51
|
Hama A, Hasegawa D, Manabe A, Nozawa K, Narita A, Muramatsu H, Kosaka Y, Kobayashi M, Koh K, Takahashi Y, Watanabe K, Ohara A, Ito M, Kojima S. Prospective validation of the provisional entity of refractory cytopenia of childhood, proposed by the World Health Organization. Br J Haematol 2021; 196:1031-1039. [PMID: 34729770 DOI: 10.1111/bjh.17921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
In 2008, the World Health Organization proposed a new entity of childhood myelodysplastic syndrome (MDS), which was referred to as refractory cytopenia of childhood (RCC). However, whether this morphological classification reflects clinical outcomes remains unclear. We performed a prospective evaluation of bone marrow morphology in 252 children with acquired bone marrow failure between 2009 and 2013. Of 252 patients, 63 were diagnosed with aplastic anaemia (AA), 131 with RCC without multilineage dysplasia (RCC-w/o-MLD) and 58 with RCC with MLD (RCC-MLD). One patient with AA, three with RCC-w/o-MLD and nine with RCC-MLD presented with chromosomal abnormalities at diagnosis (P = 0·001). The response rates to immunosuppressive therapy (IST) at 6 months and the cumulative incidence of clonal evolution at 5 years did not significantly differ among the three groups. A multivariate analysis revealed that the morphological classification of RCC-MLD was a significant risk factor for secondary graft failure after haematopoietic cell transplantation (HCT) (P = 0·003). In view of these findings, RCC could be divided into two categories, RCC-w/o-MLD and RCC-MLD, because children with this condition exhibited a distinct morphology, frequent chromosomal abnormalities at diagnosis and a high frequency of secondary graft failure after HCT.
Collapse
|
52
|
Boulay F, Simpson GS, Ichikawa Y, Kisyov S, Bucurescu D, Takamine A, Ahn DS, Asahi K, Baba H, Balabanski DL, Egami T, Fujita T, Fukuda N, Funayama C, Furukawa T, Georgiev G, Gladkov A, Hass M, Imamura K, Inabe N, Ishibashi Y, Kawaguchi T, Kawamura T, Kim W, Kobayashi Y, Kojima S, Kusoglu A, Lozeva R, Momiyama S, Mukul I, Niikura M, Nishibata H, Nishizaka T, Odahara A, Ohtomo Y, Ralet D, Sato T, Shimizu Y, Sumikama T, Suzuki H, Takeda H, Tao LC, Togano Y, Tominaga D, Ueno H, Yamazaki H, Yang XF, Daugas JM. Boulay et al. Reply. PHYSICAL REVIEW LETTERS 2021; 127:169202. [PMID: 34723612 DOI: 10.1103/physrevlett.127.169202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
|
53
|
Takekawa N, Nishikino T, Hori K, Kojima S, Imada K, Homma M. ZomB is essential for chemotaxis of Vibrio alginolyticus by the rotational direction control of the polar flagellar motor. Genes Cells 2021; 26:927-937. [PMID: 34487583 DOI: 10.1111/gtc.12895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
Bacteria exhibit chemotaxis by controlling flagellar rotation to move toward preferred places or away from nonpreferred places. The change in rotation is triggered by the binding of the chemotaxis signaling protein CheY-phosphate (CheY-P) to the C-ring in the flagellar motor. Some specific bacteria, including Vibrio spp. and Shewanella spp., have a single transmembrane protein called ZomB. ZomB is essential for controlling the flagellar rotational direction in Shewanella putrefaciens and Vibrio parahaemolyticus. In this study, we confirmed that the zomB deletion results only in the counterclockwise (CCW) rotation of the motor in Vibrio alginolyticus as previously reported in other bacteria. We found that ZomB is not required for a clockwise-locked phenotype caused by mutations in fliG and fliM, and that ZomB is essential for CW rotation induced by overproduction of CheY-P. Purified ZomB proteins form multimers, suggesting that ZomB may function as a homo-oligomer. These observations imply that ZomB interacts with protein(s) involved in either flagellar motor rotation, chemotaxis, or both. We provide the evidence that ZomB is a new player in chemotaxis and is required for the rotational control in addition to CheY in Vibrio alginolyticus.
Collapse
|
54
|
Miwata S, Narita A, Okuno Y, Suzuki K, Hamada M, Yoshida T, Imaya M, Yamamori A, Wakamatsu M, Narita K, Kitazawa H, Ichikawa D, Taniguchi R, Kawashima N, Nishikawa E, Nishio N, Kojima S, Muramatsu H, Takahashi Y. Clinical diagnostic value of telomere length measurement in inherited bone marrow failure syndromes. Haematologica 2021; 106:2511-2515. [PMID: 33882640 PMCID: PMC8409025 DOI: 10.3324/haematol.2021.278334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 01/14/2023] Open
|
55
|
Delgado-Aparicio LF, VanMeter P, Barbui T, Chellai O, Wallace J, Yamazaki H, Kojima S, Almagari AF, Hurst NC, Chapman BE, McCollam KJ, Den Hartog DJ, Sarff JS, Reusch LM, Pablant N, Hill K, Bitter M, Ono M, Stratton B, Takase Y, Luethi B, Rissi M, Donath T, Hofer P, Pilet N. Multi-energy reconstructions, central electron temperature measurements, and early detection of the birth and growth of runaway electrons using a versatile soft x-ray pinhole camera at MST. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:073502. [PMID: 34340413 DOI: 10.1063/5.0043672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
A multi-energy soft x-ray pinhole camera has been designed, built, and deployed at the Madison Symmetric Torus to aid the study of particle and thermal transport, as well as MHD stability physics. This novel imaging diagnostic technique employs a pixelated x-ray detector in which the lower energy threshold for photon detection can be adjusted independently on each pixel. The detector of choice is a PILATUS3 100 K with a 450 μm thick silicon sensor and nearly 100 000 pixels sensitive to photon energies between 1.6 and 30 keV. An ensemble of cubic spline smoothing functions has been applied to the line-integrated data for each time-frame and energy-range, obtaining a reduced standard-deviation when compared to that dominated by photon-noise. The multi-energy local emissivity profiles are obtained from a 1D matrix-based Abel-inversion procedure. Central values of Te can be obtained by modeling the slope of the continuum radiation from ratios of the inverted radial emissivity profiles over multiple energy ranges with no a priori assumptions of plasma profiles, magnetic field reconstruction constraints, high-density limitations, or need of shot-to-shot reproducibility. In tokamak plasmas, a novel application has recently been tested for early detection, 1D imaging, and study of the birth, exponential growth, and saturation of runaway electrons at energies comparable to 100 × Te,0; thus, early results are also presented.
Collapse
|
56
|
Taniguchi R, Muramatsu H, Okuno Y, Yoshida T, Wakamatsu M, Hamada M, Shirota C, Sumida W, Hinoki A, Tainaka T, Gotoh Y, Tsuzuki T, Tanaka Y, Kojima S, Uchida H, Takahashi Y. A patient with very early onset FH-deficient renal cell carcinoma diagnosed at age seven. Fam Cancer 2021; 21:337-341. [PMID: 34156580 DOI: 10.1007/s10689-021-00268-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/13/2021] [Indexed: 12/20/2022]
Abstract
Hereditary leiomyomatosis and renal cell cancer (HLRCC) is caused by heterozygous germline variants in the fumarate hydratase (FH) gene and is associated with increased susceptibility to cutaneous leiomyomas, uterine leiomyomas, and renal cell carcinoma (RCC). HLRCC-associated RCC usually occurs in the middle age, with the median age being 40-44 years. This report describes a seven-year-old (84-month-old) male who developed a large right kidney tumor with multiple cystic lesions that contained enhanced solid components. There was no evidence of distant metastasis. The male patient underwent right nephrectomy and has been recovering well without metastasis or recurrence. Pathological examination revealed that tumor cells with relatively prominent nucleoli and surrounded by halos, were located in a limited area. Immunohistochemical staining was negative for FH. Whole-exome sequencing identified his germline variant in the FH gene and its loss of heterozygosity in the tumor. At nine years (114 months) of age, the male patient showed no recurrence of the tumor. This was the youngest-onset case of HLRCC-associated RCC to date. This report may affect the starting age for future RCC-surveillance programs for patients with HLRCC.
Collapse
|
57
|
Takekawa N, Nishikino T, Yamashita T, Hori K, Onoue Y, Ihara K, Kojima S, Homma M, Imada K. A slight bending of an α-helix in FliM creates a counterclockwise-locked structure of the flagellar motor in Vibrio. J Biochem 2021; 170:531-538. [PMID: 34143212 DOI: 10.1093/jb/mvab074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Many bacteria swim by rotating flagella. The chemotaxis system controls the direction of flagellar rotation. Vibrio alginolyticus, which has a single polar flagellum, swims smoothly by rotating the flagellar motor counterclockwise (CCW) in response to attractants. In response to repellents, the motor frequently switches its rotational direction between CCW and clockwise (CW). We isolated a mutant strain that swims with a CW-locked rotation of the flagellum, which pulls rather than pushes the cell. This CW phenotype arises from a R49P substitution in FliM, which is the component in the C-ring of the motor that binds the chemotaxis signaling protein, phosphorylated CheY. However, this phenotype is independent of CheY, indicating that the mutation produces a CW conformation of the C-ring in the absence of CheY. The crystal structure of FliM with the R49P substitution showed a conformational change in the N-terminal α-helix of the middle domain of FliM (FliMM). This helix should mediates FliM-FliM interaction. The structural models of wild-type and mutant C-ring showed that the relatively small conformational change in FliMM induces a drastic rearrangement of the conformation of the FliMM domain that generates a CW conformation of the C-ring.
Collapse
|
58
|
Ichikawa D, Yamashita K, Okuno Y, Muramatsu H, Murakami N, Suzuki K, Kojima D, Kataoka S, Hamada M, Taniguchi R, Nishikawa E, Kawashima N, Narita A, Nishio N, Hama A, Kasai K, Mizuno S, Shimoyama Y, Nakaguro M, Okita H, Kojima S, Nakazawa A, Takahashi Y. Integrated diagnosis based on transcriptome analysis in suspected pediatric sarcomas. NPJ Genom Med 2021; 6:49. [PMID: 34131151 PMCID: PMC8206218 DOI: 10.1038/s41525-021-00210-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Pediatric solid tumors are a heterogeneous group of neoplasms with over 100 subtypes. Clinical and histopathological diagnosis remains challenging due to the overlapping morphological and immunohistochemical findings and the presence of atypical cases. To evaluate the potential utility of including RNA-sequencing (RNA-seq) in the diagnostic process, we performed RNA-seq in 47 patients with suspected pediatric sarcomas. Histopathologists specialized in pediatric cancer re-evaluated pathological specimens to reach a consensus diagnosis; 42 patients were diagnosed with known subtypes of solid tumors whereas 5 patients were diagnosed with undifferentiated sarcoma. RNA-seq analysis confirmed and refined consensus diagnoses and further identified diagnostic genetic variants in four of the five patients with undifferentiated sarcoma. Genetic lesions were detected in 23 patients, including the novel SMARCA4-THOP1 fusion gene and 22 conventional or recently reported genetic events. Unsupervised clustering analysis of the RNA-seq data identified a distinct cluster defined by the overexpression of rhabdomyosarcoma-associated genes including MYOG and CHRNG. These findings suggest that RNA-seq-based genetic analysis may aid in the diagnosis of suspected pediatric sarcomas, which would be useful for the development of stratified treatment strategies.
Collapse
|
59
|
Ishikawa K, Chubachi C, Tochigi S, Hoshi N, Kojima S, Hyodo M, Hayakawa Y, Furuta T, Kera K, Uozumi N. Functional characterization of multiple PAS domain-containing diguanylate cyclases in Synechocystis sp. PCC 6803. MICROBIOLOGY-SGM 2021; 166:659-668. [PMID: 32478657 DOI: 10.1099/mic.0.000929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a second messenger known to control a variety of bacterial processes. The model cyanobacterium, Synechocystis sp. PCC 6803, has a score of genes encoding putative enzymes for c-di-GMP synthesis and degradation. However, most of them have not been functionally characterized. Here, we chose four genes in Synechocystis (dgcA-dgcD), which encode proteins with a GGDEF, diguanylate cyclase (DGC) catalytic domain and multiple Per-ARNT-Sim (PAS) conserved regulatory motifs, for detailed analysis. Purified DgcA, DgcB and DgcC were able to catalyze synthesis of c-di-GMP from two GTPs in vitro. DgcA had the highest activity, compared with DgcB and DgcC. DgcD did not show detectable activity. DgcA activity was specific for GTP and stimulated by the divalent cations, magnesium or manganese. Full activity of DgcA required the presence of the multiple PAS domains, probably because of their role in protein dimerization or stability. Synechocystis mutants carrying single deletions of dgcA-dgcD were not affected in their growth rate or biofilm production during salt stress, suggesting that there was functional redundancy in vivo. In contrast, overexpression of dgcA resulted in increased biofilm formation in the absence of salt stress. In this study, we characterize the enzymatic and physiological function of DgcA-DgcD, and propose that the PAS domains in DgcA function in maintaining the enzyme in its active form.
Collapse
|
60
|
Narita A, Muramatsu H, Ichikawa D, Hamada M, Nishikawa E, Suzuki K, Kawashima N, Okuno Y, Nishio N, Hama A, Yamazaki H, Nakao S, Kojima S, Takahashi Y. Relationship between plasma rabbit anti-thymocyte globulin concentration and immunosuppressive therapy response in patients with severe aplastic anemia. Eur J Haematol 2021; 107:255-264. [PMID: 33949001 DOI: 10.1111/ejh.13644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Patients with acquired aplastic anemia (AA) without HLA-matched sibling donors or aged >40 years receive immunosuppressive therapy (IST) with anti-thymocyte globulin (ATG). We investigated the relationship between plasma rabbit ATG (r-ATG) concentration and IST response. METHODS From May 2012 to October 2017, 81 patients with severe AA who required initial IST were included. A 1:1 block randomization was employed for 2.5 and 3.5 mg/kg doses of r-ATG. RESULTS No significant difference in response rates was observed between the 2.5 and 3.5 mg/kg groups (63% vs. 58%, P = .894). Median r-ATG concentrations on days 14 and 28 after IST were 15.2 (0.0-97.7) and 1.8 (0.0-74.9 µg/mL), respectively. According to r-ATG concentration, response rates were significantly higher in the group with higher r-ATG concentration than in those with lower r-ATG concentration (day 14, 88% vs. 52%; P = .006 and day 28, 79% vs. 46%; P = .005). In multivariate analysis, higher r-ATG concentrations at day 28 were independent predictors of favorable response to IST at 6 months (odds ratio, 0.29; 95% confidence interval, 0.09-0.93; P = .037). CONCLUSIONS The present data indicate that higher r-ATG concentration at day 28 resulted in improved IST response.
Collapse
|
61
|
Kawashima N, Fukasawa Y, Nishikawa E, Ohta-Ogo K, Ishibashi-Ueda H, Hamada M, Ichikawa D, Narita A, Okuno Y, Muramatsu H, Nishio N, Kojima S, Kato T, Takahashi Y. Echocardiography Monitoring of Pulmonary Hypertension after Pediatric Hematopoietic Stem Cell Transplantation: Pediatric Pulmonary Arterial Hypertension and Pulmonary Veno-Occlusive Disease after Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2021; 27:786.e1-786.e8. [PMID: 34058426 DOI: 10.1016/j.jtct.2021.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/15/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Pulmonary hypertension (PH) is associated with high morbidity in children undergoing hematopoietic stem cell transplantation (HSCT). However, owing to the lack of sequential echocardiography, the nature of the condition is not fully understood. This study was conducted to investigate whether routine echocardiography performed after HSCT could detect patients with PH at an earlier stage and elucidate the role of intervention using tadalafil. The study population comprised 93 consecutive children age <18 years who underwent a total of 109 HSCTs. All patients underwent routine transthoracic echocardiography during HSCT. Four children (4%) with a median age of 4 years (range, 0.7 to 6 years) were found to have PH, and their median tricuspid regurgitation peak velocity (TRV) was 4.1 m/s (range, 3.5 to 4.2 m/s). PH was diagnosed at a median of 52 days (range, 21 to 118 days) after HSCT. Three of them were diagnosed with neuroblastoma, and 1 was diagnosed with infantile leukemia. One patient developed PH after autologous HSCT, and 3 received killer immunoglobulin-like receptor ligand-mismatched cord blood. Busulfan was used for conditioning in all patients, and the proportion of patients receiving this medication was significantly higher in the PH group compared with the non-PH group (100% versus 30%; P = .011). Three of the 4 patients had a durable response (TRV ≤2.8 m/s) at a median of 46 days (range, 14 to 79 days) after starting treatment with tadalafil. No patient experienced exacerbation of PH, and treatment was completed at median of 96 days (range, 46 to 212 days). Our data suggest that routine echocardiography monitoring after HSCT should be considered in children receiving busulfan, although the precise follow-up timing needs further study. In addition, safe and effective administration of tadalafil must be ensured by close monitoring.
Collapse
|
62
|
Kojima S, Kajino H, Hirano K, Inoue Y, Terashima H, Homma M. Role of the N- and C-terminal regions of FliF, the MS ring component in Vibrio flagellar basal body. J Bacteriol 2021; 203:JB.00009-21. [PMID: 33619151 PMCID: PMC8092156 DOI: 10.1128/jb.00009-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/15/2021] [Indexed: 11/20/2022] Open
Abstract
The MS ring is a part of the flagellar basal body and formed by 34 subunits of FliF, which consists of a large periplasmic region and two transmembrane segments connected to the N- and C-terminal regions facing the cytoplasm. A cytoplasmic protein, FlhF, which determines the position and number of the basal body, supports MS ring formation in the membrane in Vibrio species. In this study, we constructed FliF deletion mutants that lack 30 or 50 residues from the N-terminus (ΔN30 and ΔN50), and 83 (ΔC83) or 110 residues (ΔC110) at the C-terminus. The N-terminal deletions were functional and conferred motility of Vibrio cells, whereas the C-terminal deletions were nonfunctional. The mutants were expressed in Escherichia coli to determine whether an MS ring could still be assembled. When co-expressing ΔN30FliF or ΔN50FliF with FlhF, fewer MS rings were observed than with the expression of wild-type FliF, in the MS ring fraction, suggesting that the N-terminus interacts with FlhF. MS ring formation is probably inefficient without FlhF. The deletion of the C-terminal cytoplasmic region did not affect the ability of FliF to form an MS ring because a similar number of MS rings were observed for ΔC83FliF as with wild-type FliF, although further deletion of the second transmembrane segment (ΔC110FliF) abolished it. These results suggest that the terminal regions of FliF have distinct roles; the N-terminal region for efficient MS ring formation and the C-terminal region for MS ring function. The second transmembrane segment is indispensable for MS ring assembly.ImportanceThe bacterial flagellum is a supramolecular architecture involved in cell motility. At the base of the flagella, a rotary motor that begins to construct an MS ring in the cytoplasmic membrane comprises 34 transmembrane proteins (FliF). Here, we investigated the roles of the N and C terminal regions of FliF, which are MS rings. Unexpectedly, the cytoplasmic regions of FliF are not indispensable for the formation of the MS ring, but the N-terminus appears to assist in ring formation through recruitment of FlhF, which is essential for flagellar formation. The C-terminus is essential for motor formation or function.
Collapse
|
63
|
Miyake M, Kawamura Y, Ishihara N, Suzuki S, Miura H, Sakaguchi Y, Tanaka M, Takahashi Y, Kojima S, Toyama H, Natsume J, Yoshikawa T. Hippocampal Atrophy in Pediatric Transplant Recipients with Human Herpesvirus 6B. Microorganisms 2021; 9:microorganisms9040776. [PMID: 33917715 PMCID: PMC8068176 DOI: 10.3390/microorganisms9040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to determine whether human herpesvirus 6B (HHV-6B) infection can impair the hippocampus in pediatric hematopoietic stem cell transplant (HSCT) recipients. Study subjects were pediatric HSCT recipients monitored for HHV-6B infection who underwent brain MRI before and after transplantation. Volumetric analysis of the hippocampus was performed. Of the 107 patients that received HSCT at Nagoya University Hospital Between July 2008 and April 2014, 20 were eligible for volumetric analysis. Eight patients had HHV-6B infection, of whom two had encephalopathy at the time of HHV-6B infection. None of the 12 patients without HHV-6B infection had encephalopathy. The median ratio of the right hippocampal volume from before to after transplantation was 0.93 in patients with HHV-6B infection and 1.02 in without HHV-6B infection (p = 0.007). The median ratio of the left hippocampal volume ratio in patients with and without HHV-6B infection was 0.92 and 1.00, respectively (p = 0.003). Among the eight patients with HHV-6B infection, four had a marked reduction in hippocampal volume (volume ratio < 0.90). Only one of these patients had neurological symptoms at the time of HHV-6B infection. The reduction in the hippocampal volume ratio was higher in pediatric HSCT recipients with HHV-6B infection than those without viral infection. Neurological follow-up may be required for pediatric HSCT recipients with HHV-6B infection.
Collapse
|
64
|
Kataoka S, Kawashima N, Okuno Y, Muramatsu H, Miwata S, Narita K, Hamada M, Murakami N, Taniguchi R, Ichikawa D, Kitazawa H, Suzuki K, Nishikawa E, Narita A, Nishio N, Yamamoto H, Fukasawa Y, Kato T, Yamamoto H, Natsume J, Kojima S, Nishino I, Taketani T, Ohnishi H, Takahashi Y. Successful treatment of a novel type I interferonopathy due to a de novo PSMB9 gene mutation with a Janus kinase inhibitor. J Allergy Clin Immunol 2021; 148:639-644. [PMID: 33727065 DOI: 10.1016/j.jaci.2021.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Type I interferonopathies are a recently established subgroup of autoinflammatory diseases caused by mutations in genes associated with proteasome degradation or cytoplasmic RNA- and DNA-sensing pathways. OBJECTIVE This study aimed to unveil the molecular pathogenesis of a patient with novel type I interferonopathy, for which no known genetic mutations have been identified. METHODS We performed the whole-exome sequencing of a 1-month-old boy with novel type I interferonopathy. We also investigated proteasome activities using patient-derived B lymphoblastoid cell lines (LCLs) and normal LCLs transduced with the mutant gene. RESULTS Whole-exome sequencing identified a de novo proteasome 20S subunit beta 9 (PSMB9) p.G156D mutation in the patient who developed fever, a chilblain-like skin rash, myositis, and severe pulmonary hypertension due to the hyperactivation of IFN-α. Patient-derived LCLs revealed reduced proteasome activities, and exogenous transduction of mutant PSMB9 p.G156D into normal LCLs significantly suppressed proteasome activities, and the endogenous PSMB9 protein was lost along with the reduction of other immunoproteasome subunits, PSMB8 and PSMB10 proteins. He responded to the administration of a Janus kinase inhibitor, tofacitinib, and he was successfully withdrawn from venoarterial extracorporeal membranous oxygenation. At age 7 months, he received an unrelated cord blood transplantation. At 2 years posttransplantation, he no longer required tofacitinib and experienced no disease recurrence. CONCLUSIONS We present the case of a patient with a novel type I interferonopathy caused by a de novo PSMB9 p.G156D mutation that suppressed the wild-type PSMB9 protein expression. Janus kinase inhibitor and stem cell transplantation could be curative therapies in patients with severe interferonopathies.
Collapse
|
65
|
Takekawa N, Kawamoto A, Sakuma M, Kato T, Kojima S, Kinoshita M, Minamino T, Namba K, Homma M, Imada K. Two Distinct Conformations in 34 FliF Subunits Generate Three Different Symmetries within the Flagellar MS-Ring. mBio 2021; 12:e03199-20. [PMID: 33653894 PMCID: PMC8092281 DOI: 10.1128/mbio.03199-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/22/2021] [Indexed: 11/20/2022] Open
Abstract
The bacterial flagellum is a protein nanomachine essential for bacterial motility. The flagellar basal body contains several ring structures. The MS-ring is embedded in the cytoplasmic membrane and is formed at the earliest stage of flagellar formation to serve as the base for flagellar assembly as well as a housing for the flagellar protein export gate complex. The MS-ring is formed by FliF, which has two transmembrane helices and a large periplasmic region. A recent electron cryomicroscopy (cryoEM) study of the MS-ring formed by overexpressed FliF revealed a symmetry mismatch between the S-ring and inner part of the M-ring. However, the actual symmetry relation in the native MS-ring and positions of missing domains remain obscure. Here, we show the structure of the M-ring by combining cryoEM and X-ray crystallography. The crystal structure of the N-terminal half of the periplasmic region of FliF showed that it consists of two domains (D1 and D2) resembling PrgK D1/PrgH D2 and PrgK D2/PrgH D3 of the injectisome. CryoEM analysis revealed that the inner part of the M-ring shows a gear wheel-like density with the inner ring of C23 symmetry surrounded by cogs with C11 symmetry, to which 34 copies of FliFD1-D2 fitted well. We propose that FliFD1-D2 adopts two distinct orientations in the M-ring relative to the rest of FliF, with 23 chains forming the wheel and 11 chains forming the cogs, and the 34 chains come together to form the S-ring with C34 symmetry for multiple functions of the MS-ring.IMPORTANCE The bacterial flagellum is a motility organelle formed by tens of thousands of protein molecules. At the earliest stage of flagellar assembly, a transmembrane protein, FliF, forms the MS-ring in the cytoplasmic membrane as the base for flagellar assembly. Here, we solved the crystal structure of a FliF fragment. Electron cryomicroscopy (cryoEM) structural analysis of the MS-ring showed that the M-ring and S-ring have different rotational symmetries. By docking the crystal structure of the FliF fragment into the cryoEM density map of the entire MS-ring, we built a model of the whole periplasmic region of FliF and proposed that FliF adopts two distinct conformations to generate three distinct C11, C23, and C34 symmetries within the MS-ring for its multiple functions.
Collapse
|
66
|
Sas V, Pasca S, Jurj A, Pop L, Muramatsu H, Ono H, Dima D, Teodorescu P, Iluta S, Turcas C, Onaciu A, Munteanu R, Zimta AA, Blag C, Popa G, von Gamm EDA, Arghirescu S, Serban M, Man S, Marian M, Petrushev B, Berce C, Colita A, Zdrenghea M, Kojima S, Gulei D, Takahashi Y, Tomuleasa C. MicroRNA-155-5p Plays a Critical Role in Transient Leukemia of Down Syndrome by Targeting Tumor Necrosis Factor Receptor Superfamily Members. Cell Physiol Biochem 2021; 54:994-1012. [PMID: 33006449 DOI: 10.33594/000000283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND/AIMS Down syndrome associated disorders are caused by a complex genetic context where trisomy 21 is a central component in relation to other changes involving epigenetic regulators and signaling molecules. This unique genetic context is responsible for the predisposition of people with Down syndrome to acute leukemia. Although, the research in this field has discovered some important pathogenic keys, the exact mechanism of this predisposition is not known. METHODS In this study we applied functional enrichment analysis to evaluate the interactions between genes localized on chromosome 21, genes already identify as having a key role in acute leukemia of Down syndrome, miRNAs and signaling pathways implicated in cancer and cell development and found that miR-155 has a high impact in genes present on chromosome 21. Forward, we performed next generation sequencing on DNA samples from a cohort of patients diagnosed with acute leukemia of Down syndrome and in vitro functional assay using a CMK-86 cell line, transfected with either mimic or inhibitor of the microRNA-155-5p. RESULTS Our results show that the epigenetic alteration of the TNF superfamily receptors in Down syndrome, which can be correlated to microRNA-155-5p aberrant activity, may play an important role in cell signaling and thus be linked to acute myeloid leukemia. CONCLUSION Some genes, already shown to be mutated in AML-DS, are potential targets for miR-155. Our results show that the epigenetic alteration of the TNF superfamily receptors in Down syndrome may play an important role in cell signaling and thus be linked to acute myeloid leukemia.
Collapse
|
67
|
Nishikino T, Kojima S, Homma M. [Flagellar related genes and functions in Vibrio]. Nihon Saikingaku Zasshi 2021; 75:195-214. [PMID: 33390367 DOI: 10.3412/jsb.75.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacteria can move or swim by flagella. On the other hand, the motile ability is not necessary to live at all. In laboratory, the flagella-deficient strains can grow just like the wild-type strains. The flagellum is assembled from more than 20 structural proteins and there are more than 50 genes including the structural genes to regulate or support the flagellar formation. The cost to construct the flagellum is so expensive. The fact that it evolved as a motor organ means even at such the large cost shows that the flagellum is essential for survival in natural condition. In this review, we would like to focus on the flagella-related researches conducted by the authors and the flagellar research on Vibrio spp.
Collapse
|
68
|
Sato D, Morishita S, Hotta K, Ito Y, Shirayama A, Kojima S, Qin W, Tsubaki A. Supine Cycling Exercise Enhances Cerebral Oxygenation of Motor-Related Areas in Healthy Male Volunteers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1269:295-300. [PMID: 33966233 DOI: 10.1007/978-3-030-48238-1_47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It has been reported that the cardiovascular response in the supine position is different from that in the sitting position. However, there are few reports on the effects of posture on cerebral oxygenation during exercise. Cycling exercises change oxygenated hemoglobin (O2Hb) and deoxygenated hemoglobin (HHb) levels in motor-related areas. Therefore, this study compared O2Hb levels at motor-related areas during recumbent versus supine cycling. Eleven healthy young male performed a 30-min cycling exercise protocol at 50% of the maximal oxygen uptake (VO2 max) in the recumbent and supine positions. Near-infrared spectroscopy (NIRS) was used to measure exercise-induced O2Hb and HHb changes in the right (R-PMA) and left premotor areas (L-PMA), supplementary motor area (SMA), and primary motor cortex (M1). In R-PMA, L-PMA and SMA, the O2Hb obtained during supine cycling was significantly higher than that during recumbent cycling (R-PMA, 0.031 ± 0.01 vs. 0.693 ± 0.01; L-PMA, 0.027 ± 0.01 vs. 0.085 ± 0.013; SMA, 0.041 ± 0.011 vs. 0.076 ± 0.008 mM·cm, recumbent vs. supine position; p < 0.05). These results suggest that supine cycling exercise increases R-PMA, L-PMA, and SMA O2Hb levels in healthy young men.
Collapse
|
69
|
Qin W, Kojima S, Morishita S, Hotta K, Oyama K, Tsubaki A. Effects of 20-Minute Intensive Exercise on Subjects with Different Working Memory Bases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1269:289-294. [PMID: 33966232 DOI: 10.1007/978-3-030-48238-1_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Continuous moderate-intensity aerobic exercise improves cognitive function including working memory (WM). We aimed to determine the differences in the effects of exercise on WM based on pre-exercise WM function and oxyhemoglobin (O2Hb) changes. We enrolled 12 healthy adult males who, after a 4-min rest and warm-up, performed a 20-min exercise regime at a workload corresponding to 50% of maximal oxygen consumption. They performed a pre- and postexercise two-back test, and the reaction times were recorded. Near-infrared spectroscopy was used to monitor the O2Hb concentration in the left prefrontal cortex during the exercise. Based on the pre-exercise reaction time, the subjects were allocated into either a fast group (FG) or a slow group (SG). The pre- and postexercise changes in the reaction time and time-to-peak O2Hb were compared. Further, we determined the relationship between the change in the reaction time and time-to-peak O2Hb. There was no significant change in the reaction time of the FG; however, that in the SG decreased significantly. The time-to-peak O2Hb in the FG was significantly less than that in the SG. These results showed differences in the changes of reaction time and O2Hb changes between the FG and SG.
Collapse
|
70
|
Dingler FA, Wang M, Mu A, Millington CL, Oberbeck N, Watcham S, Pontel LB, Kamimae-Lanning AN, Langevin F, Nadler C, Cordell RL, Monks PS, Yu R, Wilson NK, Hira A, Yoshida K, Mori M, Okamoto Y, Okuno Y, Muramatsu H, Shiraishi Y, Kobayashi M, Moriguchi T, Osumi T, Kato M, Miyano S, Ito E, Kojima S, Yabe H, Yabe M, Matsuo K, Ogawa S, Göttgens B, Hodskinson MRG, Takata M, Patel KJ. Two Aldehyde Clearance Systems Are Essential to Prevent Lethal Formaldehyde Accumulation in Mice and Humans. Mol Cell 2020; 80:996-1012.e9. [PMID: 33147438 PMCID: PMC7758861 DOI: 10.1016/j.molcel.2020.10.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/20/2020] [Accepted: 10/08/2020] [Indexed: 01/04/2023]
Abstract
Reactive aldehydes arise as by-products of metabolism and are normally cleared by multiple families of enzymes. We find that mice lacking two aldehyde detoxifying enzymes, mitochondrial ALDH2 and cytoplasmic ADH5, have greatly shortened lifespans and develop leukemia. Hematopoiesis is disrupted profoundly, with a reduction of hematopoietic stem cells and common lymphoid progenitors causing a severely depleted acquired immune system. We show that formaldehyde is a common substrate of ALDH2 and ADH5 and establish methods to quantify elevated blood formaldehyde and formaldehyde-DNA adducts in tissues. Bone-marrow-derived progenitors actively engage DNA repair but also imprint a formaldehyde-driven mutation signature similar to aging-associated human cancer mutation signatures. Furthermore, we identify analogous genetic defects in children causing a previously uncharacterized inherited bone marrow failure and pre-leukemic syndrome. Endogenous formaldehyde clearance alone is therefore critical for hematopoiesis and in limiting mutagenesis in somatic tissues.
Collapse
|
71
|
Oka Y, Hamada M, Nakazawa Y, Muramatsu H, Okuno Y, Higasa K, Shimada M, Takeshima H, Hanada K, Hirano T, Kawakita T, Sakaguchi H, Ichimura T, Ozono S, Yuge K, Watanabe Y, Kotani Y, Yamane M, Kasugai Y, Tanaka M, Suganami T, Nakada S, Mitsutake N, Hara Y, Kato K, Mizuno S, Miyake N, Kawai Y, Tokunaga K, Nagasaki M, Kito S, Isoyama K, Onodera M, Kaneko H, Matsumoto N, Matsuda F, Matsuo K, Takahashi Y, Mashimo T, Kojima S, Ogi T. Digenic mutations in ALDH2 and ADH5 impair formaldehyde clearance and cause a multisystem disorder, AMeD syndrome. SCIENCE ADVANCES 2020; 6:eabd7197. [PMID: 33355142 PMCID: PMC11206199 DOI: 10.1126/sciadv.abd7197] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Rs671 in the aldehyde dehydrogenase 2 gene (ALDH2) is the cause of Asian alcohol flushing response after drinking. ALDH2 detoxifies endogenous aldehydes, which are the major source of DNA damage repaired by the Fanconi anemia pathway. Here, we show that the rs671 defective allele in combination with mutations in the alcohol dehydrogenase 5 gene, which encodes formaldehyde dehydrogenase (ADH5FDH ), causes a previously unidentified disorder, AMeD (aplastic anemia, mental retardation, and dwarfism) syndrome. Cellular studies revealed that a decrease in the formaldehyde tolerance underlies a loss of differentiation and proliferation capacity of hematopoietic stem cells. Moreover, Adh5-/-Aldh2 E506K/E506K double-deficient mice recapitulated key clinical features of AMeDS, showing short life span, dwarfism, and hematopoietic failure. Collectively, our results suggest that the combined deficiency of formaldehyde clearance mechanisms leads to the complex clinical features due to overload of formaldehyde-induced DNA damage, thereby saturation of DNA repair processes.
Collapse
|
72
|
Hama A, Muramatsu H, Narita A, Nishikawa E, Kawashima N, Nishio N, Kojima S, Takahashi Y. Risk factors for secondary poor graft function after bone marrow transplantation in children with acquired aplastic anemia. Pediatr Transplant 2020; 24:e13828. [PMID: 32876388 DOI: 10.1111/petr.13828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/30/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
In patients with acquired AA, PGF is a major cause of cytopenia after hematopoietic stem cell transplantation. An increased incidence of PGF, especially sPGF, has been noted after the introduction of the FLU/CY regimen in children with acquired AA. To clarify the risk factors for sPGF, the clinical data of 49 patients (median age, 11 years; range, 1-19 years) with AA who received allogeneic BMT at Nagoya University Hospital from 1997 to 2016 were analyzed. Out of the 49 patients, 7 developed sPGF, and the 5-year CI was 0.15 (95% CI, 0.04-0.25). Five received the FLU/CY regimen, and the 5-year CI of sPGF was significantly higher in patients who received the regimen (0.36; 95% CI, 0.12-0.62) than in those who were conditioned with the non-FLU/CY regimen (0.06; 95% CI, 0.01-0.17; P = .01). The multivariate analysis confirmed that the FLU/CY regimen (hazard ratio, 6.12; 95% CI, 1.16-32.4; P = .03) was a significant risk factor for sPGF. sPGF improved spontaneously without stem cell boost infusions in 5 patients, ranging from 460 to 3539 days after BMT. The 10-year CI of the spontaneous trilineage recovery was 0.83 (95% CI, 0.00-0.97), and all 7 patients are alive. The FLU/CY regimen was identified as a risk factor for the sPGF development in patients with AA. The establishment of the optimal conditioning regimens for children with AA is warranted.
Collapse
|
73
|
Kimura T, Ito T, Honda S, Nishihira K, Kojima S, Takegami M, Asaumi Y, Suzuki M, Kosuge M, Takahashi J, Sakata Y, Takayama M, Sumiyoshi T, Kimura K, Yasuda S. Sex differences in door-to-balloon time and long-term adverse events after percutaneous coronary intervention for acute coronary syndrome: a sub-study from the Prospective JAMIR study. Eur Heart J 2020. [DOI: 10.1093/ehjci/ehaa946.3177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Shortening of onset to admission time (OAT) and door-to-balloon time (DBT) is associated with lower adverse cardiac event after primary percutaneous coronary intervention (PCI) in patients with acute myocardial infarction (AMI). Bleeding event also results in poor outcome in patients with AMI after primary PCI. Little is known about sex differences in DBT and ischemic, bleeding events after AMI.
Purpose
This study aimed to assess the sex differences of OAT, DTB and adverse cardiac event, incident of bleeding event after primary PCI in patients with AMI.
Methods
The Japan AMI Registry (JAMIR) is a multicenter, nationwide, prospective registry enrolling patients with AMI from 50 institutes between December 2015 and May 2017. Primary endpoints of this study were ischemic event (composite of cardiovascular death, myocardial infarction and ischemic stroke) and bleeding event (BARC type 3 or 5,).Median follow-up period was 12 months.
Results
A total of 3,411 patients were enrolled at first. Among them, 329 patients without treated with PCI and 199 patients missing OAT time were excluded from this study. A total 2883 patients of men (n=2240, 77.7%) and women (n=643, 22.3%) were enrolled. OAT and DBT of women were significantly longer than that of men (OAT: 130min, interquartile range 62–300 min vs. 155 min, interquartile range 69–350 min, p=0.040, DBT: 67 min, interquartile range 50–95 min vs. 75 min, interquartile range 53–120 min, p<0.001). There was no significant difference in ischemic events between men and women (7.1% vs. 7.5%, log-rank p=0.741, Figure 1). Multivariate Cox regression analysis showed female sex was significantly associated with lower ischemic event (hazard ratio 0.57; 95% confidence interval 0.38–0.85; p=0.007). Bleeding event of women was significantly higher than that of men (BARC type 3 or 5: 3.8% vs. 7.8%, p<0.001, Figure 2).
Conclusion
The real-world database of the JAMIR showed that the female sex was significant factor for the delay in primary percutaneous coronary intervention and high incident of bleeding, however, ischemic event was lower than that of male sex. Sex difference appears to be associated with ischemic and bleeding event after acute myocardial infarction.
Funding Acknowledgement
Type of funding source: None
Collapse
|
74
|
Torii Y, Horiba K, Hayano S, Kato T, Suzuki T, Kawada JI, Takahashi Y, Kojima S, Okuno Y, Ogi T, Ito Y. Comprehensive pathogen detection in sera of Kawasaki disease patients by high-throughput sequencing: a retrospective exploratory study. BMC Pediatr 2020; 20:482. [PMID: 33059644 PMCID: PMC7557310 DOI: 10.1186/s12887-020-02380-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Background Kawasaki disease (KD) is an idiopathic systemic vasculitis that predominantly damages coronary arteries in children. Various pathogens have been investigated as triggers for KD, but no definitive causative pathogen has been determined. As KD is diagnosed by symptoms, several days are needed for diagnosis. Therefore, at the time of diagnosis of KD, the pathogen of the trigger may already be diminished. The aim of this study was to explore comprehensive pathogens in the sera at the acute stage of KD using high-throughput sequencing (HTS). Methods Sera of 12 patients at an extremely early stage of KD and 12 controls were investigated. DNA and RNA sequences were read separately using HTS. Sequence data were imported into the home-brew meta-genomic analysis pipeline, PATHDET, to identify the pathogen sequences. Results No RNA virus reads were detected in any KD case except for that of equine infectious anemia, which is known as a contaminant of commercial reverse transcriptase. Concerning DNA viruses, human herpesvirus 6B (HHV-6B, two cases) and Anelloviridae (eight cases) were detected among KD cases as well as controls. Multiple bacterial reads were obtained from KD and controls. Bacteria of the genera Acinetobacter, Pseudomonas, Delfita, Roseomonas, and Rhodocyclaceae appeared to be more common in KD sera than in the controls. Conclusion No single pathogen was identified in serum samples of patients at the acute phase of KD. With multiple bacteria detected in the serum samples, it is difficult to exclude the possibility of contamination; however, it is possible that these bacteria might stimulate the immune system and induce KD.
Collapse
|
75
|
Carroll BL, Nishikino T, Guo W, Zhu S, Kojima S, Homma M, Liu J. The flagellar motor of Vibrio alginolyticus undergoes major structural remodeling during rotational switching. eLife 2020; 9:61446. [PMID: 32893817 PMCID: PMC7505661 DOI: 10.7554/elife.61446] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/04/2020] [Indexed: 11/26/2022] Open
Abstract
The bacterial flagellar motor switches rotational direction between counterclockwise (CCW) and clockwise (CW) to direct the migration of the cell. The cytoplasmic ring (C-ring) of the motor, which is composed of FliG, FliM, and FliN, is known for controlling the rotational sense of the flagellum. However, the mechanism underlying rotational switching remains elusive. Here, we deployed cryo-electron tomography to visualize the C-ring in two rotational biased mutants in Vibrio alginolyticus. We determined the C-ring molecular architectures, providing novel insights into the mechanism of rotational switching. We report that the C-ring maintained 34-fold symmetry in both rotational senses, and the protein composition remained constant. The two structures show FliG conformational changes elicit a large conformational rearrangement of the rotor complex that coincides with rotational switching of the flagellum. FliM and FliN form a stable spiral-shaped base of the C-ring, likely stabilizing the C-ring during the conformational remodeling.
Collapse
|