51
|
Shao R, Kumar B, Lidschreiber K, Lidschreiber M, Cramer P, Elsässer SJ. Distinct transcription kinetics of pluripotent cell states. Mol Syst Biol 2022; 18:e10407. [PMID: 35020268 PMCID: PMC8754154 DOI: 10.15252/msb.202110407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) can adopt naïve, ground, and paused pluripotent states that give rise to unique transcriptomes. Here, we use transient transcriptome sequencing (TT-seq) to define both coding and non-coding transcription units (TUs) in these three pluripotent states and combine TT-seq with RNA polymerase II occupancy profiling to unravel the kinetics of RNA metabolism genome-wide. Compared to the naïve state (serum), RNA synthesis and turnover rates are globally reduced in the ground state (2i) and the paused state (mTORi). The global reduction in RNA synthesis goes along with a genome-wide decrease of polymerase elongation velocity, which is related to epigenomic features and alterations in the Pol II termination window. Our data suggest that transcription activity is the main determinant of steady state mRNA levels in the naïve state and that genome-wide changes in transcription kinetics invoke ground and paused pluripotent states.
Collapse
|
52
|
Lyu J, Shao R, Kwong Yung PY, Elsässer SJ. Genome-wide mapping of G-quadruplex structures with CUT&Tag. Nucleic Acids Res 2021; 50:e13. [PMID: 34792172 PMCID: PMC8860588 DOI: 10.1093/nar/gkab1073] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022] Open
Abstract
Single-stranded genomic DNA can fold into G-quadruplex (G4) structures or form DNA:RNA hybrids (R loops). Recent evidence suggests that such non-canonical DNA structures affect gene expression, DNA methylation, replication fork progression and genome stability. When and how G4 structures form and are resolved remains unclear. Here we report the use of Cleavage Under Targets and Tagmentation (CUT&Tag) for mapping native G4 in mammalian cell lines at high resolution and low background. Mild native conditions used for the procedure retain more G4 structures and provide a higher signal-to-noise ratio than ChIP-based methods. We determine the G4 landscape of mouse embryonic stem cells (ESC), observing widespread G4 formation at active promoters, active and poised enhancers. We discover that the presence of G4 motifs and G4 structures distinguishes active and primed enhancers in mouse ESCs. Upon differentiation to neural progenitor cells (NPC), enhancer G4s are lost. Further, performing R-loop CUT&Tag, we demonstrate the genome-wide co-occurrence of single-stranded DNA, G4s and R loops at promoters and enhancers. We confirm that G4 structures exist independent of ongoing transcription, suggesting an intricate relationship between transcription and non-canonical DNA structures.
Collapse
|
53
|
Xu WY, Fu F, Lü JH, Li RP, Shao R, He H, Li SF, Zuo H. [VOCs Emission Inventory and Uncertainty Analysis of Industry in Qingdao Based on Latin Hypercube Sampling and Monte Carlo Method]. HUAN JING KE XUE= HUANJING KEXUE 2021; 42:5180-5192. [PMID: 34708957 DOI: 10.13227/j.hjkx.202103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years, fine particulate matter(PM2.5) and ozone(O3) have become the main air pollutants in cities in China. Volatile organic compounds(VOCs) are one of the important precursors of PM2.5, O3, and secondary organic aerosols. The establishment of VOCs emission inventory is therefore of great significance for controlling the amount of PM2.5 and O3. To date, the coefficient method has been used, which has error transmission of activity level, parameter and model, leading to the uncertainty of emission inventory. Multivariate uncertainty quantitative analysis of VOCs emission inventory provides an accurate alternative which has not been reported in China. The bottom-up method is adopted to collect the activity level of each enterprise. The variables of pollution control measures are obtained from surveys conducted with enterprises. The VOCs emission inventory of Qingdao from industrial source is established using an optimized coefficient method. The uncertainty of the VOCs inventory on the impact of univariate and multivariate variables is simulated by combining the Monte Carlo method(MC) with Latin hypercube sampling method(LHS). The results show that the total VOCs emissions were 44700 tons from industrial sources in 2019(unoptimized coefficient method:31100 tons).The rubber and plastic industries, metal products, and oil/coal/other fuel processing contributed more VOCs, which accounted for 40.26% of the total emissions. The uncertainty of multivariate simulation is higher than that of single variable. The uncertainty from process(-9.72%-230.51%) and solvent using source(-14.14%-122.77%) is significantly higher than uncertainty from combustion source(-15.62%-36.41%). The main sectors affecting the uncertainty of the VOCs inventory include:the chemical, papermaking, and textile industries(emission factors); metal, automobile manufacturing, and chemical industries(removal rate, facility operating rate); industries of petroleum processing and ferrous metal smelting(too few samples). VOCs emissions are mainly distributed in the east of the West Coast New district, north of Dazhu Mountain, south of Jimo district, north of Chengyang district, northeast of Jiaozhou district, built-up area of Pingdu district, and southeast of Laixi district.
Collapse
|
54
|
Liu J, Shao R, Lan Y, Liao X, Zhang J, Mai K, Ai Q, Wan M. Vitamin D 3 protects turbot (Scophthalmus maximus L.) from bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2021; 118:25-33. [PMID: 34450270 DOI: 10.1016/j.fsi.2021.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Accumulating evidence supports that vitamin D3 (VD3) possesses immunomodulatory properties besides its classical actions in calcium and bone homeostasis. In this study, juvenile turbots were fed with the diets containing 0 IU/kg VD3 or the optimum dose of 400 IU/kg VD3 for 8 weeks. To investigate the effects of VD3 on anti-infectious immunity in fish, 107 CFU Edwardsiella tarda was injected intraperitoneally to each juvenile turbot after the feeding trial. Our results showed that the mortality of infected turbots with dietary VD3 was much lower than that in VD3 deficient group, and the supplementation of dietary VD3 significantly reduced the bacterial load in the spleen of infected turbots. Further analysis demonstrated that the production of reactive oxygen species (ROS) in haemocytes and lysozyme activity in serum was elevated, and the responses of T cells and B cells were modulated in VD3-supplemented turbots. Moreover, the inflammation was significantly exacerbated in the infected turbots fed with 0 IU/kg VD3 compared to the fish fed with 400 IU/kg VD3. In addition, the head kidney macrophages (HKMs) in turbots were isolated and incubated with VD3in vitro, the results showed that VD3 significantly promoted the bactericidal activity in HKMs. In conclusion, our study has shown clear evidence that VD3 positively regulates the innate and adaptive immunity in fish, which is beneficial to the defense in fish against pathogen infection.
Collapse
|
55
|
She Z, Pan X, Wang J, Shao R, Wang G, Wang S, Yue Z. Vertical environmental gradient drives prokaryotic microbial community assembly and species coexistence in a stratified acid mine drainage lake. WATER RESEARCH 2021; 206:117739. [PMID: 34653798 DOI: 10.1016/j.watres.2021.117739] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Acid mine drainage (AMD) lakes are typical hydrologic features caused by open pit mining and represent extreme ecosystems and environmental challenges. Little is known about microbial distribution and community assembly in AMD lakes, especially in deep layers. Here, we investigated prokaryotic microbial diversity and community assembly along a depth profile in a stratified AMD lake using 16S rRNA gene sequencing combined with multivariate ecological and statistical methods. The water column in the AMD lake exhibited tight geochemical gradients, with more acidic surface water. Coupled with vertical hydrochemical variations, prokaryotic microbial community structure changed significantly, and was accompanied by increased diversity with depth. In the surface water, heterogeneous selection was the most important assembly process, whereas stochastic processes gained importance with depth. Meanwhile, microbial co-occurrences, especially positive interactions, were more frequent in the stressful surface water with reduced network modularity and keystone taxa. The pH was identified as the key driver of microbial diversity and community assembly along the vertical profile based on random forest analysis. Taken together, environmental effects dominated by acid stress drove the community assembly and species coexistence that underpinned the spatial scaling patterns of AMD microbiota in the lake. These findings demonstrate the distinct heterogeneity of local prokaryotic microbial community in AMD lake, and provide new insights into the mechanism to maintain microbial diversity in extreme acidic environments.
Collapse
|
56
|
Yang F, Shao R, Zhao J, Li L, Wang M, Zhou A. Cadmium exposure disrupts the olfactory sensitivity of fire ants to semiochemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117359. [PMID: 34020258 DOI: 10.1016/j.envpol.2021.117359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Ants are eusocial insects and have evolved sensitive chemosensory systems for social communication. However, the effect of heavy metal contamination on the olfactory sensitivity of ants remains largely unknown. Here, we investigated the survival and olfactory response of Solenopsis invicta under cadmium (Cd) exposure. As a result, exposure to dietary Cd at different concentrations (100, 300 and 500 mg/L) caused higher Cd accumulation and lower survival of the ants compared with the control (0 mg/L). Cd exposure induced diverse expression patterns of odor binding protein genes (SiOBPs) in S. invicta antenna. Specifically, the expression of SiOBP4, SiOBP11, SiOBP12 and SiOBP16 was increased by 1.84-, 1.14-, 0.83- and 1.76-fold, respectively, at 300 mg/L Cd, while SiOBP7 and SiOBP9 were suppressed as Cd concentration increased. Electroantennography (EAG) and behavioral bioassays were performed to further evaluate the effect of Cd contamination on the olfactory sensitivity of S. invicta workers to 2, 4, 6-trimethylpyridine (TMP) and 2-ethyl-3,6(5)-dimethylpyrazine (EDP), the two frequent functional semiochemicals for S. invicta. The results showed that under no Cd exposure, S. invicta workers exhibited strong EAG response and apparent residing repellence to TMP and EDP, but Cd exposure suppressed EAG response and deprived the behavioral repellence to TMP and EDP of the workers, suggesting that Cd exposure decreases the olfactory sensitivity of S. invicta to these two functional semiochemicals. Further fluorescence competitive binding assay revealed that SiOBP7 had strong binding affinity to TMP and EDP, suggesting that the decrease in olfactory sensitivity may be attributed to the inhibitory effect of Cd exposure on SiOBP7. Overall, our results suggest that Cd exposure may not only directly decrease the survival of ants, but also affect their olfactory recognition.
Collapse
|
57
|
Liao X, Lan Y, Shao R, Liu J, Liang S, Yin Z, Gudmundsson GH, Bergman P, Wan M. Vitamin D Enhances Neutrophil Generation and Function in Zebrafish (Danio rerio). J Innate Immun 2021; 14:229-242. [PMID: 34564076 DOI: 10.1159/000519183] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Vitamin D (VD) is a major regulator of calcium metabolism in many living organisms. In addition, VD plays a key role in regulating innate and adaptive immunity in vertebrates. Neutrophils constitute an important part of the first line of defense against invading microbes; however, the potential effect of VD on neutrophils remains elusive. Thus, in this study zebrafish in different developmental stages were utilized to identify the potential role of VD in the basal homeostasis and functions of neutrophils. Our results showed that addition of exogenous VD3 promoted granulopoiesis in zebrafish larvae. Reciprocally, neutrophil abundance in the intestine of adult zebrafish with a cyp2r1 mutant, lacking the capacity to 25-hydroxylate VD, was reduced. Moreover, VD-mediated granulopoiesis was still observed in gnotobiotic zebrafish larvae, indicating that VD regulates neutrophil generation independent of the microbiota during early development. In contrast, VD was incapable to influence granulopoiesis in adult zebrafish when the commensal bacteria were depleted by antibiotic treatment, suggesting that VD might modulate neutrophil activity via different mechanisms depending on the developmental stage. In addition, we found that VD3 augmented the expression of il-8 and neutrophil recruitment to the site of caudal fin amputation. Finally, VD3 treatment significantly decreased bacterial counts and mortality in zebrafish infected with Edwardsiella tarda (E. tarda) in a neutrophil-dependent manner. Combined, these findings demonstrate that VD regulates granulopoiesis and neutrophil function in zebrafish immunity.
Collapse
|
58
|
Xue Z, Zhao F, Sang X, Qiao Y, Shao R, Wang Y, Gao S, Fan G, Zhu Y, Yang J. Combination therapy of tanshinone IIA and puerarin for pulmonary fibrosis via targeting IL6-JAK2-STAT3/STAT1 signaling pathways. Phytother Res 2021; 35:5883-5898. [PMID: 34427348 DOI: 10.1002/ptr.7253] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 12/21/2022]
Abstract
Efficient therapy of idiopathic pulmonary fibrosis (IPF) is still a major challenge. The current studies with single-target drug therapy are the pessimistic approaches due to the complex characteristics of IPF. Here, a combination therapy of Tanshinone IIA and Puerarin for IPF was proposed to alleviate IPF due to their antiinflammatory and anti-fibrotic effects. In vivo, the combination therapy could significantly attenuate the area of ground glass opacification that was presented by 85% percentile density score of the micro-CT images when compared to single conditions. In addition, the combination therapy enormously improved the survival rate and alleviated pathological changes in bleomycin (BLM)-induced IPF mice. By using a wide spectrum of infiltration biomarkers in immunofluorescence assay in pathological sections, we demonstrate that fewer IL6 related macrophage infiltration and fibrosis area after this combination therapy, and further proved that IL6-JAK2-STAT3/STAT1 is the key mechanism of the combination therapy. In vitro, combination therapy markedly inhibited the fibroblasts activation and migration which was induced by TGF-β1 or/and IL6 through JAK2-STAT3/STAT1 signaling pathway. This study demonstrated that combination therapeutic effect of TanIIA and Pue on IPF may be related to the reduced inflammatory response targeting IL6, which could be an optimistic and effective approach for IPF.
Collapse
|
59
|
Wang Y, Li B, Dong L, Duan W, Neuerburg A, Zhang H, Jiang X, Shao R, Zhu Y, Bock D, Liu E, Wang H, Zhang Y, Dai Y, Yang H, Wang Y. Impaired generation of mature neurons due to extended expression of Tlx by repressing Sox2 transcriptional activity. STEM CELLS (DAYTON, OHIO) 2021; 39:1520-1531. [PMID: 34269496 DOI: 10.1002/stem.3435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/18/2021] [Indexed: 11/06/2022]
Abstract
As a master regulator of the dynamic process of adult neurogenesis, timely expression and regulation of the orphan nuclear receptor Tailless (Tlx) is essential. However, there is no study yet to directly investigate the essential role of precise spatiotemporal expressed Tlx. Here, we generated a conditional gain of Tlx expression transgenic mouse model, which allowed the extended Tlx expression in neural stem cells (NSCs) and their progeny by mating with a TlxCreERT2 mouse line. We demonstrate that extended expression of Tlx induced the impaired generation of mature neurons in adult subventricular zone and subgranular zone. Furthermore, we elucidated for the first time that this mutation decreased the endogenous expression of Sox2 by directly binding to its promoter. Restoration experiments further confirmed that Sox2 partially rescued these neuron maturation defects. Together, these findings not only highlight the importance of shutting-off Tlx on time in controlling NSC behavior, but also provide insights for further understanding adult neurogenesis and developing treatment strategies for neurological disorders.
Collapse
|
60
|
Shao R, Zhang Z, Xu Z, Ouyang H, Wang L, Ouyang H, Greenblatt M, Chen X, Zou W. H3K36 methyltransferase NSD1 regulates chondrocyte differentiation for skeletal development and fracture repair. Bone Res 2021; 9:30. [PMID: 34099628 PMCID: PMC8185073 DOI: 10.1038/s41413-021-00148-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 01/22/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Chondrocyte differentiation is a critical process for endochondral ossification, which is responsible for long bone development and fracture repair. Considerable progress has been made in understanding the transcriptional control of chondrocyte differentiation; however, epigenetic regulation of chondrocyte differentiation remains to be further studied. NSD1 is a H3K36 (histone H3 at lysine 36) methyltransferase. Here, we showed that mice with Nsd1 deficiency in Prx1+ mesenchymal progenitors but not in Col2+ chondrocytes showed impaired skeletal growth and fracture healing accompanied by decreased chondrogenic differentiation. Via combined RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we identified sex determining region Y box 9 (Sox9), the key transcription factor of chondrogenic differentiation, as a functional target gene of NSD1. Mechanistically, NSD1 regulates Sox9 expression by modulating H3K36me1 and H3K36me2 levels in the Sox9 promoter region, constituting a novel epigenetic regulatory mechanism of chondrogenesis. Moreover, we found that NSD1 can directly activate the expression of hypoxia-inducible factor 1α (HIF1α), which plays a vital role in chondrogenic differentiation through its regulation of Sox9 expression. Collectively, the results of our study reveal crucial roles of NSD1 in regulating chondrogenic differentiation, skeletal growth, and fracture repair and expand our understanding of the function of epigenetic regulation in chondrogenesis and skeletal biology.
Collapse
|
61
|
Du X, Tao Q, Du H, Zhao Z, Dong Y, He S, Shao R, Wang Y, Han W, Wang X, Zhu Y. Tengdan Capsule Prevents Hypertensive Kidney Damage in SHR by Inhibiting Periostin-Mediated Renal Fibrosis. Front Pharmacol 2021; 12:638298. [PMID: 34084130 PMCID: PMC8167194 DOI: 10.3389/fphar.2021.638298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/08/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND: Hypertension-induced renal damage is a serious and complex condition that has not been effectively treated by conventional blood pressure-lowering drugs. Tengdan capsule (TDC) is a China FDA-approved compound herbal medicine for treating hypertension; however, its chemical basis and pharmacological efficacy have not been fully investigated in a preclinical setting. METHODS: High-performance liquid chromatography (HPLC) was used to identify and quantify the major chemical components of TDC extracted from ultrapure water. Adult spontaneously hypertensive rats (SHR) and age/sex-matched Wistar Kyoto normotensive rats (WKY) were both treated with TDC, losartan, or saline for one month, and their blood pressure (BP) was monitored at the same time by tail-cuff BP system. Biochemical indexes such as urine creatinine (CRE) and blood urea nitrogen (BUN) were determined. Kidney tissue sections were examined with (H&E), and Masson staining to evaluate the pathological effect of TDC on SHR’s kidneys. After TDC treatment, the differentially expressed proteins in the kidneys of SHR were identified by the TMT-based quantitative proteomics analysis, which may provide the targets and possible mechanisms of TDC action. In addition, Western blot analysis, RT-qPCR, and ELISA assays were carried out to further verify the proteomics findings. Finally, two different models involving in vitro renal injuries were established using human kidney HEK293 cells; and the molecular mechanism of TDC kidney protection was demonstrated. RESULTS: Seven chemical compounds, namely Notoginsenoside R1, Ginsenoside RG1, Ginsenoside Re, Ginsenoside Rb1, Sodium Danshensu, Protocatechualdehyde, and Salvianolic acid B, were identified and quantified from the water-soluble extracts of TDC by HPLC. In vivo study using rats showed that TDC effectively reduced BP, BUN, and CRE levels and attenuated renal fibrosis in SHR, and ameliorated damage to the kidneys. Proteomics and subsequent bioinformatics analyses indicated that periostin-mediated inflammatory response and TGFβ/Smad signaling pathway proteins were closely related to the therapeutic effect of TDC in rat kidneys. Western blot analysis and RT-qPCR showed that TDC markedly downregulated the mRNA and protein expression of periostin in renal tissues compared to the untreated SHR. In addition, TGF-β and COL1A1 mRNA levels also decreased in SHR renal tissues following TDC treatment. In vitro studies showed that low to medium doses of TDC down-regulated the expression of periostin in the injury model of HEK293 cell. In addition, medium to high doses of TDC significantly inhibited collagen deposition in TGFβ1-induced HEK293 cell fibrosis. CONCLUSIONS: Major components from the compound herbal medicine Tengdan Capsule are identified and quantified. TDC effectively lowers blood pressure and protects against renal damage caused by hypertension in SHR. Mechanistically, TDC blocks periostin by regulating the TGF-β/Smad signaling pathway in the kidney, both in vivo and in vitro. Preventing periostin-mediated renal fibrosis and inflammation might be a promising strategy for treating a hypertensive renal injury.
Collapse
|
62
|
Chen C, Shao R, Li B, Zhai Y, Wang T, Li X, Miao L, Huang J, Liu R, Liu E, Zhu Y, Gao X, Zhang H, Wang Y. Neoisoliquiritin exerts tumor suppressive effects on prostate cancer by repressing androgen receptor activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153514. [PMID: 33676083 DOI: 10.1016/j.phymed.2021.153514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is a major cause of morbidity and mortality in men in both developed and developing countries. Androgens and the androgen receptor (AR) play predominant roles in the progression of PCa. Neoisoliquiritin (NEO) belongs to the class of licorice (Glycyrrhiza) flavonoids, which have a variety of biological activities including anti-depressant, anti-tumor-promoting, and anti-inflammation properties. Licorice root has cancer chemopreventive effects and has been given to PCa patients as an ingredient of PC-SPES, a commercially available combination of eight herbs. Therefore, we determined if NEO can suppress the proliferation of PCa cells. PURPOSE We investigated whether and how NEO exerts its anti-neoplastic activity against PCa. METHODS The Cell Counting Kit 8 and flow cytometry were used to evaluate the effects of NEO on the proliferation and cell cycle progression of AR-dependent (LNCaP) and AR-independent (PC3) PCa cells. RNA sequencing was employed to examine the genome-wide changes in responsiveness to NEO in LNCaP cells. Quantitative PCR, Western blotting, docking, chromatin immunoprecipitation, and dual-luciferase reporter assays were conducted to determine the mechanism of action of NEO and its potential cross-talk with AR. A LNCaP xenograft nude mouse model was used to determine the inhibitory effects of NEO on AR-dependent PCa tumors in vivo. RESULTS NEO inhibited LNCaP cell proliferation in vitro by inducing G0/G1 phase cell cycle arrest. Conversely, NEO treatment had no effect on PC3 cells. Transcriptomic analysis indicated that AR signaling might be the key target of NEO in preventing PCa. NEO regulated AR-mediated cell growth suppression and AR-sensitized cell cycle arrest in LNCaP cells. NEO also blocked several key steps in the AR signaling pathway, including proposed targeting to the ligand binding pocket of AR by computer modeling, modulating AR-androgen response element DNA-binding activity, inhibiting the expression and transcriptional activity of AR, and suppressing downstream AR signaling. CONCLUSIONS NEO negatively regulates AR expression and activity, thus supporting the tumor suppressive role for NEO in AR-dependent PCa.
Collapse
|
63
|
Miao L, Yun X, Yang X, Jia S, Jiao C, Shao R, Hao J, Chang Y, Fan G, Zhang J, Geng Q, Wichai N, Gao X. An inhibitory effect of Berberine from herbal Coptis chinensis Franch on rat detrusor contraction in benign prostatic hyperplasia associated with lower urinary tract symptoms. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113666. [PMID: 33301912 DOI: 10.1016/j.jep.2020.113666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coptis chinensis Franch (CCF), also known as Huang Lian in China, is a traditional Chinese medicine that commonly used for more than 2000 years. Clinically, CCF often used as anti-inflammatory, immune regulation and other effects. It has been reported that the decoction containing CCF can be used for the treatment of benign prostatic hyperplasia (BPH) or lower urinary tract symptoms (LUTS). AIM OF THE STUDY This research aims to investigate the effect of CCF on inhibition of BPH development in vivo and in vitro, and further identify the active compound (s) and the possible mechanism involved in BPH-related bladder dysfunction. MATERIALS AND METHODS Oestrodial/testosterone-induced BPH rat model was established as the in vivo model. The prostate index (PI) was calculated, the pathogenesis was analyzed and the micturition parameters were determined in the shamed-operated, BPH model and BPH + CCF groups after 4-week administration. The tension in detrusor strips was then assessed upon KCl or ACh stimulation with or without incubation of CCF or active compounds. To further investigate the signaling involved, rat detrusor cells were cultured as the in vitro models, the instantaneous calcium influx was measured and the ROCK-1 expression was detected. RESULTS Increased PI value and the aggravated prostatic pathology were observed with voiding dysfunction in BPH rats, which were significantly blocked by oral CCF taken. ACh or KCl-induced contractile responses in detrusor strips were significantly inhibited and the micturition parameters were improved when incubation with CCF or its active compounds such as berberine. Both CCF and berberine suppressed the cellular calcium influx and ROCK-1 expression upon ACh stimulation, demonstrating that berberine was one of the active compounds that contributed to CCF-improved micturition symptoms and function. CONCLUSIONS Taken together, our findings give evidence that CCF and its active compound berberine inhibited BPH and bladder dysfunction via Ca2+ and ROCK signaling, supporting their clinical use for BPH and BPH-related LUTS treatment.
Collapse
|
64
|
Shao R, Li D, Zhang MY, Zhao J, Tan XM, Zhang YQ. Heterometallic La(III)-Co(II) coordination polymers: treatment activity on diabetic foot by reducing the TLR-4–NF-κB signaling pathway activation in the plantar tissue. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1793357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
65
|
Li J, Zhang L, Zheng Y, Shao R, Liang Q, Yu W, Wang H, Zou W, Wang D, Xiang J, Lin A. BAD inactivation exacerbates rheumatoid arthritis pathology by promoting survival of sublining macrophages. eLife 2020; 9:e56309. [PMID: 33270017 PMCID: PMC7714394 DOI: 10.7554/elife.56309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
The resistance of synovial sublining macrophages to apoptosis has a crucial role in joint inflammation and destruction in rheumatoid arthritis (RA). However, the underlying mechanism is incompletely understood. Here we report that inactivation of the pro-apoptotic BCL-2 family protein BAD is essential for survival of synovial sublining macrophage in RA. Genetic disruption of Bad leads to more severe joint inflammation and cartilage and bone damage with reduced apoptosis of synovial sublining macrophages in collagen-induced arthritis (CIA) and TNFα transgenic (TNF-Tg) mouse models. Conversely, Bad3SA/3SA mice, in which BAD can no longer be inactivated by phosphorylation, are protected from collagen-induced arthritis. Mechanistically, phosphorylation-mediated inactivation of BAD specifically protects synovial sublining macrophages from apoptosis in highly inflammatory environment of arthritic joints in CIA and TNF-Tg mice, and in patients with RA, thereby contributing to RA pathology. Our findings put forward a model in which inactivation of BAD confers the apoptosis resistance on synovial sublining macrophages, thereby contributing to the development of arthritis, suggesting that BAD may be a potential therapeutic target for RA.
Collapse
|
66
|
Xu L, Shao R, Li H, Wang L. Diagnostic Value of Multi-Parameter MRI in Sub-Stage of T3 Rectal Cancer. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS 2020. [DOI: 10.1166/jmihi.2020.3213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The paper aims to explore the diagnostic value of multi-parameter MRI in sub-stage of T3 rectal cancer. According to the results of clear pathological evaluation, 52 patients were divided into T3I and T3II groups according to the maximum mesorectum depth of tumor infiltration. The χ2
test was used to compare the differences of the overall morphology index, morphological index of the extramural strips, type of time-signal intensity curve (TIC), and the location index of DWI diffusion-limited distribution between the two groups. The independent sample t was used to
test and compare the differences in semi-quantitative parameters of DCE between the two lesion groups. The pathological results were used as the dependent variables, the indicators mentioned above with statistical differences were used as the independent variables, and a Logistic regression
model was established to construct joint parameters and evaluate its diagnostic efficacy. The differences in the circumferential diameter of lesions and morphological index of extramural strips (p < 0.01), and DWI diffusion restricted distribution index (p < 0.01) of the
two groups were statistically significant. The difference in the DCE semiquantitative parameter early enhancement ratio (EER) (p < 0.01) between the two groups. The maximum Youden index of a newly-constructed parameter diagnosis combination: circumferential diameter of lesions +
extramural strips + distribution locations of limited diffusion on DWI + EER was 0.73, the area under receiver operating characteristic curve(ROC) was 0.887 and the diagnostic sensitivity and specificity were 85.24% and 87.34%. By making full use of multi-parameter information, combined with
morphological index of extramural strips, circumferential diameter of lesions, EER and distribution locations of the diffusion-limited of DWI as evaluation indexes, it can provide a high diagnostic efficiency for the sub-stage of T3 rectal cancer.
Collapse
|
67
|
Wang J, Zhang S, He C, She Z, Pan X, Li Y, Shao R, Shi Q, Yue Z. Source identification and component characterization of dissolved organic matter in an acid mine drainage reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139732. [PMID: 32544673 DOI: 10.1016/j.scitotenv.2020.139732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Acid mine drainage (AMD) is one of the most serious environmental problems and extreme environments on the earth, with high concentrations of sulphate and dissolved metals. A comprehensive description of dissolved organic matter (DOM) in these reservoirs is lacking, and it can play an important role in AMD pollution treatment and ecosystem. Thus, the source, composition and property of DOM in an AMD reservoir in Ma'an shan, China were studied using Fourier transform ion cyclotron resonance mass spectrometry and three-dimension excitation emission matrix fluorescence spectroscopy. The results suggested that the autochthonous algal metabolites significantly contributed to the DOM pool in the AMD reservoir. Bioavailable substances with lower oxidation, unsaturation and aromaticity such as lipids and carbohydrates were lacking in the AMD reservoir especially in the deeper layers. In addition, the proportion of sulfur compounds was significantly higher than that in other waters, suggesting the potential formation of organic matter with sulfur atom in a sulfur-rich environment. These findings underscore that the investigation of DOM in AMD reservoirs may offer references for the AMD treatment with addition of organic matter and broaden the understanding of special carbon cycling in the extreme environment of AMD.
Collapse
|
68
|
Zhuo S, Liu Y, Li W, Ding Z, Li M, Li Q, Wang X, Liu J, Shao R, Ling Q, Zheng T, Li J. Three-dimensional ordered macroporous magnetic photonic crystal microspheres for enrichment and detection of mycotoxins (I): Droplet-based microfluidic self-assembly synthesis. J Chromatogr A 2020; 1626:461379. [PMID: 32797854 DOI: 10.1016/j.chroma.2020.461379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 10/24/2022]
Abstract
Ordered porous materials are attracting enormous attention due to their uniform pore structures, particularly the magnetic photonic crystal microspheres (PCMs) which not only possess unique photonic crystal structure but also can achieve separation easily based on magnet. Here, a two-phase microfluidic self-assembly synthetic system was established simply and employed for the preparation of three dimensional PCMs (3DPCMs) by using the emulsion droplet approach. One phase (dispersed phase) was an aqueous emulsion containing Fe3O4, silica (SiO2) and polystyrene (PS) nanoparticles; another phase (continuous phase) was pure silicone oil. The droplets were formed by introducing the dispersed phase into the continuous phase through a tee valve. By heating the droplets, the water would evaporate and the nanoparticles would finally assemble into solid microspheres, which could be changed into macroporous 3DPCMs after removal of the PS nanoparticles by calcination. The contents and particle sizes of Fe3O4, SiO2 and PS nanoparticles in the dispersed phase were investigated in detail and optimized to prepare macroporous magnetic 3DPCMs with high quality. The morphologies, surface crystal structure, magnetic property, particle size distribution, specific surface area and pore size of the macroporous magnetic 3DPCMs were characterized. The expected 3DPCM displayed regular and uniform photonic crystal structure, narrow particle size distribution and strong magnetic property. The macroporous magnetic 3DPCMs grafted with vomitoxin (DON)-antibodies could be applied for selective enrichment of DON in real samples.
Collapse
|
69
|
Yang W, Wang Y, Liu X, Zhao H, Shao R, Wang G. Evaluation of the rescaled complementary principle in the estimation of evaporation on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134367. [PMID: 31677474 DOI: 10.1016/j.scitotenv.2019.134367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/07/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Accurate quantification of the terrestrial water balance can improve our knowledge of regional water cycle changes, and deepen our understanding of evaporation in hydrological cycle and under climate change. However, sparse observation networks on the Tibetan Plateau (TP) prevent the reliable estimates of actual evaporation. Based on the China regional surface Meteorological Feature Dataset (CMFD) and the Global Land Surface Satellite (GLASS) product, we adopted the latest rescaled nonlinear complementary relationship (CR) to calculate the monthly actual evaporation (E) from 1982 to 2015. We analyzed the spatio-temporal variability of the annual E on the entire TP, and explored the main meteorological factors controlling the annual E and the regulation of multiyear average annual E in different vegetation zones from southeast to northwest. Our results indicated that the net radiation (Rn) and E exhibited a favorable agreement with monthly changes of the observed values; and E estimated by the CR explained 79-96% variation of the eddy covariance flux measurements. The multiyear average E was 373.12 mm yr-1 and displayed similar spatial patterns of decreasing from southeast to northwest with two remote sensing products (GLDAS_VIC, GLEAM_v3.3) and one hydrological model (Budyko). Additionally, based on the Mann-Kendall trend test, there were 21.56% of the TP with significant upward trend of annual E which mainly distributed in the area with dense glaciers. The Nyenchen Tanglha Mountains and Pamirs Plateau area had the most obvious upward trend, with up to over 6 mm yr-1. In a relative sense, the key meteorological elements which affected annual E on the TP were relative humidity (RH) (r = 0.63) and Rn (r = 0.56).
Collapse
|
70
|
Liu X, Shao R, Yang X, Xiao G, He S, Feng Y, Zhu Y. Untargeted Safety Pharmacology Screen of Blood-Activating and Stasis-Removing Patent Chinese Herbal Medicines Identified Nonherbal Ingredients as a Cause of Organ Damage in Experimental Models. Front Pharmacol 2019; 10:993. [PMID: 31607901 PMCID: PMC6757273 DOI: 10.3389/fphar.2019.00993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
Blood activation and stasis removal from circulation is a central principle for treatment of syndromes related to cerebral and cardiovascular diseases in Chinese herbal medicine. However, blood-activating and stasis-removing patent Chinese herbal medicine (BASR-pCHM) widely used with or without prescription in China and elsewhere are highly variable in composition and manufacture standard, making their safety assessment a challenging task. We proposed that an integrated evaluation of multiple toxicity parameters of BASR-pCHM would provide critical reference and guidelines for their safe clinical application. Examination of standardized extracts from 58 compound BASR-pCHM in vivo in VEGFR2-luc mice and in vitro in cardiac, renal, and hepatic cells identified Naoluotong capsule (NLTC) as a potent organ/cell damage inducer. Composition analysis revealed that NLTC was the one that contained nonherbal ingredients among the BASR-pCHM collection. In vivo and in vitro experiments confirmed that NLTC, as well as its chemical supplement tolperisone hydrochloride, caused organ and cell damage by reducing cell viability, mitochondrial mass/activity, while the NLTC herbal components did not. Taken together, our study showed that safety evaluation of patent herbal medicines already on market is still necessary and urgently needed. In addition, chemical/herbal interactions should be considered as an important contributor of potential toxicity when evaluating the safety of herbal medicine.
Collapse
|
71
|
Liu Y, Li W, Ding Z, Li Q, Wang X, Liu J, Zhuo S, Shao R, Ling Q, Zheng T, Li J. Three-dimensional ordered macroporous magnetic photonic crystal microspheres for enrichment and detection of mycotoxins (II): The application in liquid chromatography with fluorescence detector for mycotoxins. J Chromatogr A 2019; 1604:460475. [PMID: 31466701 DOI: 10.1016/j.chroma.2019.460475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022]
Abstract
Enrichment, separation and purification are very important to accurately analyze mycotoxins in complicated samples. In the work, we developed a new enrichment, purification and high-performance liquid chromatography combined with fluorescence detector (HPLC-FLD) for aflatoxins B1 (AFB1), ochratoxin A (OTA) and Zearalenone (ZEN) assay using the macroporous magnetic 3D photonic crystal microspheres (3DPCMs). The conditions of enrichment and purification for mycotoxins have been optimized, which are as follows: pore size of 3DPCMs at 280 nm, 1:1 methanol:acetonitrile (v/v) as eluent, antibody concentrations at 60 µg/mL,60 µg/mL and 120 µg/mL for OTA, AFB1 and ZEN, respectively. The recovery rates in the rice, wheat and corn samples range from 70.01% to 100.12% and the relative standard deviation (RSD) range from 0.45% to 7.09%. The recovery rates used 3DPCMs are almost tenfold higher than that used non-macroporous PCMs in the same conditions. The developed method is simple, rapid (time including enrichment, purification and detection <2 h) and only requires small volume reagents (≤200 µL).
Collapse
|
72
|
Hu P, Fang D, Shen L, Zhou H, Shao R, Chen M, Yao C, Shi Y, Chen Q. Fibrin matrix containing high-dose calcitriol promotes the apoptosis of gastric cancer cells by sustainably releasing calcitrol and D-dimer. J Biomater Appl 2019; 34:509-522. [PMID: 31195918 DOI: 10.1177/0885328219856248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
73
|
Nie C, Li Y, Niu L, Liu Y, Shao R, Xu X, Tian Y. Soil respiration and its Q 10 response to various grazing systems of a typical steppe in Inner Mongolia, China. PeerJ 2019; 7:e7112. [PMID: 31223539 PMCID: PMC6571130 DOI: 10.7717/peerj.7112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/09/2019] [Indexed: 11/20/2022] Open
Abstract
Background As one of the important management practices of grassland ecosystems, grazing has fundamental effects on soil properties, vegetation, and soil microbes. Grazing can thus alter soil respiration (Rs) and the soil carbon cycle, yet its impacts and mechanisms remain unclear. Methods To explore the response of soil carbon flux and temperature sensitivity to different grazing systems, Rs, soil temperature (ST), and soil moisture (SM) were observed from December 2014 to September 2015 in a typical steppe of Inner Mongolia under three grazing systems: year-long grazing, rest-rotation grazing, and grazing exclusion. In addition, plant aboveground and root biomass, soil microbial biomass and community composition, and soil nutrients were measured during the pilot period. Results Soil respiration was significantly different among the three grazing systems. The average Rs was highest under rest-rotation grazing (1.26 μmol·m−2·s−1), followed by grazing exclusion (0.98 μmol·m−2·s−1) and year-long grazing (0.94 μmol·m−2·s−1). Rs was closely associated with ST, SM, potential substrate and root, and soil microbe activity. The effects of grazing among two grazing systems had generality, but were different due to grazing intensity. The root biomass was stimulated by grazing, and the rest-rotation grazing system resulted in the highest Rs. Grazing led to decreases in aboveground and microbial biomass as well as the loss of soil total nitrogen and total phosphorus from the steppe ecosystem, which explained the negative effect of grazing on Rs in the year-long grazing system compared to the grazing exclusion system. The temperature sensitivity of Rs (Q10) was higher in the rest-rotation and year-long grazing systems, likely due to the higher temperature sensitivity of rhizosphere respiration and higher “rhizosphere priming effect” in the promoted root biomass. The structural equation model analysis showed that while grazing inhibited Rs by reducing soil aeration porosity, ground biomass and SM, it increased Q10 but had a lower effect than other factors. A better understanding of the effects of grazing on soil respiration has important practical implications.
Collapse
|
74
|
Gao YB, Hu T, Zhou XD, Shao R, Cheng R, Wang GS, Yang YM, Li X, Yuan B, Xu T, Wang X, Feng XP, Tai BJ, Hu DY, Lin HC, Wang B, Si Y, Wang CX, Zheng SG, Liu XN, Rong WS, Wang WJ, Yin W. Dental Caries in Chinese Elderly People: Findings from the 4th National Oral Health Survey. THE CHINESE JOURNAL OF DENTAL RESEARCH : THE OFFICIAL JOURNAL OF THE SCIENTIFIC SECTION OF THE CHINESE STOMATOLOGICAL ASSOCIATION (CSA) 2019; 21:213-220. [PMID: 30255172 DOI: 10.3290/j.cjdr.a41077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate the dental caries status and related factors in Chinese elderly people, using data from the 4th National Oral Health Survey of China. METHODS In this cross-sectional study, a multistage, cluster strategy was used to recruit 4,431participants (2,222 male and 2,209 female) aged 65 to 74 years from all 31 provinces, autonomous regions and municipalities of the mainland of China. The survey was performed according to the diagnostic standard proposed by the World Health Organization (WHO). Socio-demographic information was collected with a closed questionnaire. RESULTS The caries prevalence in 65 to 74-year-olds was rather high; the report shows it was 98.0% (DMFT ≥ 1) among elderly people in China. The mean DMFT, DT, MT and FT was 13.33 ± 9.32, 3.33 ± 4.17, 9.50 ± 8.66 and 0.49 ± 1.41, respectively. The filling rate was very low, assessed as 12.8%. The number of DMFT related to gender, residential district type, educational level, level of annual household income, toothbrushing frequency, consumption frequency of desserts, attitudes to oral health and oral health-related knowledge. CONCLUSION The prevalence of dental caries in Chinese elderly people is rather high and a lot of decayed teeth still need to be filled and suitable prevention and treatment for this group is urgently needed.
Collapse
|
75
|
Shao R, Wang FJ, Lyu M, Yang J, Zhang P, Zhu Y. Ability to Suppress TGF-β-Activated Myofibroblast Differentiation Distinguishes the Anti-pulmonary Fibrosis Efficacy of Two Danshen-Containing Chinese Herbal Medicine Prescriptions. Front Pharmacol 2019; 10:412. [PMID: 31105564 PMCID: PMC6491955 DOI: 10.3389/fphar.2019.00412] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with limited treatment options. It also leads to progressive respiratory failure, which subsequently affects the heart functionality, a pathological heart-lung interaction increasingly noticed and defined as pulmonary-heart disease (PHD). Traditional Chinese medicine (TCM) theory for treating “phlegm-stasis cementation syndrome” may suggest a possibility of treating PHD complication with Chinese medicine prescriptions previously used for cardiovascular diseases. Methods: Here, we evaluate the efficacies of two compound Chinese medicine prescriptions, Danlou prescription (DLP) and Danhong prescription (DHP), which share a common herbal component, Salvia miltiorrhiza (Danshen), on pulmonary fibrosis. Severity grades of Bleomycin (BLM)-induced pulmonary fibrosis were assessed by micro-Computerized Tomography (μCT) in accordance with the clinical evaluation standard. Lung pathological changes and collagen deposition were investigated by histopathology. Myofibroblast differentiation was assessed by immunohistochemistry of α-SMA and TGF-β receptor type II expression in situ. Network pharmacology analysis of the drug-target interaction in IPF progression for DLP or DHP was performed using Ingenuity® Pathways Analysis (IPA) system. Results: We show that a non-invasive μCT effectively monitor and quantify BLM-induced pulmonary fibrosis and its treatment efficacy by Chinese medicine prescription in rodents. In addition, although both containing Salvia miltiorrhiza, DLP but not DHP mitigates BLM-induced lung fibrosis by inhibiting the TGF-β signaling-activated myofibroblast differentiation and α-SMA expression in a mouse model. Core analysis by IPA revealed that DLP ingredients regulated not only pulmonary fibrosis related inflammatory genes but also genes associated with myofibroblast activation and collagen deposition. Conclusion: This study suggests that a clinically efficacious cardiovascular Chinese herbal medicine (DLP) can be successfully repurposed to treat a lung disease in pulmonary fibrosis guided by TCM theory. Our comparative study between DLP and DHP demonstrated a critical requirement of suppressing both pro-inflammatory and pro-fibrotic pathways for the treatment of pulmonary fibrosis, supporting that a multi-component prescription capable of “removing both phlegm and blood stasis” will better achieve co-protection of heart and lung in PHD.
Collapse
|