51
|
An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Cao D, Cao GF, Cao J, Cen WR, Chan YL, Chang JF, Chang LC, Chang Y, Chen HS, Chen QY, Chen SM, Chen YX, Chen Y, Cheng JH, Cheng J, Cheng YP, Cheng ZK, Cherwinka JJ, Chu MC, Chukanov A, Cummings JP, de Arcos J, Deng ZY, Ding XF, Ding YY, Diwan MV, Dolgareva M, Dove J, Dwyer DA, Edwards WR, Gill R, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guan MY, Guo L, Guo RP, Guo XH, Guo Z, Hackenburg RW, Han R, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hor YK, Hsiung YB, Hu BZ, Hu T, Hu W, Huang EC, Huang HX, Huang XT, Huber P, Huo W, Hussain G, Jaffe DE, Jaffke P, Jen KL, Jetter S, Ji XP, Ji XL, Jiao JB, Johnson RA, Joshi J, Kang L, Kettell SH, Kohn S, Kramer M, Kwan KK, Kwok MW, Kwok T, Langford TJ, Lau K, Lebanowski L, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li C, Li DJ, Li F, Li GS, Li QJ, Li S, Li SC, Li WD, Li XN, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Lin SK, Lin YC, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu DW, Liu JL, Liu JC, Loh CW, Lu C, Lu HQ, Lu JS, Luk KB, Lv Z, Ma QM, Ma XY, Ma XB, Ma YQ, Malyshkin Y, Martinez Caicedo DA, McDonald KT, McKeown RD, Mitchell I, Mooney M, Nakajima Y, Napolitano J, Naumov D, Naumova E, Ngai HY, Ning Z, Ochoa-Ricoux JP, Olshevskiy A, Pan HR, Park J, Patton S, Pec V, Peng JC, Pinsky L, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren J, Rosero R, Roskovec B, Ruan XC, Steiner H, Sun GX, Sun JL, Tang W, Taychenachev D, Treskov K, Tsang KV, Tull CE, Viaux N, Viren B, Vorobel V, Wang CH, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wen LJ, Whisnant K, White CG, Whitehead L, Wise T, Wong HLH, Wong SCF, Worcester E, Wu CH, Wu Q, Wu WJ, Xia DM, Xia JK, Xing ZZ, Xu JY, Xu JL, Xu Y, Xue T, Yang CG, Yang H, Yang L, Yang MS, Yang MT, Ye M, Ye Z, Yeh M, Young BL, Yu ZY, Zeng S, Zhan L, Zhang C, Zhang HH, Zhang JW, Zhang QM, Zhang XT, Zhang YM, Zhang YX, Zhang YM, Zhang ZJ, Zhang ZY, Zhang ZP, Zhao J, Zhao QW, Zhao YB, Zhong WL, Zhou L, Zhou N, Zhuang HL, Zou JH. Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment. PHYSICAL REVIEW LETTERS 2016; 117:151802. [PMID: 27768341 DOI: 10.1103/physrevlett.117.151802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Indexed: 06/06/2023]
Abstract
This Letter reports an improved search for light sterile neutrino mixing in the electron antineutrino disappearance channel with the full configuration of the Daya Bay Reactor Neutrino Experiment. With an additional 404 days of data collected in eight antineutrino detectors, this search benefits from 3.6 times the statistics available to the previous publication, as well as from improvements in energy calibration and background reduction. A relative comparison of the rate and energy spectrum of reactor antineutrinos in the three experimental halls yields no evidence of sterile neutrino mixing in the 2×10^{-4}≲|Δm_{41}^{2}|≲0.3 eV^{2} mass range. The resulting limits on sin^{2}2θ_{14} are improved by approx imately a factor of 2 over previous results and constitute the most stringent constraints to date in the |Δm_{41}^{2}|≲0.2 eV^{2} region.
Collapse
|
52
|
Rayner AC, Gill R, Brass D, Willings TH, Bright A. Smothering in UK free-range flocks. Part 2: investigating correlations between disease, housing and management practices. Vet Rec 2016; 179:252. [DOI: 10.1136/vr.103701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2016] [Indexed: 11/03/2022]
|
53
|
Gill R, Jen KL, McCabe MJJ, Rosenspire A. Dietary n-3 PUFAs augment caspase 8 activation in Staphylococcal aureus enterotoxin B stimulated T-cells. Toxicol Appl Pharmacol 2016; 309:141-8. [PMID: 27614254 DOI: 10.1016/j.taap.2016.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/19/2016] [Accepted: 09/02/2016] [Indexed: 10/21/2022]
Abstract
Epidemiological studies have linked consumption of n-3 PUFAs with a variety of beneficial health benefits, particularly with respect to putative anti-inflammatory effects. Unfortunately, many of these results remain somewhat controversial because in most instances there has not been a linkage to specific molecular mechanisms. For instance, dietary exposure to low levels of mercury has been shown to be damaging to neural development, but concomitant ingestion of n-3 PUFAs as occurs during consumption of fish, has been shown to counteract the detrimental effects. As the mechanisms mediating the neurotoxicity of environmental mercury are not fully delineated, it is difficult to conceptualize a testable molecular mechanism explaining how n-3 PUFAs negate its neurotoxic effects. However, environmental exposure to mercury also has been linked to increased autoimmunity. By way of a molecular understanding of this immuno-toxic association, disruption of CD95 signaling is well established as a triggering factor for autoimmunity, and we have previously shown that environmentally relevant in vitro and dietary exposures to mercury interfere with CD95 signaling. In particular we have shown that activation of caspase 8, as well as downstream activation of caspase 3, in response to CD95 agonist stimulation is depressed by mercury. More recently we have shown in vitro that the n-3 PUFA docosahexaenoic acid counteracts the negative effect of mercury on CD95 signaling by restoring caspase activity. We hypothesized that concomitant ingestion of n-3 PUFAs with mercury might be protective from the immuno-toxic effects of mercury, as it is with mercury's neuro-toxic effects, and in the case of immuno-toxicity this would be related to restoration of CD95 signal strength. We now show that dietary ingestion of n-3 PUFAs generally promotes CD95 signaling by upregulating caspase 8 activation. Apart from accounting for the ability of n-3 PUFAs to specifically counteract autoimmune sequelae of mercury exposure, this novel finding for the first time suggests a testable molecular mechanism explaining the overall anti-inflammatory properties of n-3 PUFAs.
Collapse
|
54
|
Rusch VW, Gill R, Mitchell A, Naidich D, Rice DC, Pass HI, Kindler HL, De Perrot M, Friedberg J. A Multicenter Study of Volumetric Computed Tomography for Staging Malignant Pleural Mesothelioma. Ann Thorac Surg 2016; 102:1059-66. [PMID: 27596916 DOI: 10.1016/j.athoracsur.2016.06.069] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/20/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Standard imaging modalities are inaccurate in staging malignant pleural mesothelioma (MPM). Single-institution studies suggest that volumetric computed tomography (CT) is more accurate but labor intensive. We established a multicenter network to test interobserver variability, accuracy (relative to pathologic stage), and the prognostic significance of semiautomated volumetric CT. METHODS Six institutions electronically submitted to an established multicenter database clinical and pathologic data for patients with MPM who had operations. Institutional radiologists reviewed preoperative CT scans for quality and then submitted by electronic network (AG Mednet, www.agmednet.com) to the biostatistical center. Two reference radiologists blinded to clinical data performed semiautomated tumor volume calculations using Vitrea Enterprise 6.0 software (Vital Images, Minnetonka, MN) and then submitted readings to the biostatistical center. Study end points included feasibility of the network, interobserver variability for volumetric CT, correlation of tumor volume to pTN stages, and overall survival (OS). RESULTS Of 164 patients, the CT scans for 129 were analyzable and read by reference radiologists. Most tumors were less than 500 cm(3). A small bias was observed between readers because one provided consistently larger measurements than the other (mean difference, 47.9; p = .0027), but for 80%, the absolute difference was 200 cm(3) or less. Spearman correlation between readers was 0.822. Volume correlated with pTN stages and OS, best defined by three groups with average volumes of 91.2, 245.3, and 511.3 cm(3) associated with median OS of 37, 18, and 8 months, respectively. CONCLUSIONS For the first time, a multicenter network was established and initial correlations of tumor volume with pTN stages and OS are shown. A larger multicenter international study is planned to confirm the results and refine correlations.
Collapse
|
55
|
Gill R, Matheson K. Responses to Discrimination: The Role of Emotion and Expectations for Emotional Regulation. PERSONALITY AND SOCIAL PSYCHOLOGY BULLETIN 2016; 32:149-61. [PMID: 16382078 DOI: 10.1177/0146167205279906] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study examined the role of emotion in women’s perceptions of discrimination and their endorsement of behavioral responses to change the status quo. In an experimental simulation involving a situation of sex discrimination, women (N = 108) were primed to experience a particular emotion (sad, angry, control condition) and were subsequently instructed to either suppress or express (or neither) their emotional responses. Women primed to feel sad and told to suppress their emotions reported the least discrimination, whereas angered women who were permitted to express themselves reported the greatest discrimination. Furthermore, when encouraged to express their emotions, women primed to feel sad were more likely to endorse normative actions to rectify the situation, whereas women induced to feel angry were more likely to endorse collective actions to change the status quo. These findings have implications for the role of emotions and expectations regarding their expression on collective action taking.
Collapse
|
56
|
Plumb J, Clissold E, Goddard N, Gill R, Grocott M. Call for consensus on terminology and consistent clinical pathways in relation to anaemia in perioperative patients. Br J Anaesth 2016; 116:722. [DOI: 10.1093/bja/aew084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
57
|
Murphy MF, Gill R, Moss R, Raghavan M, Stanworth SJ, Rowley M, Wallis J. Spotlight on platelets: summary of BBTS combined special interest group autumn meeting, November 2015. Transfus Med 2016; 26:8-14. [DOI: 10.1111/tme.12295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 02/27/2016] [Indexed: 11/28/2022]
|
58
|
Klein AA, Arnold P, Bingham RM, Brohi K, Clark R, Collis R, Gill R, McSporran W, Moor P, Rao Baikady R, Richards T, Shinde S, Stanworth S, Walsh TS. AAGBI guidelines: the use of blood components and their alternatives 2016. Anaesthesia 2016; 71:829-42. [PMID: 27062274 DOI: 10.1111/anae.13489] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2016] [Indexed: 12/13/2022]
Abstract
Blood transfusion can be life-saving. Anaesthetists regularly request and administer blood components to their patients. All anaesthetists must be familiar with indications and appropriate use of blood and blood components and their alternatives, but close liaison with haematology specialists and their local blood sciences laboratory is encouraged. Considerable changes in approaches to optimal use of blood components, together with the use of alternative products, have become apparent over the past decade, leading to a need to update previous guidelines and adapt them for the use of anaesthetists working throughout the hospital system.
Collapse
|
59
|
Kaushik M, Gill S, Gill R. Genome wide collation of zinc finger family in P. falciparum. Int J Infect Dis 2016. [DOI: 10.1016/j.ijid.2016.02.776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
60
|
Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N. Piriformospora indica: Potential and Significance in Plant Stress Tolerance. Front Microbiol 2016; 7:332. [PMID: 27047458 PMCID: PMC4801890 DOI: 10.3389/fmicb.2016.00332] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/03/2016] [Indexed: 11/17/2022] Open
Abstract
Owing to its exceptional ability to efficiently promote plant growth, protection and stress tolerance, a mycorrhiza like endophytic Agaricomycetes fungus Piriformospora indica has received a great attention over the last few decades. P. indica is an axenically cultiviable fungus which exhibits its versatility for colonizing/hosting a broad range of plant species through directly manipulating plant hormone-signaling pathway during the course of mutualism. P. indica-root colonization leads to a better plant performance in all respect, including enhanced root proliferation by indole-3-acetic acid production which in turn results into better nutrient-acquisition and subsequently to improved crop growth and productivity. Additionally, P. indica can induce both local and systemic resistance to fungal and viral plant diseases through signal transduction. P. indica-mediated stimulation in antioxidant defense system components and expressing stress-related genes can confer crop/plant stress tolerance. Therefore, P. indica can biotize micropropagated plantlets and also help these plants to overcome transplantation shock. Nevertheless, it can also be involved in a more complex symbiotic relationship, such as tripartite symbiosis and can enhance population dynamic of plant growth promoting rhizobacteria. In brief, P. indica can be utilized as a plant promoter, bio-fertilizer, bioprotector, bioregulator, and biotization agent. The outcome of the recent literature appraised herein will help us to understand the physiological and molecular bases of mechanisms underlying P. indica-crop plant mutual relationship. Together, the discussion will be functional to comprehend the usefulness of crop plant-P. indica association in both achieving new insights into crop protection/improvement as well as in sustainable agriculture production.
Collapse
|
61
|
An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Butorov I, Cao D, Cao GF, Cao J, Cen WR, Chan YL, Chang JF, Chang LC, Chang Y, Chen HS, Chen QY, Chen SM, Chen YX, Chen Y, Cheng JH, Cheng J, Cheng YP, Cherwinka JJ, Chu MC, Cummings JP, de Arcos J, Deng ZY, Ding XF, Ding YY, Diwan MV, Dove J, Draeger E, Dwyer DA, Edwards WR, Ely SR, Gill R, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guan MY, Guo L, Guo XH, Hackenburg RW, Han R, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hor YK, Hsiung YB, Hu BZ, Hu LM, Hu LJ, Hu T, Hu W, Huang EC, Huang HX, Huang XT, Huber P, Hussain G, Jaffe DE, Jaffke P, Jen KL, Jetter S, Ji XP, Ji XL, Jiao JB, Johnson RA, Kang L, Kettell SH, Kohn S, Kramer M, Kwan KK, Kwok MW, Kwok T, Langford TJ, Lau K, Lebanowski L, Lee J, Lei RT, Leitner R, Leung KY, Leung JKC, Lewis CA, Li DJ, Li F, Li GS, Li QJ, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin PY, Lin SK, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu DW, Liu H, Liu JL, Liu JC, Liu SS, Lu C, Lu HQ, Lu JS, Luk KB, Ma QM, Ma XY, Ma XB, Ma YQ, Martinez Caicedo DA, McDonald KT, McKeown RD, Meng Y, Mitchell I, Monari Kebwaro J, Nakajima Y, Napolitano J, Naumov D, Naumova E, Ngai HY, Ning Z, Ochoa-Ricoux JP, Olshevski A, Pan HR, Park J, Patton S, Pec V, Peng JC, Piilonen LE, Pinsky L, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren B, Ren J, Rosero R, Roskovec B, Ruan XC, Shao BB, Steiner H, Sun GX, Sun JL, Tang W, Taychenachev D, Tsang KV, Tull CE, Tung YC, Viaux N, Viren B, Vorobel V, Wang CH, Wang M, Wang NY, Wang RG, Wang W, Wang WW, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wen LJ, Whisnant K, White CG, Whitehead L, Wise T, Wong HLH, Wong SCF, Worcester E, Wu Q, Xia DM, Xia JK, Xia X, Xing ZZ, Xu JY, Xu JL, Xu J, Xu Y, Xue T, Yan J, Yang CG, Yang L, Yang MS, Yang MT, Ye M, Yeh M, Young BL, Yu GY, Yu ZY, Zang SL, Zhan L, Zhang C, Zhang HH, Zhang JW, Zhang QM, Zhang YM, Zhang YX, Zhang YM, Zhang ZJ, Zhang ZY, Zhang ZP, Zhao J, Zhao QW, Zhao YF, Zhao YB, Zheng L, Zhong WL, Zhou L, Zhou N, Zhuang HL, Zou JH. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay. PHYSICAL REVIEW LETTERS 2016; 116:061801. [PMID: 26918980 DOI: 10.1103/physrevlett.116.061801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 06/05/2023]
Abstract
This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWth nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55±0.04) ×10(-18) cm(2) GW(-1) day(-1) or (5.92±0.14) ×10(-43) cm(2) fission(-1). This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946±0.022 (0.991±0.023) relative to the flux predicted with the Huber-Mueller (ILL-Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ∼4σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.
Collapse
|
62
|
Bright A, Gill R, Willings TH. Tree cover and injurious feather-pecking in commercial flocks of free-range laying hens: a follow up. Anim Welf 2016. [DOI: 10.7120/09627286.25.1.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
63
|
Tahzib F, Miller C, Gill R, Tabbner S. Power of strong Communities to promote health and wellbeing. Eur J Public Health 2015. [DOI: 10.1093/eurpub/ckv176.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
64
|
An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Butorov I, Cao GF, Cao J, Cen WR, Chan YL, Chang JF, Chang LC, Chang Y, Chen HS, Chen QY, Chen SM, Chen YX, Chen Y, Cheng JH, Cheng J, Cheng YP, Cherwinka JJ, Chu MC, Cummings JP, de Arcos J, Deng ZY, Ding XF, Ding YY, Diwan MV, Draeger E, Dwyer DA, Edwards WR, Ely SR, Gill R, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guan MY, Guo L, Guo XH, Hackenburg RW, Han R, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hor YK, Hsiung YB, Hu BZ, Hu LM, Hu LJ, Hu T, Hu W, Huang EC, Huang HX, Huang XT, Huber P, Hussain G, Jaffe DE, Jaffke P, Jen KL, Jetter S, Ji XP, Ji XL, Jiao JB, Johnson RA, Kang L, Kettell SH, Kramer M, Kwan KK, Kwok MW, Kwok T, Langford TJ, Lau K, Lebanowski L, Lee J, Lei RT, Leitner R, Leung KY, Leung JKC, Lewis CA, Li DJ, Li F, Li GS, Li QJ, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin PY, Lin SK, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu DW, Liu H, Liu JL, Liu JC, Liu SS, Lu C, Lu HQ, Lu JS, Luk KB, Ma QM, Ma XY, Ma XB, Ma YQ, Martinez Caicedo DA, McDonald KT, McKeown RD, Meng Y, Mitchell I, Monari Kebwaro J, Nakajima Y, Napolitano J, Naumov D, Naumova E, Ngai HY, Ning Z, Ochoa-Ricoux JP, Olshevski A, Park J, Patton S, Pec V, Peng JC, Piilonen LE, Pinsky L, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren B, Ren J, Rosero R, Roskovec B, Ruan XC, Shao BB, Steiner H, Sun GX, Sun JL, Tang W, Taychenachev D, Themann H, Tsang KV, Tull CE, Tung YC, Viaux N, Viren B, Vorobel V, Wang CH, Wang M, Wang NY, Wang RG, Wang W, Wang WW, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wen LJ, Whisnant K, White CG, Whitehead L, Wise T, Wong HLH, Wong SCF, Worcester E, Wu Q, Xia DM, Xia JK, Xia X, Xing ZZ, Xu JY, Xu JL, Xu J, Xu Y, Xue T, Yan J, Yang CG, Yang L, Yang MS, Yang MT, Ye M, Yeh M, Yeh YS, Young BL, Yu GY, Yu ZY, Zang SL, Zhan L, Zhang C, Zhang HH, Zhang JW, Zhang QM, Zhang YM, Zhang YX, Zhang YM, Zhang ZJ, Zhang ZY, Zhang ZP, Zhao J, Zhao QW, Zhao YF, Zhao YB, Zheng L, Zhong WL, Zhou L, Zhou N, Zhuang HL, Zou JH. New measurement of antineutrino oscillation with the full detector configuration at Daya Bay. PHYSICAL REVIEW LETTERS 2015; 115:111802. [PMID: 26406819 DOI: 10.1103/physrevlett.115.111802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 06/05/2023]
Abstract
We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×10^{5} GW_{th} ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six ^{241}Am-^{13}C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin^{2}2θ_{13} and |Δm_{ee}^{2}| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave sin^{2}2θ_{13}=0.084±0.005 and |Δm_{ee}^{2}|=(2.42±0.11)×10^{-3} eV^{2} in the three-neutrino framework.
Collapse
|
65
|
Vinkovic M, Dunn G, Wood GE, Husain J, Wood SP, Gill R. Cleavage of nicotinamide adenine dinucleotide by the ribosome-inactivating protein from Momordica charantia. Acta Crystallogr F Struct Biol Commun 2015; 71:1152-5. [PMID: 26323301 PMCID: PMC4555922 DOI: 10.1107/s2053230x15013540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/14/2015] [Indexed: 11/10/2022] Open
Abstract
The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors.
Collapse
|
66
|
Parsons I, White S, Gill R, Gray HH, Rees P. Coronary artery disease in the military patient. J ROY ARMY MED CORPS 2015; 161:211-22. [PMID: 26246347 DOI: 10.1136/jramc-2015-000495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 06/27/2015] [Indexed: 01/17/2023]
Abstract
Ischaemic heart disease is the most common cause of sudden death in the UK, and the most common cardiac cause of medical discharge from the Armed Forces. This paper reviews current evidence pertaining to the diagnosis and management of coronary artery disease from a military perspective, encompassing stable angina and acute coronary syndromes. Emphasis is placed on the limitations inherent in the management of acute coronary syndromes in the deployed environment. Occupational issues affecting patients with coronary artery disease are reviewed. Consideration is also given to the potential for coronary artery disease screening in the military, and the management of modifiable cardiovascular disease risk factors, to help decrease the prevalence of coronary artery disease in the military population.
Collapse
|
67
|
Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, Fujita M, Mishra P, Sabat SC, Tuteja N. Superoxide dismutase--mentor of abiotic stress tolerance in crop plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10375-94. [PMID: 25921757 DOI: 10.1007/s11356-015-4532-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/12/2015] [Indexed: 05/20/2023]
Abstract
Abiotic stresses impact growth, development, and productivity, and significantly limit the global agricultural productivity mainly by impairing cellular physiology/biochemistry via elevating reactive oxygen species (ROS) generation. If not metabolized, ROS (such as O2 (•-), OH(•), H2O2, or (1)O2) exceeds the status of antioxidants and cause damage to DNA, proteins, lipids, and other macromolecules, and finally cellular metabolism arrest. Plants are endowed with a family of enzymes called superoxide dismutases (SODs) that protects cells against potential consequences caused by cytotoxic O2 (•-) by catalyzing its conversion to O2 and H2O2. Hence, SODs constitute the first line of defense against abiotic stress-accrued enhanced ROS and its reaction products. In the light of recent reports, the present effort: (a) overviews abiotic stresses, ROS, and their metabolism; (b) introduces and discusses SODs and their types, significance, and appraises abiotic stress-mediated modulation in plants; (c) analyzes major reports available on genetic engineering of SODs in plants; and finally, (d) highlights major aspects so far least studied in the current context. Literature appraised herein reflects clear information paucity in context with the molecular/genetic insights into the major functions (and underlying mechanisms) performed by SODs, and also with the regulation of SODs by post-translational modifications. If the previous aspects are considered in the future works, the outcome can be significant in sustainably improving plant abiotic stress tolerance and efficiently managing agricultural challenges under changing climatic conditions.
Collapse
|
68
|
Thomas A, Gill R. FISEO, SPOT and ISPOT – full immersion simulation workshops for post graduate physiotherapy learning in acute care. Physiotherapy 2015. [DOI: 10.1016/j.physio.2015.03.1492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
69
|
Malhotra P, Han E, Ooka K, Muthusamy S, Gill R, Dudeja P, Aloman C, Alrefai W. A Novel Mouse Model of Accelerated Non‐Alcoholic Steatohepatitis. FASEB J 2015. [DOI: 10.1096/fasebj.29.1_supplement.846.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
70
|
Saksena S, Kumar A, Malhotra P, Coffing H, Anbazhagan A, Priyamvada S, Krishnan H, Gill R, Alrefai W, Gavin D, Pandey S, Dudeja P. Epigenetic Modulation of Intestinal NHE3 Expression by DNA Methylation. FASEB J 2015. [DOI: 10.1096/fasebj.29.1_supplement.855.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
71
|
Anjum NA, Gill R, Kaushik M, Hasanuzzaman M, Pereira E, Ahmad I, Tuteja N, Gill SS. ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. FRONTIERS IN PLANT SCIENCE 2015; 6:210. [PMID: 25904923 PMCID: PMC4387935 DOI: 10.3389/fpls.2015.00210] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/16/2015] [Indexed: 05/18/2023]
Abstract
Sulfur (S) stands fourth in the list of major plant nutrients after N, P, and K. Sulfate (SO4 (2-)), a form of soil-S taken up by plant roots is metabolically inert. As the first committed step of S-assimilation, ATP-sulfurylase (ATP-S) catalyzes SO4 (2-)-activation and yields activated high-energy compound adenosine-5(')-phosphosulfate that is reduced to sulfide (S(2-)) and incorporated into cysteine (Cys). In turn, Cys acts as a precursor or donor of reduced S for a range of S-compounds such as methionine (Met), glutathione (GSH), homo-GSH (h-GSH), and phytochelatins (PCs). Among S-compounds, GSH, h-GSH, and PCs are known for their involvement in plant tolerance to varied abiotic stresses, Cys is a major component of GSH, h-GSH, and PCs; whereas, several key stress-metabolites such as ethylene, are controlled by Met through its first metabolite S-adenosylmethionine. With the major aim of briefly highlighting S-compound-mediated role of ATP-S in plant stress tolerance, this paper: (a) overviews ATP-S structure/chemistry and occurrence, (b) appraises recent literature available on ATP-S roles and regulations, and underlying mechanisms in plant abiotic and biotic stress tolerance, (c) summarizes ATP-S-intrinsic regulation by major S-compounds, and (d) highlights major open-questions in the present context. Future research in the current direction can be devised based on the discussion outcomes.
Collapse
|
72
|
Gill R. Practical management of major blood loss. Anaesthesia 2014; 70 Suppl 1:54-7, e19-20. [DOI: 10.1111/anae.12915] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2014] [Indexed: 12/22/2022]
|
73
|
Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E, Ahmad I, Tuteja R, Tuteja N. Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. PROTOPLASMA 2014; 251:1265-83. [PMID: 24682425 DOI: 10.1007/s00709-014-0636-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/11/2014] [Indexed: 05/23/2023]
Abstract
The enhanced generation of reactive oxygen species (ROS) under metal/metalloid stress is most common in plants, and the elevated ROS must be successfully metabolized in order to maintain plant growth, development, and productivity. Ascorbate (AsA) is a highly abundant metabolite and a water-soluble antioxidant, which besides positively influencing various aspects in plants acts also as an enigmatic component of plant defense armory. As a significant component of the ascorbate-glutathione (AsA-GSH) pathway, it performs multiple vital functions in plants including growth and development by either directly or indirectly metabolizing ROS and its products. Enzymes such as monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) and dehydroascorbate reductase (DHAR, EC 1.8.5.1) maintain the reduced form of AsA pool besides metabolically controlling the ratio of AsA with its oxidized form (dehydroascorbate, DHA). Ascorbate peroxidase (APX, EC 1.11.1.11) utilizes the reduced AsA pool as the specific electron donor during ROS metabolism. Thus, AsA, its redox couple (AsA/DHA), and related enzymes (MDHAR, DHAR, and APX) cumulatively form an AsA redox system to efficiently protect plants particularly against potential anomalies caused by ROS and its products. Here we present a critical assessment of the recent research reports available on metal/metalloid-accrued modulation of reduced AsA pool, AsA/DHA redox couple and AsA-related major enzymes, and the cumulative significance of these antioxidant system components in plant metal/metalloid stress tolerance.
Collapse
|
74
|
An FP, Balantekin AB, Band HR, Beriguete W, Bishai M, Blyth S, Butorov I, Cao GF, Cao J, Chan YL, Chang JF, Chang LC, Chang Y, Chasman C, Chen H, Chen QY, Chen SM, Chen X, Chen X, Chen YX, Chen Y, Cheng YP, Cherwinka JJ, Chu MC, Cummings JP, de Arcos J, Deng ZY, Ding YY, Diwan MV, Draeger E, Du XF, Dwyer DA, Edwards WR, Ely SR, Fu JY, Ge LQ, Gill R, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guan MY, Guo XH, Hackenburg RW, Han GH, Hans S, He M, Heeger KM, Heng YK, Hinrichs P, Hor YK, Hsiung YB, Hu BZ, Hu LM, Hu LJ, Hu T, Hu W, Huang EC, Huang H, Huang XT, Huber P, Hussain G, Isvan Z, Jaffe DE, Jaffke P, Jen KL, Jetter S, Ji XP, Ji XL, Jiang HJ, Jiao JB, Johnson RA, Kang L, Kettell SH, Kramer M, Kwan KK, Kwok MW, Kwok T, Lai WC, Lau K, Lebanowski L, Lee J, Lei RT, Leitner R, Leung A, Leung JKC, Lewis CA, Li DJ, Li F, Li GS, Li QJ, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin PY, Lin SK, Lin YC, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu DW, Liu H, Liu JL, Liu JC, Liu SS, Liu YB, Lu C, Lu HQ, Luk KB, Ma QM, Ma XY, Ma XB, Ma YQ, McDonald KT, McFarlane MC, McKeown RD, Meng Y, Mitchell I, Monari Kebwaro J, Nakajima Y, Napolitano J, Naumov D, Naumova E, Nemchenok I, Ngai HY, Ning Z, Ochoa-Ricoux JP, Olshevski A, Patton S, Pec V, Peng JC, Piilonen LE, Pinsky L, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren B, Ren J, Rosero R, Roskovec B, Ruan XC, Shao BB, Steiner H, Sun GX, Sun JL, Tam YH, Tang X, Themann H, Tsang KV, Tsang RHM, Tull CE, Tung YC, Viren B, Vorobel V, Wang CH, Wang LS, Wang LY, Wang M, Wang NY, Wang RG, Wang W, Wang WW, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Webber DM, Wei HY, Wei YD, Wen LJ, Whisnant K, White CG, Whitehead L, Wise T, Wong HLH, Wong SCF, Worcester E, Wu Q, Xia DM, Xia JK, Xia X, Xing ZZ, Xu JY, Xu JL, Xu J, Xu Y, Xue T, Yan J, Yang CC, Yang L, Yang MS, Yang MT, Ye M, Yeh M, Yeh YS, Young BL, Yu GY, Yu JY, Yu ZY, Zang SL, Zeng B, Zhan L, Zhang C, Zhang FH, Zhang JW, Zhang QM, Zhang Q, Zhang SH, Zhang YC, Zhang YM, Zhang YH, Zhang YX, Zhang ZJ, Zhang ZY, Zhang ZP, Zhao J, Zhao QW, Zhao Y, Zhao YB, Zheng L, Zhong WL, Zhou L, Zhou ZY, Zhuang HL, Zou JH. Search for a light sterile neutrino at Daya Bay. PHYSICAL REVIEW LETTERS 2014; 113:141802. [PMID: 25325631 DOI: 10.1103/physrevlett.113.141802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Indexed: 06/04/2023]
Abstract
A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9 GW(th) nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512 m and 561 m) and one far (1579 m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the 10(-3) eV(2)<|Δm(41)(2) |< 0.3 eV(2) range. The relative spectral distortion due to the disappearance of electron antineutrinos was found to be consistent with that of the three-flavor oscillation model. The derived limits on sin(2) 2θ(14) cover the 10(-3) eV(2) ≲ |Δm(41)(2)| ≲ 0.1 eV(2) region, which was largely unexplored.
Collapse
|
75
|
An F, Balantekin A, Band H, Beriguete W, Bishai M, Blyth S, Butorov I, Cao G, Cao J, Chan Y, Chang J, Chang L, Chang Y, Chasman C, Chen H, Chen Q, Chen S, Chen X, Chen X, Chen Y, Chen Y, Cheng Y, Cherwinka J, Chu M, Cummings J, de Arcos J, Deng Z, Ding Y, Diwan M, Draeger E, Du X, Dwyer D, Edwards W, Ely S, Fu J, Ge L, Gill R, Gonchar M, Gong G, Gong H, Gu W, Guan M, Guo X, Hackenburg R, Han G, Hans S, He M, Heeger K, Heng Y, Hinrichs P, Hor Y, Hsiung Y, Hu B, Hu L, Hu L, Hu T, Hu W, Huang E, Huang H, Huang X, Huber P, Hussain G, Isvan Z, Jaffe D, Jaffke P, Jen K, Jetter S, Ji X, Ji X, Jiang H, Jiao J, Johnson R, Kang L, Kettell S, Kramer M, Kwan K, Kwok M, Kwok T, Lai W, Lau K, Lebanowski L, Lee J, Lei R, Leitner R, Leung A, Leung J, Lewis C, Li D, Li F, Li G, Li Q, Li W, Li X, Li X, Li Y, Li Z, Liang H, Lin C, Lin G, Lin P, Lin S, Lin Y, Ling J, Link J, Littenberg L, Littlejohn B, Liu D, Liu H, Liu J, Liu J, Liu S, Liu Y, Lu C, Lu H, Luk K, Ma Q, Ma X, Ma X, Ma Y, McDonald K, McFarlane M, McKeown R, Meng Y, Mitchell I, Monari Kebwaro J, Nakajima Y, Napolitano J, Naumov D, Naumova E, Nemchenok I, Ngai H, Ning Z, Ochoa-Ricoux J, Olshevski A, Patton S, Pec V, Peng J, Piilonen L, Pinsky L, Pun C, Qi F, Qi M, Qian X, Raper N, Ren B, Ren J, Rosero R, Roskovec B, Ruan X, Shao B, Steiner H, Sun G, Sun J, Tam Y, Tang X, Themann H, Tsang K, Tsang R, Tull C, Tung Y, Viren B, Vorobel V, Wang C, Wang L, Wang L, Wang M, Wang N, Wang R, Wang W, Wang W, Wang X, Wang Y, Wang Z, Wang Z, Wang Z, Webber D, Wei H, Wei Y, Wen L, Whisnant K, White C, Whitehead L, Wise T, Wong H, Wong S, Worcester E, Wu Q, Xia D, Xia J, Xia X, Xing Z, Xu J, Xu J, Xu J, Xu Y, Xue T, Yan J, Yang C, Yang L, Yang M, Yang M, Ye M, Yeh M, Yeh Y, Young B, Yu G, Yu J, Yu Z, Zang S, Zeng B, Zhan L, Zhang C, Zhang F, Zhang J, Zhang Q, Zhang Q, Zhang S, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Z, Zhang Z, Zhang Z, Zhao J, Zhao Q, Zhao Y, Zhao Y, Zheng L, Zhong W, Zhou L, Zhou Z, Zhuang H, Zou J. Independent measurement of the neutrino mixing angleθ13via neutron capture on hydrogen at Daya Bay. Int J Clin Exp Med 2014. [DOI: 10.1103/physrevd.90.071101] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|