51
|
Hoopes PJ, Moodie KL, Petryk AA, Petryk JD, Sechrist S, Gladstone DJ, Steinmetz NF, Veliz FA, Bursey AA, Wagner RJ, Rajan A, Dugat D, Crary-Burney M, Fiering SN. Hypo-fractionated Radiation, Magnetic Nanoparticle Hyperthermia and a Viral Immunotherapy Treatment of Spontaneous Canine Cancer. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2017; 10066:1006605. [PMID: 29203951 PMCID: PMC5711517 DOI: 10.1117/12.2256213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has recently been shown that cancer treatments such as radiation and hyperthermia, which have conventionally been viewed to have modest immune based anti-cancer effects, may, if used appropriately stimulate a significant and potentially effective local and systemic anti-cancer immune effect (abscopal effect) and improved prognosis. Using eight spontaneous canine cancers (2 oral melanoma, 3 oral amelioblastomas and 1 carcinomas), we have shown that hypofractionated radiation (6 x 6 Gy) and/or magnetic nanoparticle hyperthermia (2 X 43°C / 45 minutes) and/or an immunogenic virus-like nanoparticle (VLP, 2 x 200 μg) are capable of delivering a highly effective cancer treatment that includes an immunogenic component. Two tumors received all three therapeutic modalities, one tumor received radiation and hyperthermia, two tumors received radiation and VLP, and three tumors received only mNP hyperthermia. The treatment regimen is conducted over a 14-day period. All patients tolerated the treatments without complication and have had local and distant tumor responses that significantly exceed responses observed following conventional therapy (surgery and/or radiation). The results suggest that both hypofractionated radiation and hyperthermia have effective immune responses that are enhanced by the intratumoral VLP treatment. Molecular data from these tumors suggest Heat Shock Protein (HSP) 70/90, calreticulin and CD47 are targets that can be exploited to enhance the local and systemic (abscopal effect) immune potential of radiation and hyperthermia cancer treatment.
Collapse
|
52
|
Zhang J, Ring HL, Hurley KR, Shao Q, Carlson CS, Idiyatullin D, Manuchehrabadi N, Hoopes PJ, Haynes CL, Bischof JC, Garwood M. Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T 1 contrast for heating. Magn Reson Med 2016; 78:702-712. [PMID: 27667655 DOI: 10.1002/mrm.26394] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/08/2016] [Accepted: 08/03/2016] [Indexed: 12/23/2022]
Abstract
PURPOSE To use contrast based on longitudinal relaxation times (T1 ) or rates (R1 ) to quantify the biodistribution of iron oxide nanoparticles (IONPs), which are of interest for hyperthermia therapy, cell targeting, and drug delivery, within primary clearance organs. METHODS Mesoporous silica-coated IONPs (msIONPs) were intravenously injected into 15 naïve mice. Imaging and mapping of the longitudinal relaxation rate constant at 24 h or 1 week postinjection were performed with an echoless pulse sequence (SWIFT). Alternating magnetic field heating measurements were also performed on ex vivo tissues. RESULTS Signal enhancement from positive T1 contrast caused by IONPs was observed and quantified in vivo in liver, spleen, and kidney at concentrations up to 3.2 mg Fe/(g tissue wt.) (61 mM Fe). In most cases, each organ had a linear correlation between the R1 and the tissue iron concentration despite variations in intra-organ distribution, degradation, and IONP surface charge. Linear correlation between R1 and volumetric SAR in hyperthermia therapy was observed. CONCLUSION The linear dependence between R1 and tissue iron concentration in major organs allows quantitative monitoring of IONP biodistribution in a dosage range relevant to magnetic hyperthermia applications, which falls into the concentration gap between CT and conventional MRI techniques. Magn Reson Med 78:702-712, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
|
53
|
Stigliano RV, Shubitidze F, Petryk JD, Shoshiashvili L, Petryk AA, Hoopes PJ. Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy. Int J Hyperthermia 2016; 32:735-48. [PMID: 27436449 DOI: 10.1080/02656736.2016.1195018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Magnetic nanoparticle hyperthermia therapy is a promising technology for cancer treatment, involving delivering magnetic nanoparticles (MNPs) into tumours then activating them using an alternating magnetic field (AMF). The system produces not only a magnetic field, but also an electric field which penetrates normal tissue and induces eddy currents, resulting in unwanted heating of normal tissues. Magnitude of the eddy current depends, in part, on the AMF source and the size of the tissue exposed to the field. The majority of in vivo MNP hyperthermia therapy studies have been performed in small animals, which, due to the spatial distribution of the AMF relative to the size of the animals, do not reveal the potential toxicity of eddy current heating in larger tissues. This has posed a non-trivial challenge for researchers attempting to scale up to clinically relevant volumes of tissue. There is a relative dearth of studies focused on decreasing the maximum temperature resulting from eddy current heating to increase therapeutic ratio. METHODS This paper presents two simple, clinically applicable techniques for decreasing maximum temperature induced by eddy currents. Computational and experimental results are presented to understand the underlying physics of eddy currents induced in conducting, biological tissues and leverage these insights to mitigate eddy current heating during MNP hyperthermia therapy. RESULTS Phantom studies show that the displacement and motion techniques reduce maximum temperature due to eddy currents by 74% and 19% in simulation, and by 77% and 33% experimentally. CONCLUSION Further study is required to optimise these methods for particular scenarios; however, these results suggest larger volumes of tissue could be treated, and/or higher field strengths and frequencies could be used to attain increased MNP heating when these eddy current mitigation techniques are employed.
Collapse
|
54
|
Pogue BW, Elliott J, Samkoe KS, Gunn JR, Stewart E, Gardner T, Lee TY, Hoopes PJ, Pereira S, Hasan T. Perfusion CT examined as a surrogate dosimetry tool to estimate verteporfin uptake in rabbit orthotopic pancreas cancer. Photodiagnosis Photodyn Ther 2015. [DOI: 10.1016/j.pdpdt.2015.07.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
55
|
Elliott JT, Samkoe KS, Gunn JR, Stewart EE, Gardner TB, Tichauer KM, Lee TY, Hoopes PJ, Pereira SP, Hasan T, Pogue BW. Perfusion CT estimates photosensitizer uptake and biodistribution in a rabbit orthotopic pancreatic cancer model: a pilot study. Acad Radiol 2015; 22:572-9. [PMID: 25683500 DOI: 10.1016/j.acra.2014.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/12/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023]
Abstract
RATIONALE AND OBJECTIVES It was hypothesized that perfusion computed tomography (CT), blood flow (BF), blood volume (BV), and vascular permeability surface area (PS) product parameters would be predictive of therapeutic anticancer agent uptake in pancreatic cancer, facilitating image-guided interpretation of human treatments. The hypothesis was tested in an orthotopic rabbit model of pancreatic cancer, by establishing the model, imaging with endoscopic ultrasound (EUS) and contrast CT, and spatially comparing the perfusion maps to the ex vivo uptake values of the injected photosensitizer, verteporfin. MATERIALS AND METHODS Nine New Zealand white rabbits underwent direct pancreas implantation of VX2 tumors, and CT perfusion or EUS was performed 10 days postimplantation. Verteporfin was injected during CT imaging, and the tissue was removed 1 hour postinjection for frozen tissue fluorescence scanning. Region-of-interest comparisons of CT data with ex vivo fluorescence and histopathologic staining were performed. RESULTS Dynamic contrast-enhanced CT showed enhanced BF, BV, and PS in the tumor rim and decreased BF, BV, and PS in the tumor core. Significant correlations were found between ex vivo verteporfin concentration and each of BF, BV, and PS. CONCLUSIONS The efficacy of verteporfin delivery in tumors is estimated by perfusion CT, providing a noninvasive method of mapping photosensitizer dose.
Collapse
|
56
|
NDong C, Tate JA, Kett WC, Batra J, Demidenko E, Lewis LD, Hoopes PJ, Gerngross TU, Griswold KE. Tumor cell targeting by iron oxide nanoparticles is dominated by different factors in vitro versus in vivo. PLoS One 2015; 10:e0115636. [PMID: 25695795 PMCID: PMC4335054 DOI: 10.1371/journal.pone.0115636] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/25/2014] [Indexed: 11/29/2022] Open
Abstract
Realizing the full potential of iron oxide nanoparticles (IONP) for cancer diagnosis and therapy requires selective tumor cell accumulation. Here, we report a systematic analysis of two key determinants for IONP homing to human breast cancers: (i) particle size and (ii) active vs passive targeting. In vitro, molecular targeting to the HER2 receptor was the dominant factor driving cancer cell association. In contrast, size was found to be the key determinant of tumor accumulation in vivo, where molecular targeting increased tumor tissue concentrations for 30 nm but not 100 nm IONP. Similar to the in vitro results, PEGylation did not influence in vivo IONP biodistribution. Thus, the results reported here indicate that the in vitro advantages of molecular targeting may not consistently extend to pre-clinical in vivo settings. These observations may have important implications for the design and clinical translation of advanced, multifunctional, IONP platforms.
Collapse
|
57
|
Pearce JA, Petyk AA, Hoopes PJ. FEM numerical model analysis of magnetic nanoparticle tumor heating experiments. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:5312-5. [PMID: 25571193 DOI: 10.1109/embc.2014.6944825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Iron oxide nanoparticles are currently under investigation as heating agents for hyperthermic treatment of tumors. Major determinants of effective heating include the biodistribution of magnetic materials, the minimum iron oxide loading required to achieve adequate heating, and practically achievable magnetic field strengths. These are inter-related criteria that ultimately determine the practicability of this approach to tumor treatment. Currently, we lack fundamental engineering design criteria that can be used in treatment planning and assessment. Coupling numerical models to experimental studies illuminate the underlying physical processes and can separate physical processes to determine their relative importance. Further, adding thermal damage and cell death process to the models provides valuable perspective on the likelihood of successful treatment. FEM numerical models were applied to increase the understanding of a carefully calibrated series of experiments in mouse mammary carcinoma. The numerical models results indicate that tumor loadings equivalent to approximately 1 mg of Fe3O4 per gram of tumor tissue are required to achieve adequate heating in magnetic field strengths of 34 kA/m (rms) at 160 kHz. Further, the models indicate that direct intratumoral injection of the nanoparticles results in between 1 and 20% uptake in the tissues.
Collapse
|
58
|
Baker I, Fiering SN, Griswold KE, Hoopes PJ, Kekalo K, Ndong C, Paulsen K, Petryk AA, Pogue B, Shubitidze F, Weaver J. The Dartmouth Center for Cancer Nanotechnology Excellence: magnetic hyperthermia. Nanomedicine (Lond) 2015; 10:1685-92. [PMID: 26080693 PMCID: PMC4493741 DOI: 10.2217/nnm.15.64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Dartmouth Center for Cancer Nanotechnology Excellence - one of nine funded by the National Cancer Institute as part of the Alliance for Nanotechnology in Cancer - focuses on the use of magnetic nanoparticles for cancer diagnostics and hyperthermia therapy. It brings together a diverse team of engineers and biomedical researchers with expertise in nanomaterials, molecular targeting, advanced biomedical imaging and translational in vivo studies. The goal of successfully treating cancer is being approached by developing nanoparticles, conjugating them with Fabs, hyperthermia treatment, immunotherapy and sensing treatment response.
Collapse
|
59
|
Petryk AA, Giustini AJ, Gottesman RE, Trembly BS, Hoopes PJ. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model. Int J Hyperthermia 2014; 29:819-27. [PMID: 24219799 DOI: 10.3109/02656736.2013.845801] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The purpose of this study was to compare the efficacy of iron oxide/magnetic nanoparticle hyperthermia (mNPH) and 915 MHz microwave hyperthermia at the same thermal dose in a mouse mammary adenocarcinoma model. MATERIALS AND METHODS A thermal dose equivalent to 60 min at 43 °C (CEM60) was delivered to a syngeneic mouse mammary adenocarcinoma flank tumour (MTGB) via mNPH or locally delivered 915 MHz microwaves. mNPH was generated with ferromagnetic, hydroxyethyl starch-coated magnetic nanoparticles. Following mNP delivery, the mouse/tumour was exposed to an alternating magnetic field (AMF). The microwave hyperthermia treatment was delivered by a 915 MHz microwave surface applicator. Time required for the tumour to reach three times the treatment volume was used as the primary study endpoint. Acute pathological effects of the treatments were determined using conventional histopathological techniques. RESULTS Locally delivered mNPH resulted in a modest improvement in treatment efficacy as compared to microwave hyperthermia (p = 0.09) when prescribed to the same thermal dose. Tumours treated with mNPH also demonstrated reduced peritumoral normal tissue damage. CONCLUSIONS Our results demonstrate similar tumour treatment efficacy when tumour heating is delivered by locally delivered mNPs and 915 MHz microwaves at the same measured thermal dose. However, mNPH treatments did not result in the same type or level of peritumoral damage seen with the microwave hyperthermia treatments. These data suggest that mNP hyperthermia is capable of improving the therapeutic ratio for locally delivered tumour hyperthermia. These results further indicate that this improvement is due to improved heat localisation in the tumour.
Collapse
|
60
|
Ficko BW, Nadar PM, Hoopes PJ, Diamond SG. Development of a magnetic nanoparticle susceptibility magnitude imaging array. Phys Med Biol 2014; 59:1047-71. [PMID: 24504184 PMCID: PMC3987117 DOI: 10.1088/0031-9155/59/4/1047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There are several emerging diagnostic and therapeutic applications of magnetic nanoparticles (mNPs) in medicine. This study examines the potential for developing an mNP imager that meets these emerging clinical needs with a low cost imaging solution that uses arrays of digitally controlled drive coils in a multiple-frequency, continuous-wave operating mode and compensated fluxgate magnetometers. The design approach is described and a mathematical model is developed to support measurement and imaging. A prototype is used to demonstrate active compensation of up to 185 times the primary applied magnetic field, depth sensitivity up to 2.5 cm (p < 0.01), and linearity over five dilutions (R(2) > 0.98, p < 0.001). System frequency responses show distinguishable readouts for iron oxide mNPs with single magnetic domain core diameters of 10 and 40 nm, and multi-domain mNPs with a hydrodynamic diameter of 100 nm. Tomographic images show a contrast-to-noise ratio of 23 for 0.5 ml of 12.5 mg Fe ml(-1) mNPs at 1 cm depth. A demonstration involving the injection of mNPs into pork sausage shows the potential for use in biological systems. These results indicate that the proposed mNP imaging approach can potentially be extended to a larger array system with higher-resolution.
Collapse
|
61
|
Russell S, Samkoe KS, Gunn JR, Hoopes PJ, Nguyen TA, Russell MJ, Alfano RR, Pogue BW. Spatial frequency analysis of anisotropic drug transport in tumor samples. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:15005. [PMID: 24395585 PMCID: PMC4019416 DOI: 10.1117/1.jbo.19.1.015005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/20/2013] [Accepted: 11/27/2013] [Indexed: 05/30/2023]
Abstract
Directional Fourier spatial frequency analysis was used on standard histological sections to identify salient directional bias in the spatial frequencies of stromal and epithelial patterns within tumor tissue. This directional bias is shown to be correlated to the pathway of reduced fluorescent tracer transport. Optical images of tumor specimens contain a complex distribution of randomly oriented aperiodic features used for neoplastic grading that varies with tumor type, size, and morphology. The internal organization of these patterns in frequency space is shown to provide a precise fingerprint of the extracellular matrix complexity, which is well known to be related to the movement of drugs and nanoparticles into the parenchyma, thereby identifying the characteristic spatial frequencies of regions that inhibit drug transport. The innovative computational methodology and tissue validation techniques presented here provide a tool for future investigation of drug and particle transport in tumor tissues, and could potentially be used a priori to identify barriers to transport, and to analyze real-time monitoring of transport with respect to therapeutic intervention.
Collapse
|
62
|
Zhang R, Gladstone DJ, Jarvis LA, Strawbridge RR, Jack Hoopes P, Friedman OD, Glaser AK, Pogue BW. Real-time in vivo Cherenkoscopy imaging during external beam radiation therapy. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:110504. [PMID: 24247743 PMCID: PMC3831064 DOI: 10.1117/1.jbo.18.11.110504] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/12/2013] [Accepted: 10/15/2013] [Indexed: 05/20/2023]
Abstract
Cherenkov radiation is induced when charged particles travel through dielectric media (such as biological tissue) faster than the speed of light through that medium. Detection of this radiation or excited luminescence during megavoltage external beam radiotherapy (EBRT) can allow emergence of a new approach to superficial dose estimation, functional imaging, and quality assurance for radiation therapy dosimetry. In this letter, the first in vivo Cherenkov images of a real-time Cherenkoscopy during EBRT are presented. The imaging system consisted of a time-gated intensified charge coupled device (ICCD) coupled with a commercial lens. The ICCD was synchronized to the linear accelerator to detect Cherenkov photons only during the 3.25-μs radiation bursts. Images of a tissue phantom under irradiation show that the intensity of Cherenkov emission is directly proportional to radiation dose, and images can be acquired at 4.7 frames/s with SNR>30. Cherenkoscopy was obtained from the superficial regions of a canine oral tumor during planned, Institutional Animal Care and Use Committee approved, conventional (therapeutically appropriate) EBRT irradiation. Coregistration between photography and Cherenkoscopy validated that Cherenkov photons were detected from the planned treatment region. Real-time images correctly monitored the beam field changes corresponding to the planned dynamic wedge movement, with accurate extent of overall beam field, and expected cold and hot regions.
Collapse
|
63
|
Petryk AA, Giustini AJ, Gottesman RE, Kaufman PA, Hoopes PJ. Magnetic nanoparticle hyperthermia enhancement of cisplatin chemotherapy cancer treatment. Int J Hyperthermia 2013; 29:845-51. [PMID: 24144336 DOI: 10.3109/02656736.2013.825014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The purpose of this study was to examine the therapeutic effect of magnetic nanoparticle hyperthermia (mNPH) combined with systemic cisplatin chemotherapy in a murine mammary adenocarcinoma model (MTGB). MATERIALS AND METHODS An alternating magnetic field (35.8 kA/m at 165 kHz) was used to activate 110 nm hydroxyethyl starch-coated magnetic nanoparticles (mNP) to a thermal dose of 60 min at 43 °C. Intratumoral mNP were delivered at 7.5 mg of Fe/cm(3) of tumour (four equal tumour quadrants). Intraperitoneal cisplatin at 5 mg/kg body weight was administered 1 h prior to mNPH. Tumour regrowth delay time was used to assess the treatment efficacy. RESULTS mNP hyperthermia, combined with cisplatin, was 1.7 times more effective than mNP hyperthermia alone and 1.4 times more effective than cisplatin alone (p < 0.05). CONCLUSIONS Our results demonstrate that mNP hyperthermia can result in a safe and significant therapeutic enhancement for cisplatin cancer therapy.
Collapse
|
64
|
Toraya-Brown S, Sheen MR, Baird JR, Barry S, Demidenko E, Turk MJ, Hoopes PJ, Conejo-Garcia JR, Fiering S. Phagocytes mediate targeting of iron oxide nanoparticles to tumors for cancer therapy. Integr Biol (Camb) 2013; 5:159-71. [PMID: 22935885 DOI: 10.1039/c2ib20180a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanotechnology has great potential to produce novel therapeutic strategies that target malignant cells through the ability of nanoparticles to get access to and be ingested by living cells. However its specificity for accumulation in tumors, which is the key factor that determines its efficacy, has always been a challenge. Here we tested a novel strategy to target and treat ovarian cancer, a representative peritoneal cancer, using iron oxide nanoparticles (IONPs) and an alternating magnetic field (AMF). Peritoneal tumors in general are directly accessible to nanoparticles administered intraperitoneally (IP), as opposed to the more commonly attempted intravenous (IV) administration. In addition, tumor-associated immunosuppressive phagocytes, a predominant cell population in the tumor microenvironment of almost all solid tumors, and cells that are critical for tumor progression, are constantly recruited to the tumor, and therefore could possibly function to bring nanoparticles to tumors. Here we demonstrate that tumor-associated peritoneal phagocytes ingest and carry IONPs specifically to tumors and that these specifically delivered nanoparticles can damage tumor cells after IONP-mediated hyperthermia generated by AMF. This illustrates therapeutic possibilities of intraperitoneal (IP) injection of nanoparticles and subsequent ingestion by tumor-associated phagocytes, to directly impact tumors or stimulate antitumor immune responses. This approach could use IONPs combined with AMF as done here, or other nanoparticles with cytotoxic potential. Overall, the data presented here support IP injection of nanoparticles to utilize peritoneal phagocytes as a delivery vehicle in association with IONP-mediated hyperthermia as therapeutic strategies for ovarian and other peritoneal cancers.
Collapse
|
65
|
Crane-Godreau MA, Black CC, Giustini AJ, Dechen T, Ryu J, Jukosky JA, Lee HK, Bessette K, Ratcliffe NR, Hoopes PJ, Fiering S, Kelly JA, Leiter JC. Modeling the influence of vitamin D deficiency on cigarette smoke-induced emphysema. Front Physiol 2013; 4:132. [PMID: 23781205 PMCID: PMC3679474 DOI: 10.3389/fphys.2013.00132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 05/20/2013] [Indexed: 12/27/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. While the primary risk factor for COPD is cigarette smoke exposure, vitamin D deficiency has been epidemiologically implicated as a factor in the progressive development of COPD-associated emphysema. Because of difficulties inherent to studies involving multiple risk factors in the progression of COPD in humans, we developed a murine model in which to study the separate and combined effects of vitamin D deficiency and cigarette smoke exposure. During a 16-week period, mice were exposed to one of four conditions, control diet breathing room air (CD-NS), control diet with cigarette smoke exposure (CD-CSE), vitamin D deficient diet breathing room air (VDD-NS) or vitamin D deficient diet with cigarette smoke exposure (VDD-CSE). At the end of the exposure period, the lungs were examined by a pathologist and separately by morphometric analysis. In parallel experiments, mice were anesthetized for pulmonary function testing followed by sacrifice and analysis. Emphysema (determined by an increase in alveolar mean linear intercept length) was more severe in the VDD-CSE mice compared to control animals and animals exposed to VDD or CSE alone. The VDD-CSE and the CD-CSE mice had increased total lung capacity and increased static lung compliance. There was also a significant increase in the matrix metalloproteinase-9: tissue inhibitor of metalloproteinases-1 (TIMP-1) ratio in VDD-CSE mice compared with all controls. Alpha-1 antitrypsin (A1AT) expression was reduced in VDD-CSE mice as well. In summary, vitamin D deficiency, when combined with cigarette smoke exposure, seemed to accelerate the appearance of emphysemas, perhaps by virtue of an increased protease-antiprotease ratio in the combined VDD-CSE animals. These results support the value of our mouse model in the study of COPD.
Collapse
|
66
|
Sexton K, Tichauer K, Samkoe KS, Gunn J, Hoopes PJ, Pogue BW. Fluorescent affibody peptide penetration in glioma margin is superior to full antibody. PLoS One 2013; 8:e60390. [PMID: 23593208 PMCID: PMC3625207 DOI: 10.1371/journal.pone.0060390] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 02/27/2013] [Indexed: 02/04/2023] Open
Abstract
Object Fluorescence imaging has the potential to significantly improve neurosurgical resection of oncologic lesions through improved differentiation between normal and cancerous tissue at the tumor margins. In order to successfully mark glioma tissue a fluorescent tracer must have the ability to penetrate through the blood brain barrier (BBB) and provide delineation in the tumor periphery where heterogeneously intact BBB may exist. In this study it was hypothesized that, due to its smaller size, fluorescently labeled anti-EGFR Affibody protein (∼7 kDa) would provide a more clear delineation of the tumor margin than would fluorescently labeled cetuximab, a full antibody (∼150 kDa) to the epidermal growth factor receptor (EGFR). Methods Cetuximab and anti-EGFR targeted Affibody were conjugated to two different fluorescent dyes (both emitting in the near-infrared) and injected intravenously into 6 athymic mice which were inoculated orthotopically with green fluorescent protein (GFP) expressing human U251 glioma cells. Each mouse was sacrificed at 1-h post injection, at which time brains were removed, snap frozen, sectioned and quantitatively analyzed for fluorescence distribution. Results Ex vivo analysis showed on average, nearly equal concentrations of cetuximab and Affibody within the tumor (on average Affibody made up 49±6% of injected protein), however, the cetuximab was more confined to the center of the tumor with Affibody showing significantly higher concentrations at the tumor periphery (on average Affibody made up 72±15% of injected protein in the outer 50 um of the tumor). Further ex vivo analysis of detection studies showed that the Affibody provided superior discrimination for differentiation of tumor from surrounding normal brain. Conclusions The present study indicates that fluorescently labeled anti-EGFR Affibody can provide significantly better delineation of tumor margins than a fluorescently labeled anti-EGFR antibody and shows considerable potential for guiding margin detection during neurosurgery.
Collapse
|
67
|
Thomsen S, Pearce JA, Giustini A, Hoopes PJ. Nanoparticles in Medicine: Selected Observations and Experimental Caveats. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8584:858402. [PMID: 25301992 PMCID: PMC4187215 DOI: 10.1117/12.2008900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Medically useful nanoparticles measure 1-100 nm in at least one dimension and are engineered and manufactured for specific diagnostic and treatment applications. Most nanoparticles used currently used in medicine are engineered and manufactured for specific purposes. Medically significant nanoparticles are composed of a 1) central core that is usually the medically active component, 2) one or more layers of organic or inorganic materials that forms a capsule (corona) covering the core and 3) an outer surface layer that interacts with the environment and/or targeted cells and tissues. Effective nanoparticle function in the living, intact animal or human requires electrochemical stability necessary to bypass the reticuloendothelial system (RES) and avoid filtration through the renal glomerulus into the urine. Nanoparticles are present in "natural" as well as the manufacturing and clinical environments thus could pose as significant toxins because of their small sizes, their chemical and drug content and potential effect of causing long term disease including allergies, chronic inflammation and cancer. Currently published studies have focused on the effects of nanoparticles on cells in the extremely artificial environments of cell cultures. More clinical and preclinical studies documenting the short term and long term effects nanoparticle in the intact experimental animal and human are needed.
Collapse
|
68
|
Stigliano RV, Shubitidze F, Petryk AA, Tate JA, Hoopes PJ. Magnetic nanoparticle hyperthermia: Predictive model for temperature distribution. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8584:858410. [PMID: 25301993 PMCID: PMC4187246 DOI: 10.1117/12.2007673] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Magnetic nanoparticle (mNP) hyperthermia is a promising adjuvant cancer therapy. mNP's are delivered intravenously or directly into a tumor, and excited by applying an alternating magnetic field (AMF). The mNP's are, in many cases, sequestered by cells and packed into endosomes. The proximity of the mNP's has a strong influence on their ability to heat due to inter-particle magnetic interaction effects. This is an important point to take into account when modeling the mNP's. Generally, more mNP heating can be achieved using higher magnetic field strengths. The factor which limits the maximum field strength applied to clinically relevant volumes of tissue is the heating caused by eddy currents, which are induced in the noncancerous tissue. A coupled electromagnetic and thermal model has been developed to predict dynamic thermal distributions during AMF treatment. The EM model is based on the method of auxiliary sources and the thermal modeling is based on the Pennes bioheat equation. The results of our phantom study are used to validate the model which takes into account nanoparticle heating, interaction effects, particle spatial distribution, particle size distribution, EM field distribution, and eddy current generation in a controlled environment. Preliminary in vivo data for model validation are also presented. Once fully developed and validated, the model will have applications in experimental design, AMF coil design, and treatment planning.
Collapse
|
69
|
Mazur CM, A Tate J, Strawbridge RR, Gladstone DJ, Hoopes PJ. Iron oxide nanoparticle enhancement of radiation cytotoxicity. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8584:85840J. [PMID: 25301998 PMCID: PMC4187243 DOI: 10.1117/12.2007701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Iron oxide nanoparticles (IONPs) have been investigated as a promising means for inducing tumor cell-specific hyperthermia. Although the ability to generate and use nanoparticles that are biocompatible, tumor specific, and have the ability to produce adequate cytotoxic heat is very promising, significant preclinical and clinical development will be required for clinical efficacy. At this time it appears using IONP-induced hyperthermia as an adjunct to conventional cancer therapeutics, rather than as an independent treatment, will provide the initial IONP clinical treatment. Due to their high-Z characteristics, another option is to use intracellular IONPs to enhance radiation therapy without excitation with AMF (production of heat). To test this concept IONPs were added to cell culture media at a concentration of 0.2 mg Fe/mL and incubated with murine breast adenocarcinoma (MTG-B) cells for either 48 or 72 hours. Extracellular iron was then removed and all cells were irradiated at 4 Gy. Although samples incubated with IONPs for 48 hrs did not demonstrate enhanced post-irradiation cytotoxicity as compared to the non-IONP-containing cells, cells incubated with IONPs for 72 hours, which contained 40% more Fe than 48 hr incubated cells, showed a 25% decrease in clonogenic survival compared to their non-IONP-containing counterparts. These results suggest that a critical concentration of intracellular IONPs is necessary for enhancing radiation cytotoxicity.
Collapse
|
70
|
Tate JA, Savellano MD, Hoopes PJ. Biodistribution and imaging of fluorescently-tagged iron oxide nanoparticles in a breast cancer mouse model. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8584:85840I. [PMID: 25301997 DOI: 10.1117/12.2007607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Iron oxide nanoparticle (IONP) hyperthermia is an emerging treatment that shows great potential as a cancer therapy both alone and in synergy with conventional modalities. Pre-clinical studies are attempting to elucidate the mechanisms of action and distributions of IONP in various in vitro and in vivo models, however these studies would greatly benefit from real-time imaging of IONP locations both in cellular and in mammalian systems. To this end, fluorescently-tagged IONP (fIONP) have been employed for real time tracking and co-registration of IONP with iron content. Starch-coated IONP were fluorescently-tagged, purified and analyzed for fluorescent signal at various concentrations. fIONP were incubated with MTGB cells for varying times and cellular uptake analyzed using confocal microscopy, flow cytometry and inductively-coupled plasma mass spectrometry (ICP-MS). fIONP were also injected into a bilateral mouse tumor model for radiation modification of tumor tissue and enhanced fIONP deposition assessed using a Xenogen IVIS fluorescent imager. Results demonstrated that fIONP concentrations in vitro correlated with ICPMS iron readings. fIONP could be tracked in vitro as well as in tissue samples from an in vivo model. Future work will employ whole animal fluorescent imaging to track the biodistribution of fIONP over time.
Collapse
|
71
|
Stigliano RV, Shubitidze F, Kekalo K, Baker I, Giustini AJ, Hoopes PJ. Understanding mNP Hyperthermia for cancer treatment at the cellular scale. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8584:85840E. [PMID: 25249755 PMCID: PMC4169898 DOI: 10.1117/12.2007518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The use of magnetic nanoparticles (mNP's) to induce local hyperthermia has been emerging in recent years as a promising cancer therapy, in both a stand-alone and combination treatment setting. Studies have shown that cancer cells associate with, internalize, and aggregate mNP's more preferentially than normal cells. Once the mNP's are delivered inside the cells, a low frequency (30 kHz-300 kHz) alternating electromagnetic field is used to activate the mNP's. The nanoparticles absorb the applied field and provide localized heat generation at nano-micron scales. It has been shown experimentally that mNP's exhibit collective behavior when in close proximity. Although most prevailing mNP heating models assume there is no magnetic interaction between particles, our data suggests that magnetic interaction effects due to mNP aggregation are often significant; In the case of multi-crystal core particles, interaction is guaranteed. To understand the physical phenomena responsible for this effect, we modeled electromagnetic coupling between mNP's in detail. The computational results are validated using data from the literature as well as measurements obtained in our lab. The computational model presented here is based on a method of moments technique and is used to calculate magnetic field distributions on the nanometer scale, both inside and outside the mNP.
Collapse
|
72
|
Hoopes PJ, Petryk AA, Tate JA, Savellano MS, Strawbridge RR, Giustini AJ, Stan RV, Gimi B, Garwood M. Imaging and modification of the tumor vascular barrier for improvement in magnetic nanoparticle uptake and hyperthermia treatment efficacy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8584. [PMID: 25285190 DOI: 10.1117/12.2008689] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The predicted success of nanoparticle based cancer therapy is due in part to the presence of the inherent leakiness of the tumor vascular barrier, the so called enhanced permeability and retention (EPR) effect. Although the EPR effect is present in varying degrees in many tumors, it has not resulted in the consistent level of nanoparticle-tumor uptake enhancement that was initially predicted. Magnetic/iron oxide nanoparticles (mNPs) have many positive qualities, including their inert/nontoxic nature, the ability to be produced in various sizes, the ability to be activated by a deeply penetrating and nontoxic magnetic field resulting in cell-specific cytotoxic heating, and the ability to be successfully coated with a wide variety of functional coatings. However, at this time, the delivery of adequate numbers of nanoparticles to the tumor site via systemic administration remains challenging. Ionizing radiation, cisplatinum chemotherapy, external static magnetic fields and vascular disrupting agents are being used to modify the tumor environment/vasculature barrier to improve mNP uptake in tumors and subsequently tumor treatment. Preliminary studies suggest use of these modalities, individually, can result in mNP uptake improvements in the 3-10 fold range. Ongoing studies show promise of even greater tumor uptake enhancement when these methods are combined. The level and location of mNP/Fe in blood and normal/tumor tissue is assessed via histopathological methods (confocal, light and electron microscopy, histochemical iron staining, fluorescent labeling, TEM) and ICP-MS. In order to accurately plan and assess mNP-based therapies in clinical patients, a noninvasive and quantitative imaging technique for the assessment of mNP uptake and biodistribution will be necessary. To address this issue, we examined the use of computed tomography (CT), magnetic resonance imaging (MRI), and Sweep Imaging With Fourier Transformation (SWIFT), an MRI technique which provides a positive iron contrast enhancement and a reduced signal to noise ratio, for effective observation and quantification of Fe/mNP concentrations in the clinical setting.
Collapse
|
73
|
Tate JA, Kett W, NDong C, Griswold KE, Hoopes PJ. Biodistribution of antibody-targeted and non-targeted iron oxide nanoparticles in a breast cancer mouse model. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8584:85840G. [PMID: 25301995 DOI: 10.1117/12.2008814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Iron oxide nanoparticle (IONP) hyperthermia is a novel therapeutic strategy currently under consideration for the treatment of various cancer types. Systemic delivery of IONP followed by non-invasive activation via a local alternating magnetic field (AMF) results in site-specific energy deposition in the IONP-containing tumor. Targeting IONP to the tumor using an antibody or antibody fragment conjugated to the surface may enhance the intratumoral deposition of IONP and is currently being pursued by many nanoparticle researchers. This strategy, however, is subject to a variety of restrictions in the in vivo environment, where other aspects of IONP design will strongly influence the biodistribution. In these studies, various targeted IONP are compared to non-targeted controls. IONP were injected into BT-474 tumor-bearing NSG mice and tissues harvested 24hrs post-injection. Results indicate no significant difference between the various targeted IONP and the non-targeted controls, suggesting the IONP were prohibitively-sized to incur tumor penetration. Additional strategies are currently being pursued in conjuncture with targeted particles to increase the intratumoral deposition.
Collapse
|
74
|
Zulauf GD, Trembly BS, Giustini AJ, Flint BR, Strawbridge RR, Hoopes PJ. Targeting of systemically-delivered magnetic nanoparticle hyperthermia using a noninvasive, static, external magnetic field. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8584:85840C. [PMID: 24073325 DOI: 10.1117/12.2008816] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
One of the greatest challenges of nanoparticle cancer therapy is the delivery of adequate numbers of nanoparticles to the tumor site. Iron oxide nanoparticles (IONPs) have many favorable qualities, including their nontoxic composition, the wide range of diameters in which they can be produced, the cell-specific cytotoxic heating that results from their absorption of energy from a nontoxic, external alternating magnetic field (AMF), and the wide variety of functional coatings that can be applied. Although IONPs can be delivered via an intra-tumoral injection to some tumors, the resulting tumor IONP distribution is generally inadequate; additionally, local tumor injections do not allow for the treatment of systemic or multifocal disease. Consequently, the ultimate success of nanoparticle based cancer therapy likely rests with successful systemic, tumor-targeted IONP delivery. In this study, we used a surface-based, bilateral, noninvasive static magnetic field gradient produced by neodymium-boron-iron magnets (80 T/m to 130 T/m in central plane between magnets), a rabbit ear model, and systemically-delivered starch-coated 100 nm magnetic (iron oxide) nanoparticles to demonstrate a spatially-defined increase in the local tissue accumulation of IONPs. In this non-tumor model, the IONPs remained within the local vascular space. It is anticipated that this technique can be used to enhance IONP delivery significantly to the tumor parenchyma/cells.
Collapse
|
75
|
Chen EY, Hodge S, Tai K, Hou H, Khan N, Hoopes PJ, Samkoe KS. Oxygen microenvironment affects the uptake of nanoparticles in head and neck tumor cells. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8584:85840F. [PMID: 25301994 DOI: 10.1117/12.2008067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Survival of head and neck cancer patients has not improved in several decades despite advances in diagnostic and therapeutic techniques. Tumor hypoxia in head and neck cancers is a critical factor that leads to poor prognosis, resistance to radiation and chemotherapies, and increased metastatic potential. Magnetic nanoparticle hyperthermia (mNPHT) is a promising therapy for hypoxic tumors because nanoparticles (NP) can be directly injected into, or targeted to, hypoxic tumor cells and exposed to alternating magnetic fields (AMF) to induce hyperthermia. Magnetic NPHT can improve therapeutic effectiveness by two modes of action: 1) direct killing of hypoxic tumor cells; and 2) increase in tumor oxygenation, which has the potential to make the tumor more susceptible to adjuvant therapies such as radiation and chemotherapy. Prior studies in breast cancer cells demonstrated that a hypoxic microenvironment diminished NP uptake in vitro; however, mNPHT with intratumoral NP injection in hypoxic tumors increased tumor oxygenation and delayed tumor growth. In this study, head and neck squamous cell carcinoma (HNSCC) cell lines were incubated in normoxic, hypoxic, and hyperoxic conditions with iron oxide NP for 4-72 hours. After incubation, the cells were analyzed for iron uptake by mass spectrometry, Prussian blue staining, and electron microscopy. In contrast to breast cancer cells, uptake of NPs was increased in hypoxic microenvironments as compared to normoxic conditions in HNSCC cells. In future studies, we will confirm the effect of the oxygen microenvironment on NP uptake and efficacy of mNPHT both in vitro and in vivo.
Collapse
|