1
|
Silveira PCL, Silva LA, Freitas TP, Latini A, Pinho RA. Effects of low-power laser irradiation (LPLI) at different wavelengths and doses on oxidative stress and fibrogenesis parameters in an animal model of wound healing. Lasers Med Sci 2010; 26:125-31. [DOI: 10.1007/s10103-010-0839-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 09/12/2010] [Indexed: 12/21/2022]
|
|
15 |
77 |
2
|
Silveira PCL, da Silva LA, Pinho CA, De Souza PS, Ronsani MM, Scheffer DDL, Pinho RA. Effects of low-level laser therapy (GaAs) in an animal model of muscular damage induced by trauma. Lasers Med Sci 2012; 28:431-6. [PMID: 22399243 DOI: 10.1007/s10103-012-1075-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/15/2012] [Indexed: 01/13/2023]
Abstract
It has been demonstrated that reactive oxygen species (ROS) formation and oxidative damage markers are increased after muscle damage. Recent studies have demonstrated that low-level laser therapy (LLLT) modulates many biochemical processes mainly those related to reduction of muscular injures, increment of mitochondrial respiration and ATP synthesis, as well as acceleration of the healing process. The objective of the present investigation was to verify the influence of LLLT in some parameters of muscular injury, oxidative damage, antioxidant activity, and synthesis of collagen after traumatic muscular injury. Adult male Wistar rats were divided randomly into three groups (n = 6), namely, sham (uninjured muscle), muscle injury without treatment, and muscle injury with LLLT (GaAs, 904 nm). Each treated point received 5 J/cm(2) or 0.5 J of energy density (12.5 s) and 2.5 J per treatment (five regions). LLLT was administered 2, 12, 24, 48, 72, 96, and 120 h after muscle trauma. The serum creatine kinase activity was used as an index of skeletal muscle injury. Superoxide anion, thiobarbituric acid reactive substance (TBARS) measurement, and superoxide dismutase (SOD) activity were used as indicators of oxidative stress. In order to assess the synthesis of collagen, levels of hydroxyproline were measured. Our results have shown that the model of traumatic injury induces a significant increase in serum creatine kinase activity, hydroxyproline content, superoxide anion production, TBARS level, and activity of SOD compared to control. LLLT accelerated the muscular healing by significantly decreasing superoxide anion production, TBARS levels, the activity of SOD, and hydroxyproline content. The data strongly indicate that increased ROS production and augmented collagen synthesis are elicited by traumatic muscular injury, effects that were significantly decreased by LLLT.
Collapse
|
Journal Article |
13 |
54 |
3
|
Muller AP, Ferreira GK, Pires AJ, de Bem Silveira G, de Souza DL, Brandolfi JDA, de Souza CT, Paula MMS, Silveira PCL. Gold nanoparticles prevent cognitive deficits, oxidative stress and inflammation in a rat model of sporadic dementia of Alzheimer's type. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:476-483. [PMID: 28532055 DOI: 10.1016/j.msec.2017.03.283] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/23/2016] [Accepted: 03/21/2017] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative dementia in the aged brain. Even though its etiology is unknown, factors such as neuroinflammation, mitochondrial dysfunction, formation of reactive oxygen species (ROS), and impaired insulin signaling may play a role. We used a sporadic AD model in rats generated by intracerebroventricular-streptozotocin (i.c.v.-STZ) injection to test the therapeutic effect of gold nanoparticles (GNPs). We tested the null hypothesis that there would be no difference between the STZ+GNPs group and the STZ group in the analyzed markers. We observed that STZ-induced impairment in mitochondrial ATP production, neuroinflammation, and oxidative stress were all prevented by GNP treatment. Moreover, while STZ induced deficits in both spatial and recognition memory, GNPs prevented this effect. These results suggest that GNPs may be considered as a potential treatment for dementias.
Collapse
|
Journal Article |
8 |
52 |
4
|
De Logu F, De Prá SDT, de David Antoniazzi CT, Kudsi SQ, Ferro PR, Landini L, Rigo FK, de Bem Silveira G, Silveira PCL, Oliveira SM, Marini M, Mattei G, Ferreira J, Geppetti P, Nassini R, Trevisan G. Macrophages and Schwann cell TRPA1 mediate chronic allodynia in a mouse model of complex regional pain syndrome type I. Brain Behav Immun 2020; 88:535-546. [PMID: 32315759 DOI: 10.1016/j.bbi.2020.04.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
Complex regional pain syndrome type I (CRPS-I) is characterized by intractable chronic pain. Poor understanding of the underlying mechanisms of CRPS-I accounts for the current unsatisfactory treatment. Antioxidants and antagonists of the oxidative stress-sensitive channel, the transient receptor potential ankyrin 1 (TRPA1), have been found to attenuate acute nociception and delayed allodynia in models of CRPS-I, evoked by ischemia and reperfusion (I/R) of rodent hind limb (chronic post ischemia pain, CPIP). However, it is unknown how I/R may lead to chronic pain mediated by TRPA1. Here, we report that the prolonged (day 1-15) mechanical and cold allodynia in the hind limb of CPIP mice was attenuated permanently in Trpa1-/- mice and transiently after administration of TRPA1 antagonists (A-967079 and HC-030031) or an antioxidant (α-lipoic acid). Indomethacin treatment was, however, ineffective. We also found that I/R increased macrophage (F4/80+ cell) number and oxidative stress markers, including 4-hydroxynonenal (4-HNE), in the injured tibial nerve. Macrophage-deleted MaFIA (Macrophage Fas-Induced Apoptosis) mice did not show I/R-evoked endoneurial cell infiltration, increased 4-HNE and mechanical and cold allodynia. Furthermore, Trpa1-/- mice did not show any increase in macrophage number and 4-HNE in the injured nerve trunk. Notably, in mice with selective deletion of Schwann cell TRPA1 (Plp1-CreERT;Trpa1fl/fl mice), increases in macrophage infiltration, 4-HNE and mechanical and cold allodynia were attenuated. In the present mouse model of CRPS-I, we propose that the initial oxidative stress burst that follows reperfusion activates a feed forward mechanism that entails resident macrophages and Schwann cell TRPA1 of the injured tibial nerve to sustain chronic neuroinflammation and allodynia. Repeated treatment one hour before and for 3 days after I/R with a TRPA1 antagonist permanently protected CPIP mice against neuroinflammation and allodynia, indicating possible novel therapeutic strategies for CRPS-I.
Collapse
|
|
5 |
36 |
5
|
de Lucas RD, Caputo F, Mendes de Souza K, Sigwalt AR, Ghisoni K, Lock Silveira PC, Remor AP, da Luz Scheffer D, Guglielmo LGA, Latini A. Increased platelet oxidative metabolism, blood oxidative stress and neopterin levels after ultra-endurance exercise. J Sports Sci 2013; 32:22-30. [PMID: 24117160 DOI: 10.1080/02640414.2013.797098] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The purpose of the present investigation was to identify muscle damage, inflammatory response and oxidative stress blood markers in athletes undertaking the ultra-endurance MultiSport Brazil race. Eleven well-trained male athletes (34.3 ± 3.1 years, 74.0 ± 7.6 kg; 172.2 ± 5.1 cm) participated in the study and performed the race, which consisted of about 90 km of alternating off-road running, mountain biking and kayaking. Twelve hours before and up to 15 minutes after the race a 10 mL blood sample was drawn in order to measure the following parameters: lactate dehydrogenase and creatine kinase activities, lipid peroxidation, catalase activity, protein carbonylation, respiratory chain complexes I, II and IV activities, oxygen consumption and neopterin concentrations. After the race, plasma lactate dehydrogenase and creatine kinase activities were significantly increased. Erythrocyte TBA-RS levels and plasma protein carbonylation were markedly augmented in post-race samples. Additionally, mitochondrial complex II activity and oxygen consumption in post-race platelet-rich plasma were also increased. These altered biochemical parameters were accompanied by increased plasma neopterin levels. The ultra-endurance event provoked systemic inflammation (increased neopterin) accompanied by marked oxidative stress, likely by increasing oxidative metabolism (increased oxidative mitochondrial function). This might be advantageous during prolonged exercise, mainly for efficient substrate oxidation at the mitochondrial level, even when tissue damage is induced.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
31 |
6
|
da Silva LA, Tortelli L, Motta J, Menguer L, Mariano S, Tasca G, de Bem Silveira G, Pinho RA, Silveira PCL. Effects of aquatic exercise on mental health, functional autonomy and oxidative stress in depressed elderly individuals: A randomized clinical trial. Clinics (Sao Paulo) 2019; 74:e322. [PMID: 31271585 PMCID: PMC6585867 DOI: 10.6061/clinics/2019/e322] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 04/08/2019] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the effects of aquatic exercise on mental health, functional autonomy and oxidative stress parameters in depressed elderly individuals. METHODS Initially, ninety-two elderly individuals were included in the study and were allocated into the depression group (n=16) and nondepression group (n=14). Both groups engaged in the aquatic exercise program for 12 weeks, including two weekly sessions (45 min/session) at a low intensity (between 50% and 60% of maximal heart rate or Borg scale scores of 13 to 14) throughout the intervention. All outcomes were evaluated at baseline and 12 weeks later. RESULTS The patients were 63.5±8.8 years old. The following scores were decreased after training in the depressed group: depression (53%), anxiety (48%), and Timed Up & Go (33%). The following scores increased: Berg Balance Scale (9%) and flexibility (44%). Regarding the blood-based parameters, there were decreases in protein carbonylation (46%) and nitric oxide (60%) and increases in glutathione (170%) and superoxide dismutase (160%) in the depression group (p<0.005). CONCLUSIONS The aquatic exercise program reduces depression and anxiety, improves functional autonomy and decreases oxidative stress in depressed elderly individuals.
Collapse
|
Randomized Controlled Trial |
6 |
29 |
7
|
Dos Santos Haupenthal DP, Mendes C, de Bem Silveira G, Zaccaron RP, Corrêa MEAB, Nesi RT, Pinho RA, da Silva Paula MM, Silveira PCL. Effects of treatment with gold nanoparticles in a model of acute pulmonary inflammation induced by lipopolysaccharide. J Biomed Mater Res A 2019; 108:103-115. [PMID: 31502356 DOI: 10.1002/jbm.a.36796] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
The bacterial lipopolysaccharide (LPS) is a highly toxic molecule derived from the outer membrane of gram-negative bacteria. LPS endotoxin affects the lungs and is used as a model of acute pulmonary inflammation affecting the cellular morphology of the organ. Previously, gold nanoparticles (GNPs) have been shown to demonstrate anti-inflammatory and antioxidative activity in muscle and epithelial injury models. The objective of this study was to investigate the effect of the intraperitoneal treatment using GNPs on the inflammatory response and pulmonary oxidative stress induced by LPS. Wistar rats were divided into four groups (N = 10): Sham; Sham + GNPs 2.5 mg/kg; LPS; and LPS + GNPs 2.5 mg/kg. Treatment with LPS upregulated the levels of markers of cellular and hepatic damage (CK, LDH, AST, and alanine aminotransferase); however, the group treated with only GNPs exhibited no toxicity. Treatment with GNPs reversed LPS-induced changes with respect to total peritoneal leukocyte count and the pulmonary levels of pro-inflammatory cytokines (IFN-γ and IL-6). Histological analysis revealed that treatment with GNPs reversed the increase in alveolar septum thickness due to LPS-induced fibrosis. In addition, treatment with GNPs decreased production of oxidants (nitrite and DCFH), reduced oxidative damage (carbonyl and sulfhydryl), and downregulated activities of superoxide dismutase and catalase. Treatment with GNPs did not showed toxicity; however, it exhibited anti-inflammatory and antioxidative activity that reversed morphological alterations induced by LPS.
Collapse
|
Journal Article |
6 |
28 |
8
|
Mendes C, Dos Santos Haupenthal DP, Zaccaron RP, de Bem Silveira G, Corrêa MEAB, de Roch Casagrande L, de Sousa Mariano S, de Souza Silva JI, de Andrade TAM, Feuser PE, Machado-de-Ávila RA, Silveira PCL. Effects of the Association between Photobiomodulation and Hyaluronic Acid Linked Gold Nanoparticles in Wound Healing. ACS Biomater Sci Eng 2020; 6:5132-5144. [PMID: 33455264 DOI: 10.1021/acsbiomaterials.0c00294] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Healing is the process responsible for restoring the integrity of the body's internal or external structures when they rupture. Photobiomodulation (PBM) stands out as one of the most efficient resources in the treatment of epithelial lesions, as well as hyaluronic acid (HA), which has been emerging as a new molecule for the treatment of dermal and epidermal lesions. The biological application of gold nanoparticles (GNPs) shows promising results. This study aimed to investigate the possible anti-inflammatory and antioxidant effects of the association between PBM and GNPs-linked HA in an epithelial lesion model. Fifty Wistar rats were randomly distributed in the Control Group (CG); (PBM); (PBM + HA); (PBM + GNPs); (PBM + GNPs-HA). The animals were anesthetized, trichotomized, and induced to a surgical incision in the dorsal region. Topical treatment with HA (0.9%) and/or GNPs (30 mg/kg) occurred daily associated with 904 nm laser irradiation, dose of 5 J/cm2, which started 24 h after the lesion and was performed daily until the seventh day. The levels of proinflammatory (IL1 and TNFα), anti-inflammatory (IL10 and IL4) and growth factors (FGF and TGFβ) cytokines and oxidative stress parameters were evaluated, besides histological analysis through inflammatory infiltrate, fibroblasts, new vessels, and collagen production area. Finally, for the analysis of wound size reduction, digital images were performed and subsequently analyzed by the IMAGEJ software. The treated groups showed a decrease in proinflammatory cytokine levels and an increase in anti-inflammatory cytokines. TGFβ and FGF levels also increased in the treated groups, especially in the combination therapy group (PBM + GNPs-HA). Regarding the oxidative stress parameters, MPO, DCF, and Nitrite levels decreased in the treated groups, as well as the oxidative damage (Carbonyl and Thiol groups). In contrast, antioxidant defense increased in the groups with the appropriate therapies proposed compared to the control group. Histological sections were analyzed where the inflammatory infiltrate was lower in the PBM + GNPs-HA group. The number of fibroblasts was higher in the PBM and PBM + HA treated groups, whereas collagen production was higher in all treated groups. Finally, in the analysis of the wound area contraction, the injury group presented a larger area in cm2 compared to the other groups. Taken together, these results allow us to observe that the combination of PBM + GNPs-HA optimized the secretion of anti-inflammatory cytokines, proliferation and cell differentiation growth factors, and made an earlier transition to the chronic phase, contributing to the repair process.
Collapse
|
|
5 |
22 |
9
|
Nesi RT, de Souza PS, Dos Santos GP, Thirupathi A, Menegali BT, Silveira PCL, da Silva LA, Valença SS, Pinho RA. Physical exercise is effective in preventing cigarette smoke-induced pulmonary oxidative response in mice. Int J Chron Obstruct Pulmon Dis 2016; 11:603-10. [PMID: 27042047 PMCID: PMC4809330 DOI: 10.2147/copd.s93958] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Reactive oxygen species (ROS) are important in the pathogenesis of pulmonary injury induced by cigarette smoke (CS) exposure, and physical exercise (Ex) is useful in combating impaired oxidative process. We verified the preventive effects of Ex on lung oxidative markers induced by smoking. In this study, 36 mice (C57BL-6, 30-35 g) were split into four groups: control, CS, Ex, and CS plus Ex. Ex groups were given prior physical training in water (2×30 min/d, 5 days/wk, 8 weeks). After training, the CS groups were subjected to passive exposure to four cigarettes, 3 × per day, for 60 consecutive days. After 24 hours from the last exposure, CS animals were sacrificed, and lung samples were collected for further analysis. Left lung sample was prepared for histological analysis, and right lung was used for biochemical analysis (superoxide, hydroxyproline, lipid peroxidation [thiobarbituric acid reactive species], protein carbonylation [carbonyl groups formation], superoxide dismutase [SOD], catalase [CAT], and glutathione peroxidase [GPx] activities). Group comparisons were evaluated by analysis of variance (ANOVA). Results were expressed as mean ± standard deviation, with P<0.05 considered significantly different. Preventive Ex impeded histological changes and increased the enzymatic defense system (SOD and GPx) by reducing oxidative damage in lipids and proteins. This preventive effect of prior physical Ex alleviates damage caused by CS exposure.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
19 |
10
|
Silveira PCL, Scheffer DDL, Glaser V, Remor AP, Pinho RA, Aguiar Junior AS, Latini A. Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury. Free Radic Res 2016; 50:503-13. [PMID: 26983894 DOI: 10.3109/10715762.2016.1147649] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The purpose of this work was to investigate the effect of early and long-term low-level laser therapy (LLLT) on oxidative stress and inflammatory biomarkers after acute-traumatic muscle injury in Wistar rats. Animals were randomly divided into the following four groups: control group (CG), muscle injury group (IG), CG + LLLT, and IG + LLLT: laser treatment with doses of 3 and 5 J/cm(2). Muscle traumatic injury was induced by a single-impact blunt trauma in the rat gastrocnemius. Irradiation for 3 or 5 J/cm(2) was initiated 2, 12, and 24 h after muscle trauma induction, and the treatment was continued for five consecutive days. All the oxidant markers investigated. namely thiobarbituric acid-reactive substance, carbonyl, superoxide dismutase, glutathione peroxidase, and catalase, were increased as soon as 2 h after muscle injury and remained increased up to 24 h. These alterations were prevented by LLLT at a 3 J/cm(2) dose given 2 h after the trauma. Similarly, LLLT prevented the trauma-induced proinflammatory state characterized by IL-6 and IL-10. In parallel, trauma-induced reduction in BDNF and VEGF, vascular remodeling and fiber-proliferating markers, was prevented by laser irradiation. In order to test whether the preventive effect of LLLT was also reflected in muscle functionality, we tested the locomotor activity, by measuring distance traveled and the number of rearings in the open field test. LLLT was effective in recovering the normal locomotion, indicating that the irradiation induced biostimulatory effects that accelerated or resolved the acute inflammatory response as well as the oxidant state elicited by the muscle trauma.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
19 |
11
|
de Bona Schraiber R, de Mello AH, Garcez ML, de Bem Silveira G, Zacaron RP, de Souza Goldim MP, Budni J, Silveira PCL, Petronilho F, Ferreira GK, Rezin GT. Diet-induced obesity causes hypothalamic neurochemistry alterations in Swiss mice. Metab Brain Dis 2019; 34:565-573. [PMID: 30635861 DOI: 10.1007/s11011-018-0337-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 11/01/2018] [Indexed: 12/11/2022]
Abstract
The aim of this study was to assess inflammatory parameters, oxidative stress and energy metabolism in the hypothalamus of diet-induced obese mice. Male Swiss mice were divided into two study groups: control group and obese group. The animals in the control group were fed a diet with adequate amounts of macronutrients (normal-lipid diet), whereas the animals in the obese group were fed a high-fat diet to induce obesity. Obesity induction lasted 10 weeks, at the end of this period the disease model was validated in animals. The animals in the obese group had higher calorie consumption, higher body weight and higher weight of mesenteric fat compared to control group. Obesity showed an increase in levels of interleukin 1β and decreased levels of interleukin 10 in the hypothalamus. Furthermore, increased lipid peroxidation and protein carbonylation, and decreased level of glutathione in the hypothalamus of obese animals. However, there was no statistically significant difference in the activity of antioxidant enzymes, superoxide dismutase and catalase. The obese group had lower activity of complex I, II and IV of the mitochondrial respiratory chain, as well as lower activity of creatine kinase in the hypothalamus as compared to the control group. Thus, the results from this study showed changes in inflammatory markers, and dysregulation of metabolic enzymes in the pathophysiology of obesity.
Collapse
|
|
6 |
17 |
12
|
Muller AP, Ferreira GK, da Silva S, Nesi RT, de Bem Silveira G, Mendes C, Pinho RA, da Silva Paula MM, Silveira PCL. Safety protocol for the gold nanoparticles administration in rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1145-1150. [PMID: 28531990 DOI: 10.1016/j.msec.2017.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles (GNPs) have antioxidant and anti-inflammatory effects. However, toxicity is still a concern; therefore, it is critical to study both the therapeutic and toxic properties of GNPs. In this study, we evaluated the effects of the intraperitoneal administration of GNPs (20nm, at a concentration of 2.5mg/L for 21days) every 24 or 48h on oxidative stress, antioxidant status, and electron chain transport (ETC) in the brain. Liver histology and blood marker analyses were conducted to establish a time routine of GNP administration. The concentrations of GNP in the brain and liver were similar. Hepatic and serum levels of cholesterol, triglycerides, and transaminases were not altered after the administration of GNP every 24 or 48h. The superoxide and nitric oxide levels were unchanged after administration of GNP. Dichlorodihydrofluorescein (DCFH) levels decreased after the administration of GNP every 48h compared with that in the saline group. Sulfhydryl and carbonyl levels, as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and glutathione (GSH) activities were not altered in the brain after administration of GNP in the two time periods studied. The GNP 48h group showed increased brain ETC activity. Compared to that in the saline group, the GNP 24h group showed marked parenchyma changes with cell necrosis and leukocyte infiltration. We therefore suggest that a concentration of 2.5mg/L of GNP administered every 48h has potential therapeutic benefits without toxicity.
Collapse
|
Journal Article |
8 |
16 |
13
|
Silveira PCL, Victor EG, Notoya FDS, Scheffer DDL, Silva LD, Cantú RB, Martínez VHC, de Pinho RA, Paula MMDS. Effects of phonophoresis with gold nanoparticles on oxidative stress parameters in a traumatic muscle injury model. Drug Deliv 2014; 23:926-32. [DOI: 10.3109/10717544.2014.923063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
11 |
16 |
14
|
Haupenthal DPDS, Possato JC, Zaccaron RP, Mendes C, Rodrigues MS, Nesi RT, Pinho RA, Feuser PE, Machado-de-Ávila RA, Comim CM, Silveira PCL. Effects of chronic treatment with gold nanoparticles on inflammatory responses and oxidative stress in Mdx mice. J Drug Target 2019; 28:46-54. [PMID: 31046473 DOI: 10.1080/1061186x.2019.1613408] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive hereditary myopathy characterised by progressive muscle degeneration in male children. As a consequence of DMD, increased inflammation and oxidative stress occur in muscle tissue along with morphological changes. Several studies have reported anti-inflammatory and antioxidant effects of gold nanoparticles (GNP) in muscle injury models. The objective of this study was to evaluate these effects along with the impacts of the disease on histopathological changes following chronic administration of GNP to Mdx mice. Two-month-old Mdx mice were separated into five groups of eight individuals each, as follows: wild-type (WT), Mdx-modified without treatment, Mdx + 2.5 mg/kg GNP, Mdx + 7.0 mg/kg GNP and Mdx + 21 mg/kg GNP. GNP with a mean diameter of 20 nm were injected subcutaneously at concentrations of 2.5, 7.0 and 21 mg/kg. Treatments continued for 30 d with injections administered at 48-h intervals. Twenty-four hours after the last injection, the animals were killed and the central region of the gastrocnemius muscle was surgically removed. Chronic administration of GNP reduced inflammation in the gastrocnemius muscle of Mdx mice and reduced morphological alterations due to inflammatory responses to muscular dystrophy. In addition, GNP also demonstrated antioxidant potential by reducing the production of reactive oxygen and nitrogen species, reducing oxidative damage and improving antioxidant activity.
Collapse
|
Journal Article |
6 |
15 |
15
|
Silveira GDB, Muller AP, Machado-de-Ávila RA, Silveira PCL. Advance in the use of gold nanoparticles in the treatment of neurodegenerative diseases: new perspectives. Neural Regen Res 2021; 16:2425-2426. [PMID: 33907028 PMCID: PMC8374563 DOI: 10.4103/1673-5374.313040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/27/2020] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
|
Review |
4 |
13 |
16
|
Tramontin NDS, Silveira PCL, Tietbohl LTW, Pereira BDC, Simon K, Muller AP. Effects of Low-Intensity Transcranial Pulsed Ultrasound Treatment in a Model of Alzheimer's Disease. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2646-2656. [PMID: 34130881 DOI: 10.1016/j.ultrasmedbio.2021.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/20/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. One of the main pathology markers of AD is the beta-amyloid plaques (βA1-42) created from residues of the badly processed amyloid precursor protein. The accumulation of these plaques can induce neuroinflammation and oxidative stress and impair antioxidant mechanisms, culminating in cognitive and memory deficits. New therapies are necessary to treat AD as the approved drugs do not treat the progress of the disease. Transcranial low-intensity pulsed ultrasound (LIPUS) affects brain metabolism and could be tested as a treatment for AD. This study was aimed at evaluating the LIPUS treatment in a model of AD induced by βA1-42 intracerebroventricularly (ICV) and its effects on learning memory, neurotrophins, neuroinflammation and oxidative status. βA1-42 was administered ICV 24 h before the start of a 5-wk LIPUS treatment. The treatment with LIPUS improved recognition memory, as well as increasing nerve growth factor β and brain-derived neurotrophic factor levels in the hippocampus and cortex. There was a decrease in protein damage in the hippocampus treated with LIPUS. Neuroinflammation and oxidative stress were not present in the AD model used. The results indicated that LIPUS is a novel and promising adjuvant strategy for treatment of the late stage of AD.
Collapse
|
|
4 |
12 |
17
|
Corrêa MEAB, Mendes C, Bittencourt JVS, Takejima A, de Souza IC, de Carvalho SCD, Orlandini IG, de Andrade TAM, Guarita-Souza LC, Silveira PCL. Effects of the Application of Decellularized Amniotic Membrane Solubilized with Hyaluronic Acid on Wound Healing. Ann Biomed Eng 2022; 50:1895-1910. [PMID: 35802205 DOI: 10.1007/s10439-022-03008-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/03/2022] [Indexed: 12/30/2022]
Abstract
A perfect graft for wound care must be readily available without affecting the immune response, covering and protecting the wound bed. Considering previous studies have already established the use of hyaluronic acid (HA) for the treatment of wounds but the data presented on the amniotic membrane (AM) and its promising effects on healing still requires further investigation, this study aimed to evaluate the effects of the application of a decellularized amniotic membrane solubilized with hyaluronic acid on the healing process of cutaneous wounds on the 7th and 14th day, to evaluate the evolution of the wound and the inflammatory phases in these two times. Cutaneous lesions were excised from the dorsal region and 96 Wistar rats were divided into four groups: I-Excisional wound (EW); II-EW + AM; III-EW + HA; IV-EW + AM + HA. The present study demonstrated that the proposed combined therapy favors the tissue repair process of the epithelial lesion. Results showed a reduction in pro-inflammatory cytokines, an increase in anti-inflammatory cytokines, an increase in TGF-β, and attenuation of oxidative stress, reducing the acute inflammatory response and promoting the beginning of tissue repair. We concluded that the proposed therapies accelerated the inflammatory process with anticipation of the repair phase.
Collapse
|
|
3 |
11 |
18
|
Pedroso-Fidelis GDS, Farias HR, Mastella GA, Boufleur-Niekraszewicz LA, Dias JF, Alves MC, Silveira PCL, Nesi RT, Carvalho F, Zocche JJ, Pinho RA. Pulmonary oxidative stress in wild bats exposed to coal dust: A model to evaluate the impact of coal mining on health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110211. [PMID: 31978763 DOI: 10.1016/j.ecoenv.2020.110211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
This study aimed to verify possible alterations involving histological and oxidative stress parameters in the lungs of wild bats in the Carboniferous Basin of Santa Catarina (CBSC) state, Southern Brazil, as a means to evaluate the impact of coal dust on the health of wildlife. Specimens of frugivorous bat species Artibeus lituratus and Sturnira lilium were collected from an area free of coal dust contamination and from coal mining areas. Chemical composition, histological parameters, synthesis of oxidants and antioxidant enzymes, and oxidative damage in the lungs of bats were analyzed. Levels of Na, Cl, Cu, and Br were higher in both species collected in the CBSC than in the controls. Levels of K and Rb were higher in A. lituratus, and levels of Si, Ca, and Fe were higher in S. lilium collected in the carboniferous basin. Both bat species inhabiting the CBSC areas exhibited an increase in the degree of pulmonary emphysema compared to their counterparts collected from control areas. Sturnira lilium showed increased reactive oxygen species (ROS) and 2',7'-dichlorofluorescein (DCF) levels, while A. lituratus showed a significant decrease in nitrite levels in the CBSC samples. Superoxide dismutase (SOD) activity did not change significantly; however, the activity of catalase (CAT) and levels of glutathione (GSH) decreased in the A. lituratus group from CBSC compared to those in the controls. There were no differences in NAD(P)H quinone dehydrogenase 1 protein (NQO1) abundance or nitrotyrosine expression among the different groups of bats. Total thiol levels showed a significant reduction in A. lituratus from CBSC, while the amount of malondialdehyde (MDA) was higher in both A. lituratus and S. lilium groups from coal mining areas. Our results suggested that bats, especially A. lituratus, living in the CBSC could be used as sentinel species for harmful effects of coal dust on the lungs.
Collapse
|
|
5 |
10 |
19
|
da Silva Córneo E, de Bem Silveira G, Scussel R, Correa MEAB, da Silva Abel J, Luiz GP, Feuser PE, Silveira PCL, Machado-de-Ávila RA. Effects of gold nanoparticles administration through behavioral and oxidative parameters in animal model of Parkinson’s disease. Colloids Surf B Biointerfaces 2020; 196:111302. [DOI: 10.1016/j.colsurfb.2020.111302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/13/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
|
|
5 |
9 |
20
|
Tartuce LP, Pacheco Brandt F, Dos Santos Pedroso G, Rezende Farias H, Barros Fernandes B, da Costa Pereira B, Gonçalves Machado A, Feuser PE, Lock Silveira PC, Tiscoski Nesi R, da Silva Paula MM, Andrades M, de Pinho RA. 2-methoxy-isobutyl-isonitrile-conjugated gold nanoparticles improves redox and inflammatory profile in infarcted rats. Colloids Surf B Biointerfaces 2020; 192:111012. [PMID: 32388028 DOI: 10.1016/j.colsurfb.2020.111012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 11/20/2022]
Abstract
The tissue response to acute myocardial infarction (AMI) is key to avoiding heart complications due to inflammation, mitochondrial dysfunction, and oxidative stress. Antioxidant and anti-inflammatory agents can minimize the effects of AMI. This study investigated the role of 2-methoxy-isobutyl-isonitrile (MIBI)-associated gold nanoparticles (AuNP) on reperfusion injury after ischemia and its effect on cardiac remodeling in an experimental AMI model. Three-month-old Wistar rats were subjected to a temporary blockade of the anterior descending artery for 30 min followed by reperfusion after 24 h and 7 days by intraventricularly administering 0.4, 1.3, and 3 mg/kg AuNP-MIBI. The cardiac toxicity and renal and hepatic function levels were determined, and the infarct and peri-infarct regions were surgically removed for histopathology, analysis of inflammation from oxidative stress, and echocardiography. MIBI-conjugated AuNP promoted changes in oxidative stress and inflammation depending on the concentrations used, suggesting promising applicability for therapeutic purposes.
Collapse
|
|
5 |
9 |
21
|
da Rocha FR, Haupenthal DPDS, Zaccaron RP, Corrêa MEAB, Tramontin NDS, Fonseca JP, Nesi RT, Muller AP, Pinho RA, Paula MMDS, Silveira PCL. Therapeutic effects of iontophoresis with gold nanoparticles in the repair of traumatic muscle injury. J Drug Target 2019; 28:307-319. [PMID: 31379221 DOI: 10.1080/1061186x.2019.1652617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Studies have shown the benefits of gold nanoparticles (GNPs) in muscle and epithelial injury models. In physiotherapy, the use of the microcurrent apparatus is associated with certain drugs (Iontophoresis) to increase the topical penetration and to associate the effects of both therapies. Therefore, the objective of this study was to investigate the effects of iontophoresis along with GNPs in the skeletal muscle of rats exposed to a traumatic muscle injury. We utilised 50 Wistar rats randomly divided in to five experimental groups (n = 10): Control group (CG); Muscle injury group (MI); MI + GNPs (20 nm, 30 mg kg-1); MI + Microcurrent (300 μA); and MI + Microcurrent + GNPs. The treatment was performed daily for 7 days, with the first session starting at 24 h after the muscle injury. The animals were sacrificed and the gastrocnemius muscle was surgically removedand stored for the proper evaluations. The group that received iontophoresis with GNPs showed significant differences in inflammation and oxidative stress parameters and in the histopathological evaluation showed preserved morphology. In addition, we observed an improvement in the locomotor response and pain symptoms of these animals. These results suggest that the association of boththerapies accelerates the inflammatory response of the injured limb.
Collapse
|
|
6 |
9 |
22
|
Da Silva LA, Menguer L, Motta J, Dieke B, Mariano S, Tasca G, Zacaron RP, Silveira PCL, Aurino PR. Effect of aquatic exercise on mental health, functional autonomy, and oxidative dysfunction in hypertensive adults. Clin Exp Hypertens 2017; 40:547-553. [DOI: 10.1080/10641963.2017.1407331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
|
8 |
8 |
23
|
Silveira PCL, da Silva LA, Tromm PTC, Scheffer DDL, de Souza CT, Pinho RA. Effects of therapeutic pulsed ultrasound and dimethylsulfoxide phonophoresis on oxidative stress parameters after injury induced by eccentric exercise. ULTRASONICS 2012; 52:650-654. [PMID: 22326779 DOI: 10.1016/j.ultras.2012.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 05/31/2023]
Abstract
INTRODUCTION The aim of the study was to evaluate the effects of TPU together with DMSO on oxidative stress parameters after eccentric exercise. METHODS Thirty and six animals were divided in control; eccentric exercise (EE); EE+saline gel 0.9%; EE+TPU 0.8 W/cm(2); EE+DMSO gel; EE+TPU+DMSO gel and submitted to one 90-min downhill run (1.0 km h(-1)). TPU was used 2, 12, 24, 46 h after exercise session and 48 h after the animals were killed and the gastrocnemius muscles were surgically removed. Production of superoxide anion, creatine kinase (CK) levels, lipoperoxidation, carbonylation, and antioxidants enzymes were analyzed. RESULTS Showed that TPU and gel-DMSO improved muscle healing. Moreover, superoxide anion production, TBARS level and protein carbonyls levels, superoxide dismutase and catalase activity were all decreased in the group TPU plus gel-DMSO. DISCUSSION Our results show that DMSO is effective in the reduction of the muscular lesion and in the oxidative stress after eccentric exercise only when used with TPU.
Collapse
|
|
13 |
8 |
24
|
Fagundes GE, Macan TP, Rohr P, Damiani AP, Da Rocha FR, Pereira M, Longaretti LM, Vilela TC, Ceretta LB, Mendes C, Silveira PCL, Teixeira JPF, de Andrade VM. Vitamin D3 as adjuvant in the treatment of type 2 diabetes mellitus: modulation of genomic and biochemical instability. Mutagenesis 2020; 34:135-145. [PMID: 30726950 DOI: 10.1093/mutage/gez001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/17/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus has undergone a worldwide growth in incidence in the world and has now acquired epidemic status. There is a strong link between type 2 diabetes and vitamin D deficiency. Because vitamin D has beneficial effects on glucose homeostasis, the aim of this study was to evaluate the influence of vitamin D3 supplementation on the modulation of glycaemic control and other metabolic effects, as well as modulation of genomic instability in patients with type 2 diabetes. We evaluated 75 patients with type 2 diabetes, registered in the Integrated Clinics of the University of Southern Santa Catarina. Participants received 4000 IU of vitamin D3 (25(OH)D) supplementation daily for 8 weeks. Blood samples were collected at the beginning and at the end of the supplementation, and 4 weeks after the end of supplementation. The glycidic and lipid profiles [total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein and triglycerides], oxidative stress, DNA damage and 25(OH)D levels were evaluated. Vitamin D3 supplementation for 8 weeks showed enough to significantly increase blood levels of 25(OH)D. A significant difference in lipid profile was observed only in non-HDL cholesterol. Significant changes were observed in glucose homeostasis (fasting glucose and serum insulin) and, in addition, a reduction in the parameters of oxidative stress and DNA damage. There was a significant reduction in the values of 25(OH)D 4 weeks after the end of the supplementation, but levels still remained above baseline. Use of vitamin D supplementation can be an ally in the health modulation of patients with type 2 diabetes mellitus.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
7 |
25
|
Mendes C, Thirupathi A, Zaccaron RP, Corrêa MEAB, Bittencourt JVS, Casagrande LDR, de Lima ACS, de Oliveira LL, de Andrade TAM, Gu Y, Feuser PE, Machado-de-Ávila RA, Silveira PCL. Microcurrent and Gold Nanoparticles Combined with Hyaluronic Acid Accelerates Wound Healing. Antioxidants (Basel) 2022; 11:2257. [PMID: 36421443 PMCID: PMC9686715 DOI: 10.3390/antiox11112257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 01/30/2024] Open
Abstract
This study aimed to investigate the effects of iontophoresis and hyaluronic acid (HA) combined with a gold nanoparticle (GNP) solution in an excisional wound model. Fifty Wistar rats (n = 10/group) were randomly assigned to the following groups: excisional wound (EW); EW + MC; EW + MC + HA; EW + MC + GNPs; and EW + MC + HA + GNPs. The animals were induced to a circular excision, and treatment started 24 h after injury with microcurrents (300 µA) containing gel with HA (0.9%) and/or GNPs (30 mg/L) in the electrodes (1 mL) for 7 days. The animals were euthanized 12 h after the last treatment application. The results demonstrate a reduction in the levels of pro-inflammatory cytokines (IFNϒ, IL-1β, TNFα, and IL-6) in the group in which the therapies were combined, and they show increased levels of anti-inflammatory cytokines (IL-4 and IL-10) and growth factors (FGF and TGF-β) in the EW + MC + HA and EW + MC + HA + GNPs groups. As for the levels of dichlorofluorescein (DCF) and nitrite, as well as oxidative damage (carbonyl and sulfhydryl), they decreased in the combined therapy group when compared to the control group. Regarding antioxidant defense, there was an increase in glutathione (GSH) and a decrease in superoxide dismutase (SOD) in the combined therapy group. A histological analysis showed reduced inflammatory infiltrate in the MC-treated groups and in the combination therapy group. There was an increase in the wound contraction rate in all treated groups when compared to the control group, proving that the proposed therapies are effective in the epithelial healing process. The results of this study demonstrate that the therapies in combination favor the tissue repair process more significantly than the therapies in isolation.
Collapse
|
research-article |
3 |
7 |