51
|
Pio-Lopez L, Levin M. Morphoceuticals: perspectives for discovery of drugs targeting anatomical control mechanisms in regenerative medicine, cancer and aging. Drug Discov Today 2023; 28:103585. [PMID: 37059328 DOI: 10.1016/j.drudis.2023.103585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/18/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Morphoceuticals are a new class of interventions that target the setpoints of anatomical homeostasis for efficient, modular control of growth and form. Here, we focus on a subclass: electroceuticals, which specifically target the cellular bioelectrical interface. Cellular collectives in all tissues form bioelectrical networks via ion channels and gap junctions that process morphogenetic information, controlling gene expression and allowing cell networks to adaptively and dynamically control growth and pattern formation. Recent progress in understanding this physiological control system, including predictive computational models, suggests that targeting bioelectrical interfaces can control embryogenesis and maintain shape against injury, senescence and tumorigenesis. We propose a roadmap for drug discovery focused on manipulating endogenous bioelectric signaling for regenerative medicine, cancer suppression and antiaging therapeutics. Teaser: By taking advantage of the native problem-solving competencies of cells and tissues, a new kind of top-down approach to biomedicine becomes possible. Bioelectricity offers an especially tractable interface for interventions targeting the software of life for regenerative medicine applications.
Collapse
|
52
|
Wang F, Pritzkow S, Soto C. PMCA for ultrasensitive detection of prions and to study disease biology. Cell Tissue Res 2023; 392:307-321. [PMID: 36567368 PMCID: PMC9790818 DOI: 10.1007/s00441-022-03727-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
The emergence of a novel class of infectious agent composed exclusively of a misfolded protein (termed prions) has been a challenge in modern biomedicine. Despite similarities on the behavior of prions with respect to conventional pathogens, the many uncertainties regarding the biology and virulence of prions make them a worrisome paradigm. Since prions do not contain nucleic acids and rely on a very different way of replication and spreading, it was necessary to invent a novel technology to study them. In this article, we provide an overview of such a technology, termed protein misfolding cyclic amplification (PMCA), and summarize its many applications to detect prions and understand prion biology.
Collapse
|
53
|
Li C, Wang Y, Li PF, Fu Q. Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications. Acta Biomater 2023; 160:1-13. [PMID: 36764595 DOI: 10.1016/j.actbio.2023.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Nucleic acid nanomaterials with good biocompatibility, biodegradability, and programmability have important applications in biomedical field. Nucleic acid nanomaterials are usually combined with some inorganic nanomaterials to improve their biological stability. However, undefined toxic side effects of composite nanocarriers hamper their application in vivo. As a nanotool capable of avoiding potential biotoxicity, nanostructures composed entirely of DNA oligonucleotides have been rapidly developed in the field of biomedicine in recent years. Rolling circle amplification (RCA) is an isothermal enzymatic nucleic acid amplification technology for large-scale production of periodic DNA/RNA with pre-designed desirable structures and functions. RCA products with different functional parts can be customized by changing the sequence of the circular template, thereby generating complex multifunctional DNA nanostructures, such as DNA nanowire, nanoflower, origami, nanotube, nanoribbon, etc. More importantly, RCA products as nonnicked building blocks can enhance the biostability of DNA nanostructures, especially in vivo. These RCA products-based nucleic acid nanostructures can be used as scaffolds or nanocarriers to interact or load with metal nanoparticles, proteins, lipids, cationic polymers, therapeutic nucleic acids or drugs, etc. This paper reviews the assembly strategies of RCA based DNA nanostructures with different shape and their applications in biosensing, bioimaging and biomedicine. Finally, the development prospects of the nucleic acid nanomaterials in clinical diagnosis and treatment of diseases are described. STATEMENT OF SIGNIFICANCE: As a nanotool capable of avoiding potential biotoxicity, nanostructures composed entirely of DNA oligonucleotides have been rapidly developed in the field of biomedicine in recent years. Rolling circle amplification (RCA) is an isothermal enzymatic nucleic acid amplification technology for large-scale production of periodic DNA/RNA with pre-designed desirable structures and functions. This paper reviews the construction of various shapes of pure nucleic acid nanomaterials based on RCA products and their applications in biosensing, bioimaging and biomedicine. This will promote the development of biocompatible DNA nanovehicles and their further application in living systems, including bioimaging, molecular detection, disease diagnosis and drug delivery, finally producing a significant impact in the field of nanotechnology and nanomedicine.
Collapse
|
54
|
Yang Z, Shi R, Nie Y, Gao F, Fan D. A positive look at negative results in biomedical science. Life Sci 2023; 320:121554. [PMID: 36889665 DOI: 10.1016/j.lfs.2023.121554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
|
55
|
Fleming MD, Safaeinili N, Knox M, Hernandez E, Brewster AL. Between health care and social services: Boundary objects and cross-sector collaboration. Soc Sci Med 2023; 320:115758. [PMID: 36753994 DOI: 10.1016/j.socscimed.2023.115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Health care systems throughout the United States are initiating collaborations with social services agencies. These cross-sector collaborations aim to address patients' social needs-such as housing, food, income, and transportation-in health care settings. However, such collaborations can be challenging as health care and social service sectors are composed of distinct missions, institutions, professional roles, and modes of distributing resources. This paper examines how the "high-risk" patient with both medical and social needs is constructed as a shared object of intervention across sectors. Using the concept of boundary object, we illustrate how the high-risk patient category aggregates and represents multiple types of information-medical, social, service utilization, and cost-in ways that facilitate its use across sectors. The high-risk patient category works as a boundary object, in part, by the differing interpretations of "risk" available to collaborators. During 2019-2021, we conducted 75 semi-structured interviews and 31 field observations to investigate a relatively large-scale, cross-sector collaboration effort in California known as CommunityConnect. This program uses a predictive algorithm and big data sets to assign risk scores to the population and directs integrated health care and social services to patients identified as high risk. While the high-risk patient category worked well to foster collaboration in administrative and policy contexts, we find that it was less useful for patient-level interactions, where frontline case managers were often hesitant or unable to communicate information about the risk-based eligibility process. We suggest that the predominance of health care utilization (and its impacts on costs) in constructing the high-risk patient category may be medicalizing social services, with the potential to deepen inequities.
Collapse
|
56
|
Hinterberger A, Bea S. How do scientists model humanness? A qualitative study of human organoids in biomedical research. Soc Sci Med 2023; 320:115676. [PMID: 36657211 DOI: 10.1016/j.socscimed.2023.115676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
We investigate how changes in biotechnology are transforming the pursuit of human-specific models of disease and development. Our case study focuses on scientists who make human organoids. Organoids are stem cell-based three-dimensional multicellular living systems, made in labs, that mimic the function of human organs. Organoids create new opportunities for human health research, but we know little about how researchers understand the relationship between these model systems and the humans they are meant to represent. By analysing 25 interviews, complemented by observation and documentary research conducted in 2020-2022, we identify and discuss four themes that characterize how researcher's model humanness in organoids. For scientists, organoids are powerful tools to approximate the biology of human beings because they represent the closest thing to undertaking experiments on living humans, not previously possible. As laboratory tools, human organoids may replace the need for experimentation on animals, potentially contributing to the 3Rs of animal research (replacement, reduction, and refinement). Humanness is partly operationalized by modelling different human characteristics within organoids, such as male and female, different disease states, age, and other attributes. We find that human organoids are opening up previously closed spaces of experimentation and modelling in biomedicine. We argue that the humanness of organoid model systems are not a given but are enacted with and through a variety of scientific practices. These practices require critical attention from social scientists as the enactments of humanness being modelled in organoids have the potential to shape what and who counts as human in biomedical research.
Collapse
|
57
|
Díaz-Cornejo S, Otero MC, Banerjee A, Gordillo-Fuenzalida F. Biological properties of exopolysaccharides produced by Bacillus spp. Microbiol Res 2023; 268:127276. [PMID: 36525789 DOI: 10.1016/j.micres.2022.127276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
There is currently a constant search for ecofriendly bioproducts, which could contribute to various biomedical applications. Among bioproducts, exopolysaccharides are prominent contemporary extracellular biopolymers that are produced by a great variety of bacterial species. These homo- or heteropolymers are composed of monomeric sugar units linked by glycosidic bonds, which are secreted to the external medium. Bacillus spp. are reported to be present in different ecosystems and produce exopolysaccharides with different biological properties such as antioxidant, antibacterial, antiviral anti-inflammatory, among others. Since a great diversity of bacterial strains are able to produce exopolysaccharides, a great variation in the molecular composition is observed, which is indeed present in some of the chemical structures predicted until date. These molecular characteristics and their relations with different biological functions are discussed in order to visualize future applications in biomedical section.
Collapse
|
58
|
Biomedical applications of solid-binding peptides and proteins. Mater Today Bio 2023; 19:100580. [PMID: 36846310 PMCID: PMC9950531 DOI: 10.1016/j.mtbio.2023.100580] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Over the past decades, solid-binding peptides (SBPs) have found multiple applications in materials science. In non-covalent surface modification strategies, solid-binding peptides are a simple and versatile tool for the immobilization of biomolecules on a vast variety of solid surfaces. Especially in physiological environments, SBPs can increase the biocompatibility of hybrid materials and offer tunable properties for the display of biomolecules with minimal impact on their functionality. All these features make SBPs attractive for the manufacturing of bioinspired materials in diagnostic and therapeutic applications. In particular, biomedical applications such as drug delivery, biosensing, and regenerative therapies have benefited from the introduction of SBPs. Here, we review recent literature on the use of solid-binding peptides and solid-binding proteins in biomedical applications. We focus on applications where modulating the interactions between solid materials and biomolecules is crucial. In this review, we describe solid-binding peptides and proteins, providing background on sequence design and binding mechanism. We then discuss their application on materials relevant for biomedicine (calcium phosphates, silicates, ice crystals, metals, plastics, and graphene). Although the limited characterization of SBPs still represents a challenge for their design and widespread application, our review shows that SBP-mediated bioconjugation can be easily introduced into complex designs and on nanomaterials with very different surface chemistries.
Collapse
|
59
|
Acet Ö, Shcharbin D, Zhogla V, Kirsanov P, Halets-Bui I, Önal Acet B, Gök T, Bryszewska M, Odabaşı M. Dipeptide nanostructures: Synthesis, interactions, advantages and biomedical applications. Colloids Surf B Biointerfaces 2023; 222:113031. [PMID: 36435026 DOI: 10.1016/j.colsurfb.2022.113031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Short peptides are important in the design of self-assembled materials due to their versatility and flexibility. Self-assembled dipeptides, a group of peptide nanostructures, have highly attractive uses in the field of biomedicine. Recently these materials have proved to be important nanostructures because of their biocompatibility, low-cost and simplicity of synthesis, functionality/easy tunability and nano dimensions. Although there are different studies on peptide and protein-based nanostructures, more information about self-assembled nanostructures for dipeptides is still required to discover the advantages, challenges, importance, synthesis, interactions, and applications. This review describes and discusses the self-assembled dipeptide nanostructures especially for biomedical applications.
Collapse
|
60
|
Rimon-Zarfaty N, Schweda M. Editorial introduction: Biomedicine and life sciences as a challenge to human temporality. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2023; 45:3. [PMID: 36656442 PMCID: PMC9852181 DOI: 10.1007/s40656-023-00557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Bringing together scholars from philosophy, bioethics, law, sociology, and anthropology, this topical collection explores how innovations in the field of biomedicine and the life sciences are challenging and transforming traditional understandings of human temporality and of the temporal duration, extension and structure of human life. The contributions aim to expand the theoretical debate by highlighting the significance of time and human temporality in different discourses and practical contexts, and developing concrete, empirically informed, and culturally sensitive perspectives. The collection is structured around three main foci: the beginning of life, the middle of life, and later life. This structure facilitates an in-depth examination of specific technological and biographical contexts and at the same time allows an overarching comparison of relevant similarities and differences between life phases and fields of application.
Collapse
|
61
|
Soozanipour A, Ejeian F, Boroumand Y, Rezayat A, Moradi S. Biotechnological advancements towards water, food and medical healthcare: A review. CHEMOSPHERE 2023; 312:137185. [PMID: 36368538 DOI: 10.1016/j.chemosphere.2022.137185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The global health status is highly affected by the growing pace of urbanization, new lifestyles, climate changes, and resource exploitation. Modern technologies pave a promising way to deal with severe concerns toward sustainable development. Herein, we provided a comprehensive review of some popular biotechnological advancements regarding the progress achieved in water, food, and medicine, as the most substantial fields related to public health. The emergence of novel organic/inorganic materials has brought about significant improvement in conventional water treatment techniques, anti-fouling approaches, anti-microbial agents, food processing, biosensors, drug delivery systems, and implants. Particularly, a growing interest has been devoted to nanomaterials and their application for developing novel structures or improving the characteristics of standard components. Also, bioinspired materials have been widely used to improve the performance, efficiency, accuracy, stability, safety, and cost-effectiveness of traditional systems. On the other side, the fabrication of innovative devices for precisely monitoring and managing various ecosystem and human health issues is of great importance. Above all, exceptional advancements in designing ion-selective electrodes (ISEs), microelectromechanical systems (MEMs), and implantable medical devices have altered the future landscape of environmental and biomedical research. This review paper aimed to shed light on the wide-ranging materials and devices that have been developed for health applications and mainly focused on the impact of nanotechnology in this field.
Collapse
|
62
|
Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Appl Microbiol Biotechnol 2023; 107:1039-1061. [PMID: 36635395 PMCID: PMC9838533 DOI: 10.1007/s00253-023-12364-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
Versatile nature of copper oxide nanoparticles (CuO NPs) has made them an imperative nanomaterial being employed in nanomedicine. Various physical, chemical, and biological methodologies are in use for the preparation of CuO NPs. The physicochemical and biological properties of CuO NPs are primarily affected by their method of fabrication; therefore, selectivity of a synthetic technique is immensely important that makes these NPs appropriate for a specific biomedical application. The deliberate use of CuO NPs in biomedicine questions their biocompatible nature. For this reason, the present review has been designed to focus on the approaches employed for the synthesis of CuO NPs; their biomedical applications highlighting antimicrobial, anticancer, and antioxidant studies; and most importantly, the in vitro and in vivo toxicity associated with these NPs. This comprehensive overview of CuO NPs is unique and novel as it emphasizes on biomedical applications of CuO NPs along with its toxicological assessments which would be useful in providing core knowledge to researchers working in these domains for planning and conducting futuristic studies. KEY POINTS: • The recent methods for fabrication of CuO nanoparticles have been discussed with emphasis on green synthesis methods for different biomedical approaches. • Antibacterial, antioxidant, anticancer, antiparasitic, antidiabetic, and antiviral properties of CuO nanoparticles have been explained. • In vitro and in vivo toxicological studies of CuO nanoparticles exploited along with their respective mechanisms.
Collapse
|
63
|
Crossing E, Smyth L, Valter K, Webb A. Visualizing the Human Body Using an Artistic Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1392:129-148. [PMID: 36460849 DOI: 10.1007/978-3-031-13021-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This chapter describes an innovative approach to the cross-disciplinary study of anatomy and art to facilitate visualization of the human body. We draw upon the literature, together with our own experience of designing, delivering and researching a cross-disciplinary art and anatomy course, to indicate the critical elements of the approach that foster students' visualization of the anatomy of the human body.Visual arts have been linked with anatomy for centuries, but typically biomedical science has existed in a utilitarian relationship with art only used as an aid. In this chapter, we discuss the rationale underpinning a cross-disciplinary anatomy and art course and describe our experience of devising activities and assessment that create a stimulating and mutually beneficial environment for visualizing the experience and physicality of the human body. We describe the structure of the course which integrates art and anatomy to train students in the language of anatomy and visual representation, by engaging them in a process of attempting their own visual communication. The cross-disciplinary nature of our approach creates a unique social environment that offers a supportive environment for exploration and experimentation without fear of failure. Students' personal growth in resilience, tolerance for uncertainty and creativity prepares them for the inclusion of these values in their career.
Collapse
|
64
|
Kankala RK, Xu ZP. Trends in versatile 2D (sheet/paper-like) nanomaterials for biomedical applications. Adv Drug Deliv Rev 2023; 192:114645. [PMID: 36470412 DOI: 10.1016/j.addr.2022.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
65
|
Liu Y, Amissah OB, Huangfang X, Wang L, Dieu Habimana JD, Lv L, Ding X, Li J, Chen M, Zhu J, Mukama O, Sun Y, Li Z, Huang R. Large-scale expansion of human umbilical cord-derived mesenchymal stem cells using PLGA@PLL scaffold. BIORESOUR BIOPROCESS 2023; 10:18. [PMID: 36915643 PMCID: PMC9994782 DOI: 10.1186/s40643-023-00635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/31/2023] [Indexed: 03/16/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are highly important in biomedicine and hold great potential in clinical treatment for various diseases. In recent years, the capabilities of MSCs have been under extensive investigation for practical application. Regarding therapy, the efficacy usually depends on the amount of MSCs. Nevertheless, the yield of MSCs is still limited due to the traditional cultural methods. Herein, we proposed a three-dimensional (3D) scaffold prepared using poly lactic-co-glycolic acid (PLGA) nanofiber with polylysine (PLL) grafting, to promote the growth and proliferation of MSCs derived from the human umbilical cord (hUC-MSCs). We found that the inoculated hUC-MSCs adhered efficiently to the PLGA scaffold with good affinity, fast growth rate, and good multipotency. The harvested cells were ideally distributed on the scaffold and we were able to gain a larger yield than the traditional culturing methods under the same condition. Thus, our cell seeding with a 3D scaffold could serve as a promising strategy for cell proliferation in the large-scale production of MSCs. Moreover, the simplicity and low preparation cost allow this 3D scaffold to extend its potential application beyond cell culture. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1186/s40643-023-00635-6.
Collapse
|
66
|
Hu D, Li T, Liang W, Wang Y, Feng M, Sun J. Silk sericin as building blocks of bioactive materials for advanced therapeutics. J Control Release 2023; 353:303-316. [PMID: 36402235 DOI: 10.1016/j.jconrel.2022.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
Silk sericin is a class of protein biopolymers produced by silkworms. Increasing attention has been paid to silk sericin for biomedical applications in the last decade, not only because of its excellent biocompatibility and biodegradability but also due to the pharmacological activities stemming from its unique amino acid compositions. In this review, the biological properties of silk sericin, including curing specific diseases and promoting tissue regeneration, as well as underlying mechanisms are summarized. We consider the antioxidant activity of silk sericin as a fundamental property, which could account for partial biological activities, despite the exact mechanisms of silk sericin's effect remaining unknown. Based on the reactive groups on silk sericin, approaches of bottom-up fabrication of silk sericin-based biomaterials are highlighted, including non-covalent interactions and chemical reactions (reduction, crosslinking, bioconjugation, and polymerization). We then briefly present the cutting-edge advances of silk sericin-based biomaterials applied in tissue engineering and drug delivery. The challenges of silk sericin-based biomaterials are proposed. With more bioactivities and underlying mechanisms of silk sericin uncovered, it is going to boost the therapeutic potential of silk sericin-based biomaterials.
Collapse
|
67
|
Chandrasekaran R, Patil S, Krishnan M, Kuca K. The characteristics of green-synthesized Magnesium oxide nanoparticles (MgONPs) and their biomedical applications. Mini Rev Med Chem 2022; 23:1058-1069. [PMID: 36515021 DOI: 10.2174/1389557523666221212114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/22/2022] [Accepted: 10/21/2022] [Indexed: 12/15/2022]
Abstract
In the current epoch, noble metals/metal oxides with precise structures are needed to develop sustainable products to improve the welfare of human beings and the environment. Nanomaterials in the regime 1 -100 nm scale are a promising material for the research fraternities owing to their stupendous properties. The metallic/metal oxide nanoparticles ( silver, gold, copper oxide, iron oxide, magnesium oxide) are gaining significant momentum and need to be extensively studied. Magnesium oxide nanoparticles (MgONPs) are a periclase, white hygroscopic material consisting of Mg2+ ions and O-2 ions in lattice arranged. These nanoparticles can be fabricated through physical, chemical and biological methods. The development of green synthesized MgONPs needs to be ascertained and explored its ultimate in medicine, health, cosmetics, environmental protection, chemical industries, and energy. Therefore, the present review manifests the green synthetic approaches of MgONPs and their impact on crystalline structure and shape. Further, we have provided the antibacterial and anticancer activities of MgONPs thoroughly reported in various kinds of literature. Overall, the unique MgONPs can be plausibly used as safe biomaterials in biomedical applications.
Collapse
|
68
|
Demirdöğen BC. Theranostic potential of graphene quantum dots for multiple sclerosis. Mult Scler Relat Disord 2022; 68:104232. [PMID: 36244187 DOI: 10.1016/j.msard.2022.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022]
Abstract
Nanomedicine offers great promise to solve healthcare problems using nanotechnology. Theranostics provide imaging/diagnosis and therapy simultaneously. Novel agents that target both the neuroinflammation and neurodegeneration component of multiple sclerosis (MS) are required. Progress has been achieved in developing smart, surface decorated nanoparticles that effectively transport the therapeutic drug into the central nervous system (CNS). Graphene quantum dots (GQDs) can be traced in vivo by fluorescence imaging due to their unique optical properties. They can also traverse the blood-brain barrier (BBB) and deliver drugs into the CNS. Moreover, GQDs have low cytotoxicity and higher biocompatibility. Therefore, GQDs can be utilized to design novel multifunctional nanocarrier theranostic tools for MS.
Collapse
|
69
|
Rozas P, Kessi-Pérez EI, Martínez C. Genetically modified organisms: adapting regulatory frameworks for evolving genome editing technologies. Biol Res 2022; 55:31. [PMID: 36266673 DOI: 10.1186/s40659-022-00399-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/06/2022] [Indexed: 12/26/2022] Open
Abstract
Genetic modification of living organisms has been a prosperous activity for research and development of agricultural, industrial and biomedical applications. Three decades have passed since the first genetically modified products, obtained by transgenesis, become available to the market. The regulatory frameworks across the world have not been able to keep up to date with new technologies, monitoring and safety concerns. New genome editing techniques are opening new avenues to genetic modification development and uses, putting pressure on these frameworks. Here we discuss the implications of definitions of living/genetically modified organisms, the evolving genome editing tools to obtain them and how the regulatory frameworks around the world have taken these technologies into account, with a focus on agricultural crops. Finally, we expand this review beyond commercial crops to address living modified organism uses in food industry, biomedical applications and climate change-oriented solutions.
Collapse
|
70
|
Hua J, Li J, Jiang Y, Xie S, Shi Y, Pan L. Skin-Attachable Sensors for Biomedical Applications. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2022; 1:1-13. [PMID: 38625211 PMCID: PMC9529324 DOI: 10.1007/s44174-022-00018-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 04/17/2024]
Abstract
With the growing concern about human health issues, especially during the outbreak of the COVID-19 pandemic, the demand for personalized healthcare regarding disease prevention and recovery is increasing. However, tremendous challenges lie in both limited public medical resources and costly medical diagnosis approaches. Recently, skin-attachable sensors have emerged as promising health monitoring platforms to overcome such difficulties. Owing to the advantages of good comfort and high signal-to-noise ratio, skin-attachable sensors enable household, real-time, and long-term detection of weak physiological signals to efficiently and accurately monitor human motion, heart rate, blood oxygen saturation, respiratory rate, lung and heart sound, glucose, and biomarkers in biomedical applications. To further improve the integration level of biomedical skin-attachable sensors, efforts have been made in combining multiple sensing techniques with elaborate structural designs. This review summarizes the recent advances in different functional skin-attachable sensors, which monitor physical and chemical indicators of the human body. The advantages, shortcomings, and integration strategies of different mechanisms are presented. Specially, we highlight sensors monitoring pulmonary function such as respiratory rate and blood oxygen saturation for their potential usage in the COVID-19 pandemic. Finally, the future development of skin-attachable sensors is envisioned.
Collapse
|
71
|
Shang B, Wang S, Lu L, Ma H, Liu A, Zupanic A, Jiang L, Elnawawy AS, Yu Y. Poultry eggshell-derived antimicrobial materials: Current status and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115096. [PMID: 35462255 DOI: 10.1016/j.jenvman.2022.115096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/01/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Poultry eggs, the basic foodstuffs of human society, have been extensively consumed for domestic and industrial uses. A large amount of eggshell waste is generated and discarded every year, resulting in a waste of natural resources and a threat to the environment. In this context, the reutilization of eggshell waste has gained increasing attentions. Meanwhile, the overuse of antibiotics has led to the emergence of many drug-resistant bacteria, which greatly endangers public health. Therefore, manufacturing new materials with strong antimicrobial activities has become the focus of many researchers. Recent studies have revealed that eggshells can be applied as solid substances, the raw materials for calcium oxide, and the calcium source for synthesizing hydroxyapatite or other materials with antimicrobial activities. Herein, the preparation methods, antibacterial mechanisms and the applications of these eggshell waste-derived antibacterial materials are summarized in this review. Finally, the current challenges and future directions in this field are discussed.
Collapse
|
72
|
Kirk RGW, Myelnikov D. Governance, expertise, and the 'culture of care': The changing constitutions of laboratory animal research in Britain, 1876-2000. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2022; 93:107-122. [PMID: 35397440 DOI: 10.1016/j.shpsa.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
This article examines why early twenty-first century animal research governance in Britain foregrounds the 'culture of care' as its key problem. It adopts a historical perspective to understand why the regulation of animal research became primarily a problem of 'culture', a term firmly associated with the social relations of animal research, at this time and not before. Drawing on the theoretical insights of Sheila Jasanoff, Stephen Hilgartner and others, we contrast the British regulatory framework under the Cruelty to Animals Act (1876), which established statutory regulation of animal research for the first time in the world, with its successor the Animals (Scientific Procedures) Act 1986 (ASPA), in an attempt to chart two closely related yet distinct 'constitutions' of animal research each shaped by a historically situated sociotechnical imaginary. Across this longue durée, many concerns remained consistent yet inevitably, as the biomedical sciences transformed in scale and scope, new concerns emerged. Animal care, at least as far as it entailed a commitment to the prevention of animal suffering, was a prominent feature of animal research governance across the period. However, a concern for the culture and social relations of animal research emerged only in the latter half of the twentieth century. We account for this change primarily through a gradual distribution of responsibility for animal research from a single coherent community with broadly shared expertise ('scientists' with experience of animal research) to a diversified community of multiple experience and skillsets which included, importantly, a more equitable inclusion of animal welfare as a form of expertise with direct relevance to animal research. We conclude that animal research governance could only become conceived as a problem of 'culture' and thus social relations when responsibility for care and animal welfare was distributed across a differentiated community, in which diverse forms of expertise were required for the practice of humane animal research.
Collapse
|
73
|
Yang M, Jin H, Sun Z, Gui R. Monoelemental two-dimensional boron nanomaterials beyond theoretical simulations: From experimental preparation, functionalized modification to practical applications. Adv Colloid Interface Sci 2022; 304:102669. [PMID: 35429719 DOI: 10.1016/j.cis.2022.102669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 11/01/2022]
Abstract
During the past decade, there is an explosive growth of theoretical and computational studies on 2D boron-based nanomaterials. In terms of extensive predictions from theoretical simulations, borophene, boron nanosheets and 2D boron derivatives show excellent structural, electronic, photonic and nonlinear optical characteristics, and potential applications in a wide range of fields. In recent years, previous studies have reported the successful experimental preparations, superior properties, multi-functionalized modifications of various 2D boron and its derivatives, which show many practical applications in significant fields. To further promote the ever-increasing experimental studies, this present review systematically summarizes recent progress on experimental preparation methods, functionalized modification strategies and practical applications of 2D boron-based nanomaterials and multifunctional derivatives. Firstly, this review summarizes the experimental preparation methods, including molecular beam epitaxy, chemical vapor deposition, liquid-phase exfoliation, chemical reaction, and other auxiliary methods. Then, various strategies for functionalized modification are introduced overall, focusing on borophene derivatives, boron-based nanosheets, atom-introduced, chemically-functionalized borophene and boron nanosheets, borophene or boron nanosheet-based heterostructures, and other functionalized 2D boron nanomaterials. Subsequently, various potential applications are discussed in detail, involving energy storage, catalysis conversion, photonics, optoelectronics, sensors, bio-imaging, biomedicine therapy, and adsorption. We comment the state-of-the-art related studies concisely, and also discuss the current status, probable challenges and perspectives rationally. This review is timely, comprehensive, in-depth and highly attractive for scientists from multiple disciplines and scientific fields, and can facilitate further development of advanced functional low-dimensional nanomaterials and multi-functionalized systems toward high-performance practical applications in significant fields.
Collapse
|
74
|
Shiferaw KB, Waltemath D, Zeleke A. Disparities in Regional Publication Trends on the Topic of Artificial Intelligence in Biomedical Science Over the Last Five Years: A Bibliometric Analysis. Stud Health Technol Inform 2022; 294:609-613. [PMID: 35612161 DOI: 10.3233/shti220541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bibliometric analysis is a scientific method that allows researchers to explore the current trend in a certain research area using citation information. This study aims to provide a meta-view of artificial intelligence studies focused on biomedicine in the last five years, which will provide an insight into current trends and future research directions. Besides the observation of increased publication rates in the area of AI in biomedicine, the results indicate a lower contribution from and a sparser network connectivity of countries with limited resources. Thus, working toward collaboration in terms of infrastructure and implementing alternative solutions such as FAIR (Findable, Accessible, Interoperable and Reproducible) and open access platforms could improve the collaborative nature of international health projects.
Collapse
|
75
|
Nemati M, Singh B, Mir RA, Nemati M, Babaei A, Ahmadi M, Rasmi Y, Golezani AG, Rezaie J. Plant-derived extracellular vesicles: a novel nanomedicine approach with advantages and challenges. Cell Commun Signal 2022; 20:69. [PMID: 35606749 PMCID: PMC9128143 DOI: 10.1186/s12964-022-00889-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/28/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Many eukaryote cells produce membrane-enclosed extracellular vesicles (EVs) to establish cell-to-cell communication. Plant-derived EVs (P-EVs) contain proteins, RNAs, lipids, and other metabolites that can be isolated from the juice, the flesh, and roots of many species. METHODS In the present review study, we studied numerous articles over the past two decades published on the role of P-EVs in plant physiology as well as on the application of these vesicles in different diseases. RESULTS Different types of EVs have been identified in plants that have multiple functions including reorganization of cell structure, development, facilitating crosstalk between plants and fungi, plant immunity, defense against pathogens. Purified from several edible species, these EVs are more biocompatible, biodegradable, and extremely available from many plants, making them useful for cell-free therapy. Emerging evidence of clinical and preclinical studies suggest that P-EVs have numerous benefits over conventional synthetic carriers, opening novel frontiers for the novel drug-delivery system. Exciting new opportunities, including designing drug-loaded P-EVs to improve the drug-delivery systems, are already being examined, however clinical translation of P-EVs-based therapies faces challenges. CONCLUSION P-EVs hold great promise for clinical application in the treatment of different diseases. In addition, despite enthusiastic results, further scrutiny should focus on unravelling the detailed mechanism behind P-EVs biogenesis and trafficking as well as their therapeutic applications. Video Abstract.
Collapse
|