51
|
Cohen R, Shi Q, Meyers J, Jin Z, Svrcek M, Fuchs C, Couture F, Kuebler P, Ciombor KK, Bendell J, De Jesus-Acosta A, Kumar P, Lewis D, Tan B, Bertagnolli MM, Philip P, Blanke C, O'Reilly EM, Shields A, Meyerhardt JA. Combining tumor deposits with the number of lymph node metastases to improve the prognostic accuracy in stage III colon cancer: a post hoc analysis of the CALGB/SWOG 80702 phase III study (Alliance) ☆. Ann Oncol 2021; 32:1267-1275. [PMID: 34293461 DOI: 10.1016/j.annonc.2021.07.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In colon cancer, tumor deposits (TD) are considered in assigning prognosis and staging only in the absence of lymph node metastasis (i.e. stage III pN1c tumors). We aimed to evaluate the prognostic value of the presence and the number of TD in patients with stage III, node-positive colon cancer. PATIENTS AND METHODS All participants from the CALGB/SWOG 80702 phase III trial were included in this post hoc analysis. Pathology reports were reviewed for the presence and the number of TD, lymphovascular and perineural invasion. Associations with disease-free survival (DFS) and overall survival (OS) were evaluated by multivariable Cox models adjusting for sex, treatment arm, T-stage, N-stage, lymphovascular invasion, perineural invasion and lymph node ratio. RESULTS Overall, 2028 patients were included with 524 (26%) TD-positive and 1504 (74%) TD-negative tumors. Of the TD-positive patients, 80 (15.4%) were node negative (i.e. pN1c), 239 (46.1%) were pN1a/b (<4 positive lymph nodes) and 200 (38.5%) were pN2 (≥4 positive lymph nodes). The presence of TD was associated with poorer DFS [adjusted hazard ratio (aHR) = 1.63, 95% CI 1.33-1.98] and OS (aHR = 1.59, 95% CI 1.24-2.04). The negative effect of TD was observed for both pN1a/b and pN2 groups. Among TD-positive patients, the number of TD had a linear negative effect on DFS and OS. Combining TD and the number of lymph node metastases, 104 of 1470 (7.1%) pN1 patients were re-staged as pN2, with worse outcomes than patients confirmed as pN1 (3-year DFS rate: 65.4% versus 80.5%, P = 0.0003; 5-year OS rate: 87.9% versus 69.1%, P = <0.0001). DFS was not different between patients re-staged as pN2 and those initially staged as pN2 (3-year DFS rate: 65.4% versus 62.3%, P = 0.4895). CONCLUSION Combining the number of TD and the number of lymph node metastases improved the prognostication accuracy of tumor-node-metastasis (TNM) staging.
Collapse
|
52
|
Sun Z, Zhu M, Zhang Z, Chen Z, Shi Q, Shan X, Yeow RCH, Lee C. Artificial Intelligence of Things (AIoT) Enabled Virtual Shop Applications Using Self-Powered Sensor Enhanced Soft Robotic Manipulator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100230. [PMID: 34037331 PMCID: PMC8292889 DOI: 10.1002/advs.202100230] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/06/2021] [Indexed: 05/03/2023]
Abstract
Rapid advancements of artificial intelligence of things (AIoT) technology pave the way for developing a digital-twin-based remote interactive system for advanced robotic-enabled industrial automation and virtual shopping. The embedded multifunctional perception system is urged for better interaction and user experience. To realize such a system, a smart soft robotic manipulator is presented that consists of a triboelectric nanogenerator tactile (T-TENG) and length (L-TENG) sensor, as well as a poly(vinylidene fluoride) (PVDF) pyroelectric temperature sensor. With the aid of machine learning (ML) for data processing, the fusion of the T-TENG and L-TENG sensors can realize the automatic recognition of the grasped objects with the accuracy of 97.143% for 28 different shapes of objects, while the temperature distribution can also be obtained through the pyroelectric sensor. By leveraging the IoT and artificial intelligence (AI) analytics, a digital-twin-based virtual shop is successfully implemented to provide the users with real-time feedback about the details of the product. In general, by offering a more immersive experience in human-machine interactions, the proposed remote interactive system shows the great potential of being the advanced human-machine interface for the applications of the unmanned working space.
Collapse
|
53
|
Zhang Q, Zhang Z, Liang Q, Shi Q, Zhu M, Lee C. All in One, Self-Powered Bionic Artificial Nerve Based on a Triboelectric Nanogenerator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004727. [PMID: 34194933 PMCID: PMC8224437 DOI: 10.1002/advs.202004727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Indexed: 05/21/2023]
Abstract
Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in artificial sensory and nervous systems. Here, an all-in-one, tailorable artificial perception, and transmission nerve (APTN) was developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The APTN shows excellent reliability with a single triboelectric electrode for the detection of multiple pixels, by employing a gradient thickness dielectric layer and a grid surface structure. The sliding mode is used on the APTN to eliminate the amplitude influence of output signal, such as force, interlayer distance. By tailoring the geometry, an L-shaped APTN is demonstrated for the application of single-electrode bionic artificial nerve for 2D detection. In addition, an APTN based prosthetic arm is also fabricated to biomimetically identify and transmit the stimuli location signal to pattern the feedback. With features of low-cost, easy installation, and good flexibility, the APTN renders as a promising artificial sensory and nervous system for artificial intelligence, human-machine interface, and robotics applications.
Collapse
|
54
|
Qiao L, Ban R, Shi Q. Axial muscle weakness and the rimmed vacuoles in muscle histology in inflammatory myopathy with anti-ku antibody: a case report. Scand J Rheumatol 2021; 51:83-85. [PMID: 33949908 DOI: 10.1080/03009742.2021.1894825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
55
|
Yang YF, Feng L, Shi Q, Wang LW, Hou LZ, Wang R, Fang JG. Silencing of long non-coding RNA LINC00958 inhibits head and neck squamous cell carcinoma progression and AKT/mTOR signaling pathway by targeting miR-106a-5p. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2021; 24:8408-8417. [PMID: 32894548 DOI: 10.26355/eurrev_202008_22638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The long non-coding RNA LINC00958 acts as an oncogenic regulator in many human tumors. In this study, we aimed to investigate the role and potential molecular biological mechanisms of LINC00958 in head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS Aberrantly expressed LINC00958 was screened out of TCGA database. The quantitative Real Time-Polymerase Chain Reaction (qRT-PCR) was used to determine LINC00958 and miR-106a-5p expression. Cellular biological behaviors were investigated using CCK-8, colony formation, wound healing and transwell assays. Xenograft mouse models were established to determine the role of LINC00958 in HNSCC growth in vivo. The interaction between LINC00958 and miR-106a-5p was validated by Dual-Luciferase reporter gene assay. Additionally, the underlying pathways affected by LINC00958 were measured by Western blot. RESULTS LINC00958 expression was upregulated in HNSCC tissues and cells. High LINC00958 level was correlated with the poor prognosis of HNSCC patients. Functional assays showed that the knockdown of LINC00958 inhibited HNSCC malignant phenotypes in vitro and in vivo. Mechanistically, miR-106a-5p was a potential target of LINC00958, and its expression was negatively regulated by LINC00958 in HNSCC. LINC00958 could activate AKT/mTOR signaling pathway, which was mediated by miR-106a-5p. CONCLUSIONS Taken together, our results suggest that LINC00958 acts as an oncogenic role in HNSCC and activates AKT/mTOR signaling pathway by sponging miR-106a-5p. LINC00958 may serve as a potential target for HNSCC diagnosis and treatment.
Collapse
|
56
|
Cui J, Wang HP, Shi Q, Sun T. Pulsed Microfluid Force-Based On-Chip Modular Fabrication for Liver Lobule-Like 3D Cellular Models. CYBORG AND BIONIC SYSTEMS 2021; 2021:9871396. [PMID: 36285127 PMCID: PMC9494728 DOI: 10.34133/2021/9871396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/09/2021] [Indexed: 12/31/2022] Open
Abstract
In vitro three-dimensional (3D) cellular models with native tissue-like architectures and functions have potential as alternatives to human tissues in regenerative medicine and drug discovery. However, it is difficult to replicate liver constructs that mimic in vivo microenvironments using current approaches in tissue engineering because of the vessel-embedded 3D structure and complex cell distribution of the liver. This paper reports a pulsed microflow-based on-chip 3D assembly method to construct 3D liver lobule-like models that replicate the spatial structure and functions of the liver lobule. The heterogeneous cell-laden assembly units with hierarchical cell distribution are fabricated through multistep photopatterning of different cell-laden hydrogels. Through fluid force interaction by pulsed microflow, the hierarchical assembly units are driven to a stack, layer by layer, and thus spatially assemble into 3D cellular models in the closed liquid chamber of the assembly chip. The 3D models with liver lobule-like hexagonal morphology and radial cell distribution allow the dynamic perfusion culture to maintain high cell viability and functional expression during long-term culture in vitro. These results demonstrate that the fabricated 3D liver lobule-like models are promising for drug testing and the study of individual diagnoses and treatments.
Collapse
|
57
|
Zhou C, Jiang L, Dong X, Gu K, Pan Y, Shi Q, Zhang G, Wang H, Zhang X, Yang N, Li Y, Xiong J, Yi T, Peng M, Song Y, Fan Y, Cui J, Chen G, Tan W, Zang A, Guo Q, Zhao G, Wang Z, He J, Yao W, Wu X, Chen K, Hu X, Hu C, Yue L, Jiang D, Wang G, Liu J, Yu G. MA01.04 A Randomized Study Comparing Cisplatin/Paclitaxel Liposome vs Cisplatin/Gemcitabine in Chemonaive, Advanced Squamous NSCLC. J Thorac Oncol 2021. [DOI: 10.1016/j.jtho.2021.01.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
58
|
Dai S, Yang K, Liu D, Shi Q, Cui B, Liu S, Wang D. Impacts of impurity flux on erosion and deposition of carbon/tungsten rough surfaces. NUCLEAR MATERIALS AND ENERGY 2021. [DOI: 10.1016/j.nme.2020.100802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
59
|
Dai W, Wu C, Shi Q, Li Q. P32.04 Preoperative Self-Reported Symptom Burden and Quality of Life of Patients Undergoing Lung Cancer Surgery: A Cross-Sectional Study. J Thorac Oncol 2021. [DOI: 10.1016/j.jtho.2021.01.665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
60
|
Shi Q, Meng Z, Tian XX, Wang YF, Wang WH. Identification and validation of a hub gene prognostic index for hepatocellular carcinoma. Future Oncol 2021; 17:2193-2208. [PMID: 33620260 DOI: 10.2217/fon-2020-1112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aims: We aim to provide new insights into the mechanisms of hepatocellular carcinoma (HCC) and identify key genes as biomarkers for the prognosis of HCC. Materials & methods: Differentially expressed genes between HCC tissues and normal tissues were identified via the Gene Expression Omnibus tool. The top ten hub genes screened by the degree of the protein nodes in the protein-protein interaction network also showed significant associations with overall survival in HCC patients. Results: A prognostic model containing a five-gene signature was constructed to predict the prognosis of HCC via multivariate Cox regression analysis. Conclusion: This study identified a novel five-gene signature (CDK1, CCNB1, CCNB2, BUB1 and KIF11) as a significant independent prognostic factor.
Collapse
|
61
|
Yuan L, Hu WM, Chen K, Shi Q, Lin A, Chen HT, Zhuo ZJ, Zeng L. XPG gene polymorphisms and glioma susceptibility: a two-centre case-control study. Br J Biomed Sci 2021; 78:135-140. [PMID: 33393424 DOI: 10.1080/09674845.2020.1870308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Glioma, the most common tumour in children next to leukaemia, is difficult to treat, with a poor prognosis and high recurrence rate. Xeroderma pigmentosum group G (XPG) plays a key role in the nucleotide excision repair pathway, which may modulate individual susceptibility to developing cancer. We hypothesized links between XPG variants and glioma in children.Methods: We tested our hypothesis in a study comparing 171 glioma cases with 228 age and sex matched controls, determining XPG polymorphisms rs2094258 C > T, rs751402 C > T, rs2296147 T > C, rs1047768 T > C, rs873601 G > A by standard molecular genetic methods.Results: rs2094258 C > T was associated with a decreased glioma risk, but carrying the rs1047768 C or rs873601 A allele brought an increased risk. Subjects carrying 5 risk genotypes had a significantly increased glioma risk at an adjusted odds ratio of 1.97 (95% confidence Interval 1.26-3.08)(p = 0.003) when compared with those carrying 0-4 risk genotypes. Furthermore, children with 5 risk genotypes had a higher glioma risk when aged >60 months, were more likely to be male, and with subtypes of astrocytic tumours, and low-grade clinical stage, when compared to those with 0-4 risk genotypes. Preliminary functional exploration suggested that rs2094258 is linked with the expression of its surrounding genes in the expression quantitative trait locus analysis.Conclusion: Certain variants of XPG are risk factors for paediatric glioma, and so may be useful in early diagnosis.
Collapse
|
62
|
Zhang MY, Hu P, Feng D, Zhu YZ, Shi Q, Wang J, Zhu WY. The role of liver metabolism in compensatory-growth piglets induced by protein restriction and subsequent protein realimentation. Domest Anim Endocrinol 2021; 74:106512. [PMID: 32653740 DOI: 10.1016/j.domaniend.2020.106512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/31/2020] [Accepted: 06/13/2020] [Indexed: 11/21/2022]
Abstract
The aim of this work was to study the role of hepatic metabolism of compensatory growth in piglets induced by protein restriction and subsequent protein realimentation. Thirty-six weaned piglets were randomly distributed in a control group and a treatment group. The control group piglets were fed with a normal protein level diet (18.83% CP) for the entire experimental period (day 1-28). The treatment group piglets were fed with a protein-restriction diet (13.05% CP) for day 1 to day 14, and the diet was restored to normal protein level diet for day 15 to day 28. RNA-seq is used to analyze samples of liver metabolism on day 14 and day 28, respectively. Hepatic RNA-sequencing analysis revealed that some KEGG signaling pathways involved in glycolipid metabolism (eg, "AMPK signaling pathway," "insulin signaling pathway," and "glycolysis or gluconeogenesis") were significantly enriched on day 14 and day 28. On day 14, protein restriction promoted hepatic lipogenesis by increasing the genes expression level of ACACA, FASN, GAPM, and SREBP1C, decreasing protein phosphorylation levels of AMPKɑ and ACC in AMPK signaling pathway. In contrast, on day 28, protein realimentation promoted hepatic gluconeogenesis by increasing the concentration of G6Pase and PEPCK, decreasing protein phosphorylation levels of IRS1, Akt, and FoXO1 in insulin signaling pathway. In addition, protein realimentation activated the GH-IGF1 axis between the liver and skeletal muscle. Overall, these findings revealed the importance of liver metabolism in achieving compensatory growth.
Collapse
|
63
|
Shi Q, Sun Z, Zhang Z, Lee C. Triboelectric Nanogenerators and Hybridized Systems for Enabling Next-Generation IoT Applications. RESEARCH (WASHINGTON, D.C.) 2021; 2021:6849171. [PMID: 33728410 PMCID: PMC7937188 DOI: 10.34133/2021/6849171] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/27/2020] [Indexed: 01/08/2023]
Abstract
In the past few years, triboelectric nanogenerator-based (TENG-based) hybrid generators and systems have experienced a widespread and flourishing development, ranging among almost every aspect of our lives, e.g., from industry to consumer, outdoor to indoor, and wearable to implantable applications. Although TENG technology has been extensively investigated for mechanical energy harvesting, most developed TENGs still have limitations of small output current, unstable power generation, and low energy utilization rate of multisource energies. To harvest the ubiquitous/coexisted energy forms including mechanical, thermal, and solar energy simultaneously, a promising direction is to integrate TENG with other transducing mechanisms, e.g., electromagnetic generator, piezoelectric nanogenerator, pyroelectric nanogenerator, thermoelectric generator, and solar cell, forming the hybrid generator for synergetic single-source and multisource energy harvesting. The resultant TENG-based hybrid generators utilizing integrated transducing mechanisms are able to compensate for the shortcomings of each mechanism and overcome the above limitations, toward achieving a maximum, reliable, and stable output generation. Hence, in this review, we systematically introduce the key technologies of the TENG-based hybrid generators and hybridized systems, in the aspects of operation principles, structure designs, optimization strategies, power management, and system integration. The recent progress of TENG-based hybrid generators and hybridized systems for the outdoor, indoor, wearable, and implantable applications is also provided. Lastly, we discuss our perspectives on the future development trend of hybrid generators and hybridized systems in environmental monitoring, human activity sensation, human-machine interaction, smart home, healthcare, wearables, implants, robotics, Internet of things (IoT), and many other fields.
Collapse
|
64
|
Fu X, Huang Y, Shi Q, Shklovskii BI, Zudov MA, Gardner GC, Manfra MJ. Hidden Quantum Hall Stripes in Al_{x}Ga_{1-x}As/Al_{0.24}Ga_{0.76}As Quantum Wells. PHYSICAL REVIEW LETTERS 2020; 125:236803. [PMID: 33337202 DOI: 10.1103/physrevlett.125.236803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
We report on transport signatures of hidden quantum Hall stripe (hQHS) phases in high (N>2) half-filled Landau levels of Al_{x}Ga_{1-x}As/Al_{0.24}Ga_{0.76}As quantum wells with varying Al mole fraction x<10^{-3}. Residing between the conventional stripe phases (lower N) and the isotropic liquid phases (higher N), where resistivity decreases as 1/N, these hQHS phases exhibit isotropic and N-independent resistivity. Using the experimental phase diagram, we establish that the stripe phases are more robust than theoretically predicted, calling for improved theoretical treatment. We also show that, unlike conventional stripe phases, the hQHS phases do not occur in ultrahigh mobility GaAs quantum wells but are likely to be found in other systems.
Collapse
|
65
|
Han Y, Cao G, Sun B, Wang J, Yan D, Xu H, Shi Q, Liu Z, Xu L, Liu B, Zou Y. 179P Regorafenib combined with transarterial chemoembolization (TACE) for unresectable hepatocellular carcinoma (HCC) with previous systematic treatment: A preliminary investigation of safety and efficacy. Ann Oncol 2020. [DOI: 10.1016/j.annonc.2020.10.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
66
|
Wu Y, Liu L, Shi Q, Chen C, Wei J, Li JF, Zheng LR, Song HB. Retraction. Science 2020; 370:179. [PMID: 33033209 DOI: 10.1126/science.abe7205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
67
|
Shi Q, Zhang Z, He T, Sun Z, Wang B, Feng Y, Shan X, Salam B, Lee C. Deep learning enabled smart mats as a scalable floor monitoring system. Nat Commun 2020; 11:4609. [PMID: 32929087 PMCID: PMC7490371 DOI: 10.1038/s41467-020-18471-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/25/2020] [Indexed: 11/15/2022] Open
Abstract
Toward smart building and smart home, floor as one of our most frequently interactive interfaces can be implemented with embedded sensors to extract abundant sensory information without the video-taken concerns. Yet the previously developed floor sensors are normally of small scale, high implementation cost, large power consumption, and complicated device configuration. Here we show a smart floor monitoring system through the integration of self-powered triboelectric floor mats and deep learning-based data analytics. The floor mats are fabricated with unique "identity" electrode patterns using a low-cost and highly scalable screen printing technique, enabling a parallel connection to reduce the system complexity and the deep-learning computational cost. The stepping position, activity status, and identity information can be determined according to the instant sensory data analytics. This developed smart floor technology can establish the foundation using floor as the functional interface for diverse applications in smart building/home, e.g., intelligent automation, healthcare, and security.
Collapse
|
68
|
Karapetis C, Liu H, Sorich M, Fiskum J, Grothey A, Adams R, Venook A, Heinemann V, Lenz H, Yoshino T, Zalcberg J, Chibaudel B, Buyse M, De Gramont A, Shi Q. 434P Impact of molecular markers status on treatment effects comparing EGFR and VEGF monoclonal antibodies (mAbs) in untreated metastatic colorectal cancer (mCRC): Pooled individual patient data (IPD) analysis of randomized trials from the ARCAD database. Ann Oncol 2020. [DOI: 10.1016/j.annonc.2020.08.545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
69
|
Papamichael D, Lopes G, Olswold C, Chibaudel B, Zalcberg J, Van Cutsem E, Venook A, Maughan T, Heinemann V, Kaplan R, Bokemeyer C, Lenz H, Yoshino T, Adams R, Grothey A, De Gramont A, Shi Q. 432P Toxicity and efficacy of 1st line cetuximab (cetux)-based therapy in RAS wildtype (WT) older patients (pts) with metastatic colorectal cancer (mCRC): A pooled analysis from 1,274 pts in the ARCAD database. Ann Oncol 2020. [DOI: 10.1016/j.annonc.2020.08.543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
70
|
Shen L, Li J, Miao Z, Xu N, Liu B, Li X, Zhang Q, Gao Q, Zhao Y, Pan H, Pei Z, Li W, Xia H, Wang J, Dai H, Shi Q, Yang J. 1445P CS1001, an anti-PD-L1 antibody, combined with standard of care (SOC) chemotherapy for first line (1L) advanced GC/GEJ and ESCC: Preliminary results from 2 phase Ib cohorts of CS1001-101 study. Ann Oncol 2020. [DOI: 10.1016/j.annonc.2020.08.1951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
71
|
Xuan Y, Cai Y, Wang XX, Shi Q, Qiu LX, Luan QX. [Effect of Porphyromonas gingivalis infection on atherosclerosis in apolipoprotein-E knockout mice]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 52. [PMID: 32773813 PMCID: PMC7433629 DOI: 10.19723/j.issn.1671-167x.2020.04.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
OBJECTIVE Studies have indicated that periodontal pathogen Porphyromonas gingivalis (P. gingivalis) infection may contributed to accelerate the development of atherosclerosis. The aim of this study was to investigate the effect of inflammation, oxidative stress and the mechanism on atherosclerosis in apolipoprotein-E knockout (ApoE-/-) mice with P. gingivalis infection. METHODS Eight-week-old male ApoE-/- mice (C57BL/6) were maintained under specific pathogen-free conditions and fed regular chow and sterile water after 1 weeks of housing. The animals were randomly divided into two groups: (a) ApoE-/- + PBS (n=8); (b) ApoE-/- + P.gingivalis strain FDC381 (n=8). Both of the groups received intravenous injections 3 times per week for 4 weeks since 8 weeks of age. The sham control group received injections with phosphate buffered saline only, while the P. gingivalis-challenged group with P.gingivalis strain FDC381at the same time. After 4 weeks, oxidative stress mediators and inflammation cytokines were analyzed by oil red O in heart, Enzyme linked immunosorbent assay (ELISA) in serum, quantitative real-time PCR and Western blot in aorta. RESULTS In our study, we found accelerated development of atherosclerosis and plaque formation in aorta with oil red O staining, increased oxidative stress markers [8-hydroxy-2-deoxyguanosine (8-OHdG), NADPH oxidase (NOX)-2 and NOX-4], as well as increased inflammation cytokines [interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α)] in the serum and aorta of the P. gingivalis-infected ApoE-/- mice. Compared with the control group, there was a significant increase protein level of nuclear factor-kappa B (NF-κB) in aorta after P. gingivalis infection. CONCLUSIONS Our results suggest that chronic intravenous infection of P. gingivalis in ApoE-/- mice could accelerate the development of atherosclerosis by disturbing the lipid profile and inducing oxidative stress and inflammation. The NF-κB signaling pathway might play a potential role in the P. gingivalis-accelerated atherogenesis.
Collapse
|
72
|
Dong B, Shi Q, He T, Zhu S, Zhang Z, Sun Z, Ma Y, Kwong D, Lee C. Wearable Triboelectric/Aluminum Nitride Nano-Energy-Nano-System with Self-Sustainable Photonic Modulation and Continuous Force Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903636. [PMID: 32775150 PMCID: PMC7404172 DOI: 10.1002/advs.201903636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/23/2020] [Indexed: 05/19/2023]
Abstract
Wearable photonics offer a promising platform to complement the thriving complex wearable electronics system by providing high-speed data transmission channels and robust optical sensing paths. Regarding the realization of photonic computation and tunable (de)multiplexing functions based on system-level integration of abundant photonic modulators, it is challenging to reduce the overwhelming power consumption in traditional current-based silicon photonic modulators. This issue is addressed by integrating voltage-based aluminum nitride (AlN) modulator and textile triboelectric nanogenerator (T-TENG) on a wearable platform to form a nano-energy-nano-system (NENS). The T-TENG transduces the mechanical stimulations into electrical signals based on the coupling of triboelectrification and electrostatic induction. The self-generated high-voltage from the T-TENG is applied to the AlN modulator and boosts its modulation efficiency regardless of AlN's moderate Pockels effect. Complementarily, the AlN modulator's capacitive nature enables the open-circuit operation mode of T-TENG, providing the integrated NENS with continuous force sensing capability which is notably uninfluenced by operation speeds. Furthermore, a physical model is proposed to describe the coupled AlN modulator/T-TENG system. With the enhanced photonic modulation and the open-circuit operation mode enabled by synergies between the AlN modulator and the T-TENG, optical Morse code transmission and continuous human motion monitoring are demonstrated for practical wearable applications.
Collapse
|
73
|
Dong B, Yang Y, Shi Q, Xu S, Sun Z, Zhu S, Zhang Z, Kwong DL, Zhou G, Ang KW, Lee C. Wearable Triboelectric-Human-Machine Interface (THMI) Using Robust Nanophotonic Readout. ACS NANO 2020; 14:8915-8930. [PMID: 32574036 DOI: 10.1021/acsnano.0c03728] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
With the rapid advances in wearable electronics and photonics, self-sustainable wearable systems are desired to increase service life and reduce maintenance frequency. Triboelectric technology stands out as a promising versatile technology due to its flexibility, self-sustainability, broad material availability, low cost, and good scalability. Various triboelectric-human-machine interfaces (THMIs) have been developed including interactive gloves, eye blinking/body motion-triggered interfaces, voice/breath monitors, and self-induced wireless interfaces. Nonetheless, THMIs conventionally use electrical readout and produce pulse-like signals due to the transient charge flows, leading to unstable and lossy transfer of interaction information. To address this issue, we propose a strategy by equipping THMIs with robust nanophotonic aluminum nitride (AlN) modulators for readout. The electrically capacitive nature of AlN modulators enables THMIs to work in the open-circuit condition with negligible charge flows. Meanwhile, the interaction information is transduced from THMIs' voltage to AlN modulators' optical output via the electro-optic Pockels effect. Thanks to the negligible charge flow and the high-speed optical information carrier, stable, information-lossless, and real-time THMIs are achieved. Leveraging the design flexibility of THMIs and nanophotonic readout circuits, various linear sensitivities independent of force speeds are achieved in different interaction force ranges. Toward practical applications, we develop a smart glove to realize continuous real-time robotics control and virtual/augmented reality interaction. Our work demonstrates a generic approach for developing self-sustainable HMIs with stable, information-lossless, and real-time features for wearable systems.
Collapse
|
74
|
Wu Y, Zhu B, Huang M, Liu L, Shi Q, Akbar M, Chen C, Wei J, Li JF, Zheng LR, Kim JS, Song HB. Proton transport enabled by a field-induced metallic state in a semiconductor heterostructure. Science 2020; 369:184-188. [PMID: 32646999 DOI: 10.1126/science.aaz9139] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/06/2020] [Accepted: 05/26/2020] [Indexed: 11/02/2022]
Abstract
Tuning a semiconductor to function as a fast proton conductor is an emerging strategy in the rapidly developing field of proton ceramic fuel cells (PCFCs). The key challenge for PCFC researchers is to formulate the proton-conducting electrolyte with conductivity above 0.1 siemens per centimeter at low temperatures (300 to 600°C). Here we present a methodology to design an enhanced proton conductor by means of a Na x CoO2/CeO2 semiconductor heterostructure, in which a field-induced metallic state at the interface accelerates proton transport. We developed a PCFC with an ionic conductivity of 0.30 siemens per centimeter and a power output of 1 watt per square centimeter at 520°C. Through our semiconductor heterostructure approach, our results provide insight into the proton transport mechanism, which may also improve ionic transport in other energy applications.
Collapse
|
75
|
Deng D, Shi Q. Focal laser ablation versus radical prostatectomy for localized prostate cancer: Survival outcomes from a matched cohort. EUR UROL SUPPL 2020. [DOI: 10.1016/s2666-1683(20)33480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|