element activation on heteroduplex (bubble) templates. Proc Natl Acad Sci U S A 1997; 94:4982-7. [PMID: 9144176 PMCID: PMC24617 DOI: 10.1073/pnas.94.10.4982] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sequence-selective transcription by bacterial RNA polymerase (RNAP) requires sigma factor that participates in both promoter recognition and DNA melting. RNAP lacking sigma (core enzyme) will initiate RNA synthesis from duplex ends, nicks, gaps, and single-stranded regions. We have used DNA templates containing short regions of heteroduplex (bubbles) to compare initiation in the presence and absence of various sigma factors. Using bubble templates containing the sigmaD-dependent flagellin promoter, with or without its associated upstream promoter (UP) element, we demonstrate that UP element stimulation occurs efficiently even in the absence of sigma. This supports a model in which the UP element acts primarily through the alpha subunit of core enzyme to increase the initial association of RNAP with the promoter. Core and holoenzyme do differ substantially in the template positions chosen for initiation: sigmaD restricts initiation to sites 8-9 nucleotides downstream of the conserved -10 element. Remarkably, sigmaA also has a dramatic effect on start-site selection even though the sigmaA holoenzyme is inactive on the corresponding homoduplexes. The start sites chosen by the sigmaA holoenzyme are located 8 nucleotides downstream of sequences on the nontemplate strand that resemble the conserved -10 hexamer recognized by sigmaA. Thus, sigmaA appears to recognize the -10 region even in a single-stranded state. We propose that in addition to its described roles in promoter recognition and start-site melting, sigma also localizes the transcription start site.
Collapse
|
62
|
Fredrick K, Helmann JD. FlgM is a primary regulator of sigmaD activity, and its absence restores motility to a sinR mutant. J Bacteriol 1996; 178:7010-3. [PMID: 8955328 PMCID: PMC178607 DOI: 10.1128/jb.178.23.7010-7013.1996] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have used mini-Tn1O mutagenesis to identify negative regulators of sigmaD activity. Nine independent insertions were mapped to five genes: flgM, flgK, fliD, fliS, and fliT, suggesting that FlgM export is regulated similarly in Bacillus subtilis and Salmonella typhimurium. We show that a deletion of flgM can restore sigmaD activity to a sinR null mutant of B. subtilis, although fla/che operon expression is affected by neither SinR nor FlgM.
Collapse
|
63
|
Fredrick K, Caramori T, Chen YF, Galizzi A, Helmann JD. Promoter architecture in the flagellar regulon of Bacillus subtilis: high-level expression of flagellin by the sigma D RNA polymerase requires an upstream promoter element. Proc Natl Acad Sci U S A 1995; 92:2582-6. [PMID: 7708689 PMCID: PMC42262 DOI: 10.1073/pnas.92.7.2582] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Flagellin is one of the most abundant proteins in motile bacteria, yet its expression requires a low abundance sigma factor (sigma 28). We show that transcription from the Bacillus subtilis flagellin promoter is stimulated 20-fold by an upstream A+T-rich region [upstream promoter (UP) element] both in vivo and in vitro. This UP element is contacted by sigma 28 holoenzyme bound at the flagellin promoter and binds the isolated alpha 2 subassembly of RNA polymerase. The UP element increases the affinity of RNA polymerase for the flagellin promoter and stimulates transcription when initiation is limited by the rate of RNA polymerase binding. Comparison with other promoters in the flagellar regulon reveals a bipartite architecture: the -35 and -10 elements confer specificity for sigma 28, while promoter strength is determined largely by upstream DNA sequences.
Collapse
|