51
|
Kulkarni JA, Witzigmann D, Chen S, Cullis PR, van der Meel R. Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics. Acc Chem Res 2019; 52:2435-2444. [PMID: 31397996 DOI: 10.1021/acs.accounts.9b00368] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Delivering nucleic acid-based therapeutics to cells is an attractive approach to target the genetic cause of various diseases. In contrast to conventional small molecule drugs that target gene products (i.e., proteins), genetic drugs induce therapeutic effects by modulating gene expression. Gene silencing, the process whereby protein production is prevented by neutralizing its mRNA template, is a potent strategy to induce therapeutic effects in a highly precise manner. Importantly, gene silencing has broad potential as theoretically any disease-causing gene can be targeted. It was demonstrated two decades ago that introducing synthetic small interfering RNAs (siRNAs) into the cytoplasm results in specific degradation of complementary mRNA via a process called RNA interference (RNAi). Since then, significant efforts and investments have been made to exploit RNAi therapeutically and advance siRNA drugs to the clinic. Utilizing (unmodified) siRNA as a therapeutic, however, is challenging due to its limited bioavailability following systemic administration. Nuclease activity and renal filtration result in siRNA's rapid clearance from the circulation and its administration induces (innate) immune responses. Furthermore, siRNA's unfavorable physicochemical characteristics largely prevent its diffusion across cellular membranes, impeding its ability to reach the cytoplasm where it can engage the RNAi machinery. The clinical translation of siRNA therapeutics has therefore been dependent on chemical modifications and developing sophisticated delivery platforms to improve their stability, limit immune activation, facilitate internalization, and increase target affinity. These developments have resulted in last year's approval of the first siRNA therapeutic, called Onpattro (patisiran), for treatment of hereditary amyloidogenic transthyretin (TTR) amyloidosis. This disease is characterized by a mutation in the gene encoding TTR, a serum protein that transports retinol in circulation following secretion by the liver. The mutation leads to production of misfolded proteins that deposit as amyloid fibrils in multiple organs, resulting in progressive neurodegeneration. Patisiran's therapeutic effect relies on siRNA-mediated TTR gene silencing, preventing mutant protein production and halting or even reversing disease progression. For efficient therapeutic siRNA delivery to hepatocytes, patisiran is critically dependent on lipid nanoparticle (LNP) technology. In this Account, we provide an overview of key advances that have been crucial for developing LNP delivery technology, and we explain how these developments have contributed to the clinical translation of siRNA therapeutics for parenteral administration. We discuss optimization of the LNP formulation, particularly focusing on the rational design of ionizable cationic lipids and poly(ethylene glycol) lipids. These components have proven to be instrumental for highly efficient siRNA encapsulation, favorable LNP pharmacokinetic parameters, and hepatocyte internalization. Additionally, we pay attention to the development of rapid mixing-based methods that provide robust and scalable LNP production procedures. Finally, we highlight patisiran's clinical translation and LNP delivery technology's potential to enable the development of genetic drugs beyond the current state-of-the-art, such as mRNA and gene editing therapeutics.
Collapse
|
52
|
Hamano N, Böttger R, Lee SE, Yang Y, Kulkarni JA, Ip S, Cullis PR, Li SD. Robust Microfluidic Technology and New Lipid Composition for Fabrication of Curcumin-Loaded Liposomes: Effect on the Anticancer Activity and Safety of Cisplatin. Mol Pharm 2019; 16:3957-3967. [PMID: 31381352 DOI: 10.1021/acs.molpharmaceut.9b00583] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Curcumin exhibits potent anticancer activity via various mechanisms, but its in vivo efficacy has been hampered by poor solubility. Nanotechnology has been employed to deliver curcumin, but most of the reported systems suffered from low drug loading capacity and poor stability. Here, we report the development and optimization of a liposomal formulation for curcumin (Lipo-Cur) using an automated microfluidic technology. Lipo-Cur exhibited a mean diameter of 120 nm with a low polydispersity index (<0.2) and superior loading capacity (17 wt %) compared to other reported liposomal systems. Lipo-Cur increased the water solubility of curcumin by 700-fold, leading to 8-20-fold increased systemic exposure compared to the standard curcumin suspension formulation. When coadministered with cisplatin to tumor-bearing mice, Lipo-Cur augmented the antitumor efficacy of cisplatin in multiple mouse tumor models and decreased the nephrotoxicity. This is the first report demonstrating the dual effects of curcumin enabled by a nanoformulation in enhancing the efficacy and reducing the toxicity of a chemo-drug in animal models under a single and low dose administration.
Collapse
|
53
|
Ramezanpour M, Schmidt ML, Bodnariuc I, Kulkarni JA, Leung SSW, Cullis PR, Thewalt JL, Tieleman DP. Ionizable amino lipid interactions with POPC: implications for lipid nanoparticle function. NANOSCALE 2019; 11:14141-14146. [PMID: 31334542 DOI: 10.1039/c9nr02297j] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipid nanoparticles (LNPs) composed of ionizable cationic lipids are currently the leading systems for siRNA delivery in liver disease, with the major limitation of low siRNA release efficacy into the cytoplasm. Ionizable cationic lipids are known to be of critical importance in LNP structure and stability, siRNA entrapment, and endosomal disruption. However, their distribution inside the LNPs and their exact role in cytoplasmic delivery remain unclear. A recent study [Kulkarni et al., On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA, ACS Nano, 2018, 12(5), 4787-4795] on LNP-siRNA systems containing the ionizable lipid DLin-KC2-DMA (also known as KC2 with an apparent pKa of ca. 6.7) suggested that neutral KC2 segregates from other components and forms an amorphous oil droplet in the core of LNPs. In this paper, we present evidence supporting the model proposed by Kulkarni et al. We studied KC2 segregation in the presence of POPC using molecular dynamics simulation, deuterium NMR, SAXS, and cryo-TEM experiments, and found that neutral KC2 has a high tendency to separate from POPC dispersions. KC2 confinement, upon raising the pH during the formulation process, could result in rearrangement of the internal structure of LNPs. As interactions between cationic KC2 and anionic endosomal lipids are thought to be a key factor in cargo release, KC2 confinement inside the LNP may be responsible for the observed low release efficacy.
Collapse
|
54
|
Kulkarni JA, Witzigmann D, Leung J, van der Meel R, Zaifman J, Darjuan MM, Grisch-Chan HM, Thöny B, Tam YYC, Cullis PR. Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads. NANOSCALE 2019; 11:9023-9031. [PMID: 31021343 DOI: 10.1039/c9nr02004g] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The success of Onpattro™ (patisiran) clearly demonstrates the utility of lipid nanoparticle (LNP) systems for enabling gene therapies. These systems are composed of ionizable cationic lipids, phospholipid, cholesterol, and polyethylene glycol (PEG)-lipids, and are produced through rapid-mixing of an ethanolic-lipid solution with an acidic aqueous solution followed by dialysis into neutralizing buffer. A detailed understanding of the mechanism of LNP formation is crucial to improving LNP design. Here we use cryogenic transmission electron microscopy and fluorescence techniques to further demonstrate that LNP are formed through the fusion of precursor, pH-sensitive liposomes into large electron-dense core structures as the pH is neutralized. Next, we show that the fusion process is limited by the accumulation of PEG-lipid on the emerging particle. Finally, we show that the fusion-dependent mechanism of formation also applies to LNP containing macromolecular payloads including mRNA, DNA vectors, and gold nanoparticles.
Collapse
|
55
|
Buck J, Grossen P, Cullis PR, Huwyler J, Witzigmann D. Lipid-Based DNA Therapeutics: Hallmarks of Non-Viral Gene Delivery. ACS NANO 2019; 13:3754-3782. [PMID: 30908008 DOI: 10.1021/acsnano.8b07858] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gene therapy is a promising strategy for the treatment of monogenic disorders. Non-viral gene delivery systems including lipid-based DNA therapeutics offer the opportunity to deliver an encoding gene sequence specifically to the target tissue and thus enable the expression of therapeutic proteins in diseased cells. Currently, available gene delivery approaches based on DNA are inefficient and require improvements to achieve clinical utility. In this Review, we discuss state-of-the-art lipid-based DNA delivery systems that have been investigated in a preclinical setting. We emphasize factors influencing the delivery and subsequent gene expression in vitro, ex vivo, and in vivo. In addition, we cover aspects of nanoparticle engineering and optimization for DNA therapeutics. Finally, we highlight achievements of lipid-based DNA therapies in clinical trials.
Collapse
|
56
|
Loughrey HC, Bally MB, Reinish LW, Cullis PR. The Binding of Phosphatidylglycerol Liposomes to Rat Platelets Is Mediated by Complement. Thromb Haemost 2018. [DOI: 10.1055/s-0038-1647276] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
SummaryPrevious work has shown that intravenous administration of phosphatidylglycercol (PG) containing liposomes to rats results in a rapid transient decline in platelet count (1). Here the interactions of PG liposomes with rat platelets in vitro have been examined with the aim of charactenzing factors associated with the decline. It is shown that PG liposomes induce formation of rat (but not human) platelet-liposome microaggregates in vitro. The PG liposome dependent thrombocytopenia observed in vivo can therefore be attributed to sequestration of PG liposome-platelet aggregates. Further, the aggregation of platelets with PG liposomes, which can be moni ored as a reduction in platelet count using a coulter counter, is shown to be mediated by a serum complement fgctor, likely C3b. This is indicated by a requirement of plasma for the in vitro reduction in platelet count induced by PG liposomes, and the inhibition of this effect by heat treatment of plasma, by incubation of plasma with purified cobra venom factor, or by removal of C3 from plasma.
Collapse
|
57
|
Doerschuk CM, Gie RP, Bally MB, Cullis PR, Reinish LW. Platelet Distribution in Rabbits Following lnfusion of Liposomes. Thromb Haemost 2018. [DOI: 10.1055/s-0038-1646602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
SummaryThis investigation determined the organ distribution of liposomes containing egg phosphatidylcholine and cholesterol with egg phosphatidylglycerol (PG liposomes) or without (PC liposomes) and the effect of each liposome on platelet distribution in rabbits. Eight minutes after51 chromium-labelled platelets were given intravenously, either saline (n = 7), iodinated PG liposomes (n = 5) or iodinated PC liposomes (n = 5) were infused. T\ro minutes later the organ distribution of 51Cr-platelets and 125I-liposomes were compared. The PG liposomes produced a 41λ5% reduction in circulating platelet counts while PC liposomes did not. The PG liposomes decreased circulating 51Cr-platelets by a factor of 2 and increased platelet recoveries in the liver and lungs. The increased platelet recovery in the liver was associated with a greater PG liposome recovery. When animals receiving PG liposomes were studied over 60 minutes, both the labelled and unlabelled platelet counts returned to control values by 30 minutes and the 51Cr-platelet distribution between organs was similar to control values. These data indicate that platelets and PG liposomes initially sequester together and that this plateletliposome interaction is specific for PG liposomes. However, the platelet sequestration is transient and by 60 minutes the platelets were released and circulating.
Collapse
|
58
|
Chen S, Zaifman J, Kulkarni JA, Zhigaltsev IV, Tam YK, Ciufolini MA, Tam YYC, Cullis PR. Dexamethasone prodrugs as potent suppressors of the immunostimulatory effects of lipid nanoparticle formulations of nucleic acids. J Control Release 2018; 286:46-54. [PMID: 30026080 DOI: 10.1016/j.jconrel.2018.07.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/14/2018] [Indexed: 01/12/2023]
Abstract
Lipid nanoparticles (LNPs) are playing a leading role in enabling clinical applications of gene therapies based on DNA or RNA polymers. One factor impeding clinical acceptance of LNP therapeutics is that LNP formulations of nucleic acid polymers can be immunostimulatory, necessitating co-administration of potent corticosteroid immunosuppressive agents. Here, we describe the development of hydrophobic prodrugs of a potent corticosteroid, dexamethasone, that can be readily incorporated into LNP systems. We show that the presence of the dexamethasone prodrug LD003 effectively suppresses production of cytokines such as KC-GRO, TNFα, IL-1β and IL-6 following intravenous administration of LNP loaded with immune stimulatory oligodeoxynucleotides containing cytosine-guanine dinucleotide motifs. Remarkably, LD003 dose levels corresponding to 0.5 mg/kg dexamethasone achieve a greater immunosuppressive effect than doses of 20 mg/kg of free dexamethasone. Similar immunosuppressive effects are observed for subcutaneously administered LNP-siRNA. Further, the incorporation of low levels of LD003 in LNP containing unmodified mRNA or plasmid DNA significantly reduced pro-inflammatory cytokine levels following intravenous administration. Our results suggest that incorporation of hydrophobic prodrugs such as LD003 into LNP systems could provide a convenient method for avoiding the immunostimulatory consequences of systemic administration of genetic drug formulations.
Collapse
|
59
|
Abstract
SummaryRats were injected intravenously with liposomes of various compositions and sizes and blood platelet count measured. It was found that negatively-charged liposomal systems produced a transient reduction in platelet count in the first 5 minutes after injection which recovered by 60 minutes post-injection. This effect was most striking for multilamellar vesicles (MLV’s) containing phosphatidylglycerol (PG). Dose levels of 25 mg/kg of MLV’s containing 10 mole% PG caused the platelet count to drop from a control value of 1,086 ± 21 × 109/1 to 193 ± 14 × 109/1 by 2 minutes post-injection, an 82% decline. This thrombocytopenic effect was observed to diminish as vesicle size or vesicle dose was decreased. Positively-charged liposomes produced a less pronounced transient reduction in platelet count while neutral liposomes caused only a mild, transient platelet decline. This transient thrombocytopenic effect was not blocked by common anticoagulants and fibrinolytic agents but was pi evented by liposomal pretreatment. Radiolabeled platelet studies revealed that transient sequestration of platelets occurs in the liver and spleen 2 minutes after PG :EPC:CHOL MLV injection with a normalization of platelet distribution by 60 minutes post-injection. In vitro studies, using an automated blood counter suggest a transient association of liposomes and platelets occurring following injection. Liposomally-induced transient thrombocytopenia suggests a role for platelets in the biodistribution of liposomes.
Collapse
|
60
|
Kulkarni JA, Cullis PR, van der Meel R. Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility. Nucleic Acid Ther 2018; 28:146-157. [DOI: 10.1089/nat.2018.0721] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
61
|
Kulkarni JA, Darjuan MM, Mercer JE, Chen S, van der Meel R, Thewalt JL, Tam YYC, Cullis PR. On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA. ACS NANO 2018; 12:4787-4795. [PMID: 29614232 DOI: 10.1021/acsnano.8b01516] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Lipid nanoparticles (LNPs) containing short interfering RNA (LNP-siRNA) and optimized ionizable cationic lipids are now clinically validated systems for silencing disease-causing genes in hepatocytes following intravenous administration. However, the mechanism of formation and certain structural features of LNP-siRNA remain obscure. These systems are formed from lipid mixtures (cationic lipid, distearoylphosphatidylcholine, cholesterol, and PEG-lipid) dissolved in ethanol that is rapidly mixed with siRNA in aqueous buffer at a pH (pH 4) where the ionizable lipid is positively charged. The resulting dispersion is then dialyzed against a normal saline buffer to remove residual ethanol and raise the pH to 7.4 (above the p Ka of the cationic lipid) to produce the finished LNP-siRNA systems. Here we provide cryogenic transmission electron microscopy (cryo-TEM) and X-ray evidence that the complexes formed between siRNA and ionizable lipid at pH 4 correspond to tightly packed bilayer structures with siRNA sandwiched between closely apposed monolayers. Further, it is shown that ionizable lipid not complexed to siRNA promotes formation of very small vesicular structures at pH 4 that coalesce to form larger LNP structures with amorphous electron dense cores at pH 7.4. A mechanism of formation of LNP-siRNA systems is proposed whereby siRNA is first sandwiched between closely apposed lipid monolayers at pH 4 and subsequently trapped in these structures as the pH is raised to 7.4, whereas ionizable lipid not interacting with siRNA moves from bilayer structure to adopt an amorphous oil phase located in the center of the LNP as the pH is raised. This model is discussed in terms of previous hypotheses and potential relevance to the design of LNP-siRNA systems.
Collapse
|
62
|
Cain SM, Tyson JR, Choi H, Ko R, Lin PJC, LeDue JM, Powell KL, Bernier L, Rungta RL, Yang Y, Cullis PR, O'Brien TJ, MacVicar BA, Snutch TP. Ca V 3.2 drives sustained burst-firing, which is critical for absence seizure propagation in reticular thalamic neurons. Epilepsia 2018; 59:778-791. [PMID: 29468672 PMCID: PMC5900875 DOI: 10.1111/epi.14018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Genetic alterations have been identified in the CACNA1H gene, encoding the CaV 3.2 T-type calcium channel in patients with absence epilepsy, yet the precise mechanisms relating to seizure propagation and spike-wave-discharge (SWD) pacemaking remain unknown. Neurons of the thalamic reticular nucleus (TRN) express high levels of CaV 3.2 calcium channels, and we investigated whether a gain-of-function mutation in the Cacna1h gene in Genetic Absence Epilepsy Rats from Strasbourg (GAERS) contributes to seizure propagation and pacemaking in the TRN. METHODS Pathophysiological contributions of CaV 3.2 calcium channels to burst firing and absence seizures were assessed in vitro using acute brain slice electrophysiology and quantitative real-time polymerase chain reaction (PCR) and in vivo using free-moving electrocorticography recordings. RESULTS TRN neurons from GAERS display sustained oscillatory burst-firing that is both age- and frequency-dependent, occurring only in the frequencies overlapping with GAERS SWDs and correlating with the expression of a CaV 3.2 mutation-sensitive splice variant. In vivo knock-down of CaV 3.2 using direct thalamic injection of lipid nanoparticles containing CaV 3.2 dicer small interfering (Dsi) RNA normalized TRN burst-firing, and in free-moving GAERS significantly shortened seizures. SIGNIFICANCE This supports a role for TRN CaV 3.2 T-type channels in propagating thalamocortical network seizures and setting the pacemaking frequency of SWDs.
Collapse
|
63
|
Schmidt ML, Bashe BY, Bodnariuc I, Mercer JE, Leung SS, Ramezanpour M, Atsmon-Raz Y, Subramanian N, Cullis PR, Tieleman DP, Thewalt JL. Characterization of Phases and Interactions Among Lipids Involved in Drug Delivery: An NMR and Small-Angle X-Ray Scattering Study. Biophys J 2018. [DOI: 10.1016/j.bpj.2017.11.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
64
|
Kulkarni JA, Tam YYC, Chen S, Tam YK, Zaifman J, Cullis PR, Biswas S. Rapid synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles. NANOSCALE 2017; 9:13600-13609. [PMID: 28876010 DOI: 10.1039/c7nr03272b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A straightforward "bottom-up" synthesis is described for efficient entrapment of inorganic hydrophobic nanoparticles (HNPs) consisting of iron oxide, gold, or quantum dots within the hydrophobic core of lipid nanoparticles (LNPs). These LNPs consist of hydrophobic "core" lipids such as triolein surrounded by a monolayer of amphipathic "surface" lipids, such as phosphatidylcholine and polyethylene-glycol-lipid. It is shown that rapid, controlled mixing of HNPs, core lipids and surface lipids in an organic solvent with an aqueous phase resulted in stable, monodisperse LNPs containing HNPs (LNP-HNP). This method allows 40-fold more hydrophobic iron oxide nanoparticles (IONPs) to be entrapped within an LNP than previous methods and can be readily extended to encapsulate other HNPs. The LNP-HNP diameter can be modulated over the range of 35-150 nm by varying the flow rate during particle synthesis or by varying the core-to-surface lipid ratio. LNP-IONPs can be generated using a variety of "core" lipids, including other triglycerides as well as cholesteryl-palmitate and tocopherol. Finally, it is shown that LNP-IONPs are accumulated in the liver, resulting in enhanced contrast for in vivo MRI. It is concluded that the bottom-up approach for encapsulating HNPs within LNPs has advantages of homogeneity, reproducibility and stability required for biomedical applications.
Collapse
|
65
|
Neumann UH, Ho JSS, Chen S, Tam YYC, Cullis PR, Kieffer TJ. Lipid nanoparticle delivery of glucagon receptor siRNA improves glucose homeostasis in mouse models of diabetes. Mol Metab 2017; 6:1161-1172. [PMID: 29031717 PMCID: PMC5641600 DOI: 10.1016/j.molmet.2017.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022] Open
Abstract
Objective Hyperglucagonemia is present in many forms of diabetes and contributes to hyperglycemia, and glucagon suppression can ameliorate diabetes in mice. Leptin, a glucagon suppressor, can also reverse diabetes in rodents. Lipid nanoparticle (LNP) delivery of small interfering RNA (siRNA) effectively targets the liver and is in clinical trials for the treatment of various diseases. We compared the effectiveness of glucagon receptor (Gcgr)-siRNA delivered via LNPs to leptin in two mouse models of diabetes. Methods Gcgr siRNA encapsulated into LNPs or leptin was administered to mice with diabetes due to injection of the β-cell toxin streptozotocin (STZ) alone or combined with high fat diet (HFD/STZ). Results In STZ-diabetic mice, a single injection of Gcgr siRNA lowered blood glucose levels for 3 weeks, improved glucose tolerance, and normalized plasma ketones levels, while leptin therapy normalized blood glucose levels, oral glucose tolerance, and plasma ketones, and suppressed lipid metabolism. In contrast, in HFD/STZ-diabetic mice, Gcgr siRNA lowered blood glucose levels for 2 months, improved oral glucose tolerance, and reduced HbA1c, while leptin had no beneficial effects. Conclusions While leptin may be more effective than Gcgr siRNA at normalizing both glucose and lipid metabolism in STZ diabetes, Gcgr siRNA is more effective at reducing blood glucose levels in HFD/STZ diabetes. Gcgr siRNA improves glucose metabolism but not lipid metabolism in STZ diabetic mice. Leptin improves both glucose and lipid metabolism in STZ diabetic mice. Gcgr siRNA improves glucose metabolism in HFD/STZ diabetic mice. Leptin does not improve glucose metabolism in HFD/STZ diabetic mice.
Collapse
|
66
|
Kulkarni JA, Myhre JL, Chen S, Tam YYC, Danescu A, Richman JM, Cullis PR. Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1377-1387. [DOI: 10.1016/j.nano.2016.12.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/07/2016] [Accepted: 12/19/2016] [Indexed: 01/10/2023]
|
67
|
Cullis PR, Hope MJ. Lipid Nanoparticle Systems for Enabling Gene Therapies. Mol Ther 2017; 25:1467-1475. [PMID: 28412170 DOI: 10.1016/j.ymthe.2017.03.013] [Citation(s) in RCA: 636] [Impact Index Per Article: 90.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 02/06/2023] Open
Abstract
Genetic drugs such as small interfering RNA (siRNA), mRNA, or plasmid DNA provide potential gene therapies to treat most diseases by silencing pathological genes, expressing therapeutic proteins, or through gene-editing applications. In order for genetic drugs to be used clinically, however, sophisticated delivery systems are required. Lipid nanoparticle (LNP) systems are currently the lead non-viral delivery systems for enabling the clinical potential of genetic drugs. Application will be made to the Food and Drug Administration (FDA) in 2017 for approval of an LNP siRNA drug to treat transthyretin-induced amyloidosis, presently an untreatable disease. Here, we first review research leading to the development of LNP siRNA systems capable of silencing target genes in hepatocytes following systemic administration. Subsequently, progress made to extend LNP technology to mRNA and plasmids for protein replacement, vaccine, and gene-editing applications is summarized. Finally, we address current limitations of LNP technology as applied to genetic drugs and ways in which such limitations may be overcome. It is concluded that LNP technology, by virtue of robust and efficient formulation processes, as well as advantages in potency, payload, and design flexibility, will be a dominant non-viral technology to enable the enormous potential of gene therapy.
Collapse
MESH Headings
- Amyloid Neuropathies, Familial/genetics
- Amyloid Neuropathies, Familial/metabolism
- Amyloid Neuropathies, Familial/pathology
- Amyloid Neuropathies, Familial/therapy
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/therapeutic use
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Clinical Trials as Topic
- Drug Delivery Systems/methods
- Genetic Therapy/methods
- Hepatitis B/genetics
- Hepatitis B/metabolism
- Hepatitis B/pathology
- Hepatitis B/therapy
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Lipids/chemistry
- Lipids/pharmacokinetics
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Plasmids/administration & dosage
- Plasmids/genetics
- Plasmids/metabolism
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
Collapse
|
68
|
Wang H, Tam YYC, Chen S, Zaifman J, van der Meel R, Ciufolini MA, Cullis PR. The Niemann-Pick C1 Inhibitor NP3.47 Enhances Gene Silencing Potency of Lipid Nanoparticles Containing siRNA. Mol Ther 2016; 24:2100-2108. [PMID: 27633442 PMCID: PMC5167785 DOI: 10.1038/mt.2016.179] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
The therapeutic applications of lipid nanoparticle (LNP) formulations of small interfering RNA (siRNA), are hampered by inefficient delivery of encapsulated siRNA to the cytoplasm following endocytosis. Recent work has shown that up to 70% of endocytosed LNP-siRNA particles are recycled to the extracellular medium and thus cannot contribute to gene silencing. Niemann-Pick type C1 (NPC1) is a late endosomal/lysosomal membrane protein required for efficient extracellular recycling of endosomal contents. Here we assess the influence of NP3.47, a putative small molecule inhibitor of NPC1, on the gene silencing potency of LNP-siRNA systems in vitro. Intracellular uptake and colocalization studies revealed that the presence of NP3.47 caused threefold or higher increases in accumulation of LNP-siRNA in late endosomes/lysosomes as compared with controls in a variety of cell lines. The gene silencing potency of LNP siRNA was enhanced up to fourfold in the presence of NP3.47. Mechanisms of action studies are consistent with the proposal that NP3.47 acts to inhibit NPC1. Our findings suggest that the pharmacological inhibition of NPC1 is an attractive strategy to enhance the therapeutic efficacy of LNP-siRNA by trapping LNP-siRNA in late endosomes, thereby increasing opportunities for endosomal escape.
Collapse
|
69
|
Basha G, Ordobadi M, Scott WR, Cottle A, Liu Y, Wang H, Cullis PR. Lipid Nanoparticle Delivery of siRNA to Osteocytes Leads to Effective Silencing of SOST and Inhibition of Sclerostin In Vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e363. [PMID: 27623445 PMCID: PMC5056992 DOI: 10.1038/mtna.2016.68] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/19/2016] [Indexed: 01/22/2023]
Abstract
Sclerostin is a protein secreted by osteocytes that is encoded by the SOST gene; it decreases bone formation by reducing osteoblast differentiation through inhibition of the Wnt signaling pathway. Silencing the SOST gene using RNA interference (RNAi) could therefore be an effective way to treat osteoporosis. Here, we investigate the utility of lipid nanoparticle (LNP) formulations of siRNA to silence the SOST gene in vitro and in vivo. It is shown that primary mouse embryonic fibroblasts (MEF) provide a useful model system in which the SOST gene can be induced by incubation in osteogenic media, allowing development of optimized SOST siRNA for silencing the SOST gene. Incubation of MEF cells with LNP containing optimized SOST siRNA produced significant, prolonged knockdown of the induced SOST gene in vitro, which was associated with an increase in osteogenic markers. Intravenous (i.v.) administration of LNP containing SOST siRNA to mice showed significant accumulation of LNP in osteocytes in compact bone, depletion of SOST mRNA and subsequent reduction of circulating sclerostin protein, establishing the potential utility for LNP siRNA systems to promote bone formation.
Collapse
|
70
|
Bashe BY, Leung SS, Delgado-Magnero KH, Ramezanpour M, Cullis PR, Tieleman DP, Thewalt J. Development of Lipid-Based Drug Delivery Systems for Gene Therapy: Physicochemical Characterization of Charged Lipid Interactions. Biophys J 2016. [DOI: 10.1016/j.bpj.2015.11.1358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
71
|
Lee JB, Zhang K, Tam YYC, Quick J, Tam YK, Lin PJ, Chen S, Liu Y, Nair JK, Zlatev I, Rajeev KG, Manoharan M, Rennie PS, Cullis PR. A Glu-urea-Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e348. [PMID: 28131285 PMCID: PMC5024509 DOI: 10.1038/mtna.2016.43] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 12/20/2022]
Abstract
The androgen receptor plays a critical role in the progression of prostate
cancer. Here, we describe targeting the prostate-specific membrane antigen using
a lipid nanoparticle formulation containing small interfering RNA designed to
silence expression of the messenger RNA encoding the androgen receptor.
Specifically, a Glu-urea-Lys PSMA-targeting ligand was incorporated into the
lipid nanoparticle system formulated with a long alkyl chain polyethylene
glycol-lipid to enhance accumulation at tumor sites and facilitate intracellular
uptake into tumor cells following systemic administration. Through these
features, and by using a structurally refined cationic lipid and an optimized
small interfering RNA payload, a lipid nanoparticle system with improved potency
and significant therapeutic potential against prostate cancer and potentially
other solid tumors was developed. Decreases in serum prostate-specific antigen,
tumor cellular proliferation, and androgen receptor levels were observed in a
mouse xenograft model following intravenous injection. These results support the
potential clinical utility of a prostate-specific membrane
antigen–targeted lipid nanoparticle system to silence the androgen
receptor in advanced prostate cancer.
Collapse
|
72
|
Ramishetti S, Kedmi R, Goldsmith M, Leonard F, Sprague AG, Godin B, Gozin M, Cullis PR, Dykxhoorn DM, Peer D. Systemic Gene Silencing in Primary T Lymphocytes Using Targeted Lipid Nanoparticles. ACS NANO 2015; 9:6706-16. [PMID: 26042619 DOI: 10.1021/acsnano.5b02796] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Modulating T cell function by down-regulating specific genes using RNA interference (RNAi) holds tremendous potential in advancing targeted therapies in many immune-related disorders including cancer, inflammation, autoimmunity, and viral infections. Hematopoietic cells, in general, and primary T lymphocytes, in particular, are notoriously hard to transfect with small interfering RNAs (siRNAs). Herein, we describe a novel strategy to specifically deliver siRNAs to murine CD4(+) T cells using targeted lipid nanoparticles (tLNPs). To increase the efficacy of siRNA delivery, these tLNPs have been formulated with several lipids designed to improve the stability and efficacy of siRNA delivery. The tLNPs were surface-functionalized with anti-CD4 monoclonal antibody to permit delivery of the siRNAs specifically to CD4(+) T lymphocytes. Ex vivo, tLNPs demonstrated specificity by targeting only primary CD4(+) T lymphocytes and no other cell types. Systemic intravenous administration of these particles led to efficient binding and uptake into CD4(+) T lymphocytes in several anatomical sites including the spleen, inguinal lymph nodes, blood, and the bone marrow. Silencing by tLNPs occurs in a subset of circulating and resting CD4(+) T lymphocytes. Interestingly, we show that tLNP internalization and not endosome escape is a fundamental event that takes place as early as 1 h after systemic administration and determines tLNPs' efficacy. Taken together, these results suggest that tLNPs may open new avenues for the manipulation of T cell functionality and may help to establish RNAi as a therapeutic modality in leukocyte-associated diseases.
Collapse
|
73
|
Abstract
The discovery of RNA interference (RNAi) in mammalian cells has created a new class of therapeutics based on the reversible silencing of specific disease-causing genes. This therapeutic potential depends on the ability to deliver inducers of RNAi, such as short-interfering RNA (siRNA) and micro-RNA (miRNA), to cells of target tissues. This chapter reviews various challenges and delivery strategies for siRNA, with a particular focus on the development of lipid nanoparticle (LNP) delivery technologies. Currently, LNP delivery systems are the most advanced technology for systemic delivery of siRNA, with numerous formulations under various stages of clinical trials. We also discuss methods to improve gene silencing potency of LNP-siRNA, as well as application of LNP technologies beyond siRNA to the encapsulation of other nucleic acids such as mRNA and clustered regularly interspaced short palindromic repeats (CRISPR).
Collapse
|
74
|
Leung AKK, Tam YYC, Chen S, Hafez IM, Cullis PR. Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems. J Phys Chem B 2015; 119:8698-706. [DOI: 10.1021/acs.jpcb.5b02891] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
75
|
Yamamoto Y, Lin PJC, Beraldi E, Zhang F, Kawai Y, Leong J, Katsumi H, Fazli L, Fraser R, Cullis PR, Gleave M. siRNA Lipid Nanoparticle Potently Silences Clusterin and Delays Progression When Combined with Androgen Receptor Cotargeting in Enzalutamide-Resistant Prostate Cancer. Clin Cancer Res 2015; 21:4845-55. [PMID: 26106075 DOI: 10.1158/1078-0432.ccr-15-0866] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/15/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Lipid nanoparticle (LNP) formulations facilitate tumor uptake and intracellular processing through an enhanced permeation and retention effect (EPR), and currently multiple products are undergoing clinical evaluation. Clusterin (CLU) is a cytoprotective chaperone induced by androgen receptor (AR) pathway inhibition to facilitate adaptive survival pathway signaling and treatment resistance. In our study, we investigated the efficacy of siRNA tumor delivery using LNP systems in an enzalutamide-resistant (ENZ-R) castration-resistant prostate cancer (CRPC) model. EXPERIMENTAL DESIGN Gene silencing of a luciferase reporter gene in the PC-3M-luc stable cell line was first assessed in subcutaneous and metastatic PC-3 xenograft tumors. Upon validation, the effect of LNP siRNA targeting CLU in combination with AR antisense oligonucleotides (ASO) was assessed in ENZ-R CRPC LNCaP in vitro and in vivo models. RESULTS LNP LUC-siRNA silenced luciferase expression in PC-3M-luc subcutaneous xenograft and metastatic models. LNP CLU-siRNA potently suppressed CLU and AR ASO-induced CLU and AKT and ERK phosphorylation in ENZ-R LNCaP cells in vitro, more potently inhibiting ENZ-R cell growth rates and increased apoptosis when compared with AR-ASO monotherapy. In subcutaneous ENZ-R LNCaP xenografts, combinatory treatment of LNP CLU-siRNA plus AR-ASO significantly suppressed tumor growth and serum PSA levels compared with LNP LUC-siRNA (control) and AR-ASO. CONCLUSIONS LNP siRNA can silence target genes in vivo and enable inhibition of traditionally non-druggable genes like CLU and other promising cotargeting approaches in ENZ-R CRPC therapeutics.
Collapse
|