51
|
Pernice H, Garcia P, Willner H, Francisco JS, Mills FP, Allen M, Yung YL. Laboratory evidence for a key intermediate in the Venus atmosphere: peroxychloroformyl radical. Proc Natl Acad Sci U S A 2004; 101:14007-10. [PMID: 15375212 PMCID: PMC521112 DOI: 10.1073/pnas.0405501101] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For two decades, the peroxychloroformyl radical, ClC(O)OO, has played a central role in models of the chemical stability of the Venus atmosphere. No confirmation, however, has been possible in the absence of laboratory measurements for ClC(O)OO. We report the isolation of ClC(O)OO in a cryogenic matrix and its infrared and ultraviolet spectral signatures. These experiments show that ClC(O)OO is thermally and photolytically stable in the Venus atmosphere. These experimental discoveries validate the existence of ClC(O)OO, confirm several longstanding model assumptions, and provide a basis for the astronomical search for this important radical species.
Collapse
|
52
|
Tromp TK, Shia RL, Allen M, Eiler JM, Yung YL. Potential environmental impact of a hydrogen economy on the stratosphere. Science 2003; 300:1740-2. [PMID: 12805546 DOI: 10.1126/science.1085169] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The widespread use of hydrogen fuel cells could have hitherto unknown environmental impacts due to unintended emissions of molecular hydrogen, including an increase in the abundance of water vapor in the stratosphere (plausibly by as much as approximately 1 part per million by volume). This would cause stratospheric cooling, enhancement of the heterogeneous chemistry that destroys ozone, an increase in noctilucent clouds, and changes in tropospheric chemistry and atmosphere-biosphere interactions.
Collapse
|
53
|
Huang XL, Yung YL, Margolis JS. Use of high-resolution measurements for the retrieval of temperature and gas-concentration profiles from outgoing infrared spectra in the presence of cirrus clouds. APPLIED OPTICS 2003; 42:2155-2165. [PMID: 12716157 DOI: 10.1364/ao.42.002155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We explore ways in which high-spectral-resolution measurements can aid in the retrieval of atmospheric temperature and gas-concentration profiles from outgoing infrared spectra when optically thin cirrus clouds are present. Simulated outgoing spectra that contain cirrus are fitted with spectra that do not contain cirrus, and the residuals are examined. For those lines with weighting functions that peak near the same altitude as the thin cirrus, unique features are observed in the residuals. These unique features are highly sensitive to the resolution of the instrumental line shape. For thin cirrus these residual features are narrow (< or = 0.1 cm(-1)), so high spectral resolution is required for unambiguous observation. The magnitudes of these unique features are larger than the noise of modern instruments. The sensitivities of these features to cloud height and cloud optical depth are also discussed. Our sensitivity studies show that, when the errors in the estimation of temperature profiles are not large, the dominant contribution to the residuals is the misinterpretation of cirrus. An analysis that focuses on information content is also presented. An understanding of the magnitude of the effect and of its dependence on spectral resolution as well as on spectral region is important for retrieving spacecraft data and for the design of future infrared instruments for forecasting weather and monitoring greenhouse gases.
Collapse
|
54
|
Irion FW, Gunson MR, Toon GC, Chang AY, Eldering A, Mahieu E, Manney GL, Michelsen HA, Moyer EJ, Newchurch MJ, Osterman GB, Rinsland CP, Salawitch RJ, Sen B, Yung YL, Zander R. Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment Version 3 data retrievals. APPLIED OPTICS 2002; 41:6968-6979. [PMID: 12463241 DOI: 10.1364/ao.41.006968] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Version 3 of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment data set for some 30 trace and minor gas profiles is available. From the IR solar-absorption spectra measured during four Space Shuttle missions (in 1985, 1992, 1993, and 1994), profiles from more than 350 occultations were retrieved from the upper troposphere to the lower mesosphere. Previous results were unreliable for tropospheric retrievals, but with a new global-fitting algorithm profiles are reliably returned down to altitudes as low as 6.5 km (clouds permitting) and include notably improved retrievals of H2O, CO, and other species. Results for stratospheric water are more consistent across the ATMOS spectral filters and do not indicate a net consumption of H2 in the upper stratosphere. A new sulfuric-acid aerosol product is described. An overview of ATMOS Version 3 processing is presented with a discussion of estimated uncertainties. Differences between these Version 3 and previously reported Version 2 ATMOS results are discussed. Retrievals are available at http://atmos.jpl.nasa.gov/atmos.
Collapse
|
55
|
Leu MT, Timonen RS, Keyser LF, Yung YL. Heterogeneous Reactions of HNO3(g) + NaCl(s) .fwdarw. HCl(g) + NaNO3(s) and N2O5(g) + NaCl(s) .fwdarw. ClNO2(g) + NaNO3(s). ACTA ACUST UNITED AC 2002. [DOI: 10.1021/j100035a026] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
56
|
Gerstell MF, Francisco JS, Yung YL, Boxe C, Aaltonee ET. Keeping Mars warm with new super greenhouse gases. Proc Natl Acad Sci U S A 2001; 98:2154-7. [PMID: 11226208 PMCID: PMC30108 DOI: 10.1073/pnas.051511598] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2000] [Indexed: 11/18/2022] Open
Abstract
Our selection of new super greenhouse gases to fill a putative "window" in a future Martian atmosphere relies on quantum-mechanical calculations. Our study indicates that if Mars could somehow acquire an Earth-like atmospheric composition and surface pressure, then an Earth-like temperature could be sustained by a mixture of five to seven fluorine compounds. Martian mining requirements for replenishing the fluorine could be comparable to current terrestrial extraction.
Collapse
|
57
|
|
58
|
Lee AYT, Yung YL, Moses J. Photochemical modeling of CH3abundances in the outer solar system. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001186] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
59
|
|
60
|
Wong AS, Lee AY, Yung YL, Ajello JM. Jupiter: Aerosol Chemistry in the Polar Atmosphere. THE ASTROPHYSICAL JOURNAL 2000; 534:L215-L217. [PMID: 10813686 DOI: 10.1086/312675] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2000] [Accepted: 03/31/2000] [Indexed: 05/23/2023]
Abstract
Aromatic compounds have been considered a likely candidate for enhanced aerosol formation in the polar region of Jupiter. We develop a new chemical model for aromatic compounds in the Jovian auroral thermosphere/ionosphere. The model is based on a previous model for hydrocarbon chemistry in the Jovian atmosphere and is constrained by observations from Voyager, Galileo, and the Infrared Space Observatory. Precipitation of energetic electrons provides the major energy source for the production of benzene and other heavier aromatic hydrocarbons. The maximum mixing ratio of benzene in the polar model is 2x10-9, a value that can be compared with the observed value of 2+2-1x10-9 in the north polar auroral region. Sufficient quantities of the higher ring species are produced so that their saturated vapor pressures are exceeded. Condensation of these molecules is expected to lead to aerosol formation.
Collapse
|
61
|
Abstract
The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H(2) and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H(2) and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H(2)O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.
Collapse
|
62
|
Kass DM, Yung YL. Water on Mars: isotopic constraints on exchange between the atmosphere and surface. GEOPHYSICAL RESEARCH LETTERS 1999; 26:3653-3656. [PMID: 11543401 DOI: 10.1029/1999gl008372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Using a new measurement of the D/H fractionation efficiency and new estimates of the water loss, we calculate that Mars has the equivalent of a approximately 9 m global water layer in a reservoir that exchanges with the atmosphere. The measured D/H enrichment is about 5 times the terrestrial value, but without exchange, the atmosphere converges on an enrichment of 50 in about 0.5 Ma. Due to the large buffering reservoir and the rapid loss rate (10(-3) pr-micrometers yr-1), the small atmospheric reservoir, averaging 10 pr-micrometers, is unlikely to be in continuous isotopic equilibrium with the full 9 m exchangeable reservoir. Instead, it presumably equilibrates during periods of high obliquity; the atmospheric D/H ratio is expected to be enriched in between such periods. If isotopic exchange with a small (4 mm global layer) reservoir occurs under current conditions, it possible for the atmospheric D/H ratio to be within 10% of its long term equilibrium.
Collapse
|
63
|
Cheng BM, Chew EP, Liu CP, Bahou M, Lee YP, Yung YL, Gerstell MF. Photo-induced fractionation of water isotopomers in the Martian atmosphere. GEOPHYSICAL RESEARCH LETTERS 1999; 26:3657-3660. [PMID: 11543402 DOI: 10.1029/1999gl008367] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The history and size of the water reservoirs on early Mars can be constrained using isotopic ratios of deuterium to hydrogen. We present new laboratory measurements of the ultraviolet cross-sections of H2O and its isotopomers, and modeling calculations in support of a photo-induced fractionation effect (PHIFE), that reconciles a discrepancy between past theoretical modeling and recent observations. This supports the hypothesis that Mars had an early warm atmosphere and has lost at least a 50-m global layer of water. Likely applications of PHIFE to other planetary atmospheres are sketched.
Collapse
|
64
|
Liao H, Yung YL, Seinfeld JH. Effects of aerosols on tropospheric photolysis rates in clear and cloudy atmospheres. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999jd900409] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
65
|
Lunine JI, Yung YL, Lorenz RD. On the volatile inventory of Titan from isotopic abundances in nitrogen and methane. PLANETARY AND SPACE SCIENCE 1999; 47:1291-1303. [PMID: 11543194 DOI: 10.1016/s0032-0633(99)00052-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We analyze recently published nitrogen and hydrogen isotopic data to constrain the initial volatile abundances on Saturn's giant moon Titan. The nitrogen data are interpreted in terms of a model of non-thermal escape processes that lead to enhancement in the heavier isotope. We show that these data do not, in fact, strongly constrain the abundance of nitrogen present in Titan's early atmosphere, and that a wide range of initial atmospheric masses (all larger than the present value) can yield the measured enhancement. The enrichment in deuterated methane is now much better determined than it was when Pinto et al. (1986. Nature 319, 388-390) first proposed a photochemical mechanism to preferentially retain the deuterium. We develop a simple linear theory to provide a more reliable estimate of the relative dissociation rates of normal and deuterated methane. We utilize the improved data and models to compute initial methane reservoirs consistent with the observed enhancement. The result of this analysis agrees with an independent estimate for the initial methane abundance based solely on the present-day rate of photolysis and an assumption of steady state. This consistency in reservoir size is necessary but not sufficient to infer that methane photolysis has proceeded steadily over the age of the solar system to produce large quantities of less volatile organics. Our analysis indicates an epoch of early atmospheric escape of nitrogen, followed by a later addition of methane by outgassing from the interior. The results also suggest that Titan's volatile inventory came in part or largely from a circum-Saturnian disk of material more reducing than the surrounding solar nebula. Many of the ambiguities inherent in the present analysis can be resolved through Cassini-Huygens data and a program of laboratory studies on isotopic and molecular exchange processes. The value of, and interest in, the Cassini-Huygens data can be greatly enhanced if such a program were undertaken prior to the prime phase of the mission.
Collapse
|
66
|
|
67
|
Abstract
We propose an isotopic fractionation mechanism, based on photolytic destruction, to explain the 15N/14N and 18O/16O fractionation of stratospheric nitrous oxide (N2O) and reconcile laboratory experiments with atmospheric observations. The theory predicts that (i) the isotopomers 15N14N16O and 14N15N16O have very different isotopic fractionations in the stratosphere, and (ii) laboratory photolysis experiments conducted at 205 nanometers should better simulate the observed isotopic fractionation of stratospheric N2O. Modeling results indicate that there is no compelling reason to invoke a significant chemical source of N2O in the middle atmosphere and that individual N2O isotopomers might be useful tracers of stratospheric air parcel motion.
Collapse
|
68
|
Yung YL, Lee AY, Irion FW, DeMore WB, Wen J. Carbon dioxide in the atmosphere: isotopic exchange with ozone and its use as a tracer in the middle atmosphere. JOURNAL OF GEOPHYSICAL RESEARCH 1997; 102:10857-66. [PMID: 11541125 DOI: 10.1029/97jd00528] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Atmospheric heavy ozone is enriched in the isotopes 18O and 17O. The magnitude of this enhancement, of the order of 100%, is very large compared with that commonly known in atmospheric chemistry and geochemistry. The heavy oxygen atom in heavy ozone is therefore useful as a tracer of chemical species and pathways that involve ozone or its derived products. As a test of the isotopic exchange reactions, we successfully carry out a series of numerical experiments to simulate the results of the laboratory experiments performed by Wen and Thiemens [1993] on ozone and CO2. A small discrepancy between the experimental and the model values for 17O exchange is also revealed. The results are used to compute the magnitude of isotopic exchange between ozone and carbon dioxide via the excited atom O(1D) in the middle atmosphere. The model for 18O is in good agreement with the observed values.
Collapse
|
69
|
Cageao RP, Ha YL, Jiang Y, Morgan MF, Yung YL, Sander SP. Calculated hydroxyl A2 sigma --> X2 pi (0, 0) band emission rate factors applicable to atmospheric spectroscopy. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER 1997; 57:703-717. [PMID: 11540475 DOI: 10.1016/s0022-4073(96)00105-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A calculation of the A2 sigma --> X2 pi (0, 0) band emission rate factors and line center absorption cross sections of OH applicable to its measurement using solar resonant fluorescence in the terrestrial atmosphere is presented in this paper. The most accurate available line parameters have been used. Special consideration has been given to the solar input flux because of its highly structured Fraunhofer spectrum. The calculation for the OH atmospheric emission rate factor in the solar resonant fluorescent case is described in detail with examples and intermediate results. Results of this calculation of OH emission rate factors for individual rotational lines are on average 30% lower than the values obtained in an earlier work.
Collapse
|
70
|
Yung YL, Nair H, Gerstell MF. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation. ICARUS 1997; 130:222-224. [PMID: 11541436 DOI: 10.1006/icar.1997.5808] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface.
Collapse
|
71
|
|
72
|
Jaegle L, Yung YL, Toon GC, Sen B, Blavier JF. Balloon observations of organic and inorganic chlorine in the stratosphere: the role of HClO4 production on sulfate aerosols. GEOPHYSICAL RESEARCH LETTERS 1996; 23:1749-1752. [PMID: 11539365 DOI: 10.1029/96gl01543] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Simultaneous observations of stratospheric organic and inorganic chlorine were made in September 1993 out of Fort Sumner, New Mexico, using JPL balloon-borne MkIV interferometer. Between 15 and 20 km, a significant fraction (20-60%) of the inorganic chlorine could not be accounted for by the sum of measured HCl, ClONO2, and HOCl. Laboratory measurements of the reaction of ClO radicals on sulfuric acid solutions have indicated that, along with HCl, small amounts of perchloric acid, HClO4, were formed. Very little is known about the fate of HClO4 in the stratosphere and we use a photochemical box model to determine the impact of this new species on the partitioning of inorganic chlorine in the stratosphere. Assuming that HClO4 is photochemically stable, it is shown that in the enhanced aerosol loading conditions resulting from Mt. Pinatubo's eruption, HClO4 could represent a significant reservoir of chlorine in the lower stratosphere, sequestering up to 0.2 ppbv (or 50%) of the total inorganic chlorine at 16 km. The occurrence of this new species could bring to closure the inorganic chlorine budget deficiency made apparent by recent ER-2 aircraft in situ measurements of HCl.
Collapse
|
73
|
Jiang Y, Yung YL. Concentrations of Tropospheric Ozone from 1979 to 1992 over Tropical Pacific South America from TOMS Data. Science 1996; 272:714-6. [PMID: 8662568 DOI: 10.1126/science.272.5262.714] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An estimate of tropospheric ozone concentrations was obtained from the difference in the Total Ozone Mapping Spectrometer (TOMS) data between the high Andes and the Pacific Ocean. From 1979 to 1992 the tropospheric ozone concentration apparently increased by 1.48 ± 0.40 percent per year or 0.21 ± 0.06 Dobson unit per year over South America and the surrounding oceans. An increase in biomass burning in the Southern Hemisphere can account for this trend in tropospheric ozone concentrations.
Collapse
|
74
|
Jiang Y, Yung YL, Zurek RW. Decadal evolution of the Antarctic ozone hole. JOURNAL OF GEOPHYSICAL RESEARCH 1996; 101:8985-99. [PMID: 11539364 DOI: 10.1029/96jd00063] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ozone column amounts obtained by the total ozone mapping spectrometer (TOMS) in the southern polar region are analyzed during late austral winter and spring (days 240-300) for 1980-1991 using area-mapping techniques and area-weighted vortex averages. The vortex here is defined using the -50 PVU (1 PVU = 1.0 x 10(-6) K kg-1 m2 s-1) contour on the 500 K isentropic surface. The principal results are: (1) there is a distinct change after 1985 in the vortex-averaged column ozone depletion rate during September and October, the period of maximum ozone loss, and (2) the vortex-averaged column ozone in late August (day 240) has dropped by 70 Dobson units (DU) in a decade due to the loss in the dark and the dilution effect. The mean ozone depletion rate in the vortex between day 240 and the day of minimum vortex-averaged ozone is about 1 DU d-1 at the beginning of the decade, increasing to about 1.8 DU d-1 by 1985, and then apparently saturating thereafter. The vortex-average column ozone during September and October has declined at the rate of 11.3 DU yr-1 (3.8%) from 1980 to 1987 (90 DU over 8 years) and at a smaller rate of 2 DU yr-1 (0.9%) from 1987 to 1991 (10 DU over 5 years, excluding the anomalous year 1988). We interpret the year-to-year trend in the ozone depletion rate during the earlier part of the decade as due to the rise of anthropogenic chlorine in the atmosphere. The slower trend at the end of the decade indicates saturation of ozone depletion in the vortex interior, in that chlorine amounts in the mid-1980s were already sufficiently high to deplete most of the ozone in air within the isolated regions of the lower-stratospheric polar vortex. In subsequent years, increases in stratospheric chlorine may have enhanced wintertime chemical loss of ozone in the south polar vortex even before major losses during the Antarctic spring.
Collapse
|
75
|
Anbar AD, Yung YL, Chavez FP. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity. GLOBAL BIOGEOCHEMICAL CYCLES 1996; 10:175-190. [PMID: 11539402 DOI: 10.1029/95gb02743] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The oceans play an important role in the geochemical cycle of methyl bromide (CH3Br), the major carrier of O3-destroying bromine to the stratosphere. The quantity of CH3Br produced annually in seawater is comparable to the amount entering the atmosphere each year from natural and anthropogenic sources. The production mechanism is unknown but may be biological. Most of this CH3Br is consumed in situ by hydrolysis or reaction with chloride. The size of the fraction which escapes to the atmosphere is poorly constrained; measurements in seawater and the atmosphere have been used to justify both a large oceanic CH3Br flux to the atmosphere and a small net ocean sink. Since the consumption reactions are extremely temperature-sensitive, small temperature variations have large effects on the CH3Br concentration in seawater, and therefore on the exchange between the atmosphere and the ocean. The net CH3Br flux is also sensitive to variations in the rate of CH3Br production. We have quantified these effects using a simple steady state mass balance model. When CH3Br production rates are linearly scaled with seawater chlorophyll content, this model reproduces the latitudinal variations in marine CH3Br concentrations observed in the east Pacific Ocean by Singh et al. [1983] and by Lobert et al. [1995]. The apparent correlation of CH3Br production with primary production explains the discrepancies between the two observational studies, strengthening recent suggestions that the open ocean is a small net sink for atmospheric CH3Br, rather than a large net source. The Southern Ocean is implicated as a possible large net source of CH3Br to the atmosphere. Since our model indicates that both the direction and magnitude of CH3Br exchange between the atmosphere and ocean are extremely sensitive to temperature and marine productivity, and since the rate of CH3Br production in the oceans is comparable to the rate at which this compound is introduced to the atmosphere, even small perturbations to temperature or productivity can modify atmospheric CH3Br. Therefore atmospheric CH3Br should be sensitive to climate conditions. Our modeling indicates that climate-induced CH3Br variations can be larger than those resulting from small (+/- 25%) changes in the anthropogenic source, assuming that this source comprises less than half of all inputs. Future measurements of marine CH3Br, temperature, and primary production should be combined with such models to determine the relationship between marine biological activity and CH3Br production. Better understanding of the biological term is especially important to assess the importance of non-anthropogenic sources to stratospheric ozone loss and the sensitivity of these sources to global climate change.
Collapse
|