51
|
Sakabe Y, Nishizawa H, Kato A, Noda Y, Ohwaki A, Yoshizawa H, Kato T, Sekiya T, Fujii T, Kurahashi H. Longitudinal study of the vaginal microbiome in pregnancies involving preterm labor. FUJITA MEDICAL JOURNAL 2022; 8:96-101. [PMID: 35949516 PMCID: PMC9358670 DOI: 10.20407/fmj.2021-017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/15/2021] [Indexed: 11/17/2022]
Abstract
Objectives Alterations in the vaginal bacterial flora reflect the status of various obstetric conditions and are associated with mechanisms that underlie certain pregnancy-associated complications. These changes are also a predictive biomarker for clinical outcomes of these adverse events. Methods We examined the vaginal microbiome in samples from pregnant Japanese women with preterm labor. Results The microbiota composition in preterm delivery (PD) samples differed from those of control or threatened preterm delivery (TPD) samples in principal component analysis. An increase in Firmicutes and a decrease in Actinobacteria were significantly associated with PD only (both P<0.01). In the Firmicutes phylum, Lactobacillus tended to be abundant, and the abundance of L. iners and L. crispatus was especially high, whereas the L. gasseri population was low in PD samples. Longitudinal analysis showed that the abundance of L. iners decreased after commencing tocolytic treatment in TPD samples compared with before treatment, but it remained high in PD samples. Conclusions The vaginal microbiome may be a useful prognostic indicator of preterm labor and a monitoring tool for tocolytic treatment to prevent preterm birth.
Collapse
|
52
|
Hong X, Zhao J, Yin J, Zhao F, Wang W, Ding X, Yu H, Ma X, Wang B. The association between the pre-pregnancy vaginal microbiome and time-to-pregnancy: a Chinese pregnancy-planning cohort study. BMC Med 2022; 20:246. [PMID: 35909180 PMCID: PMC9341075 DOI: 10.1186/s12916-022-02437-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Although sexually transmitted infections are regarded as the main cause of tubal infertility, the association between the common vaginal microbiome and female fecundability has yet to be determined. The objective of this study was to find convincing evidence relating to the impact of the vaginal bacterial structure on the fecundability of women planning pregnancy. METHODS We recruited women who took part in the Free Pre-pregnancy Health Examination Project from 13 June 2018 to 31 October 2018 (n = 89, phase I) and from 1 November 2018 to 30 May 2020 (n = 389, phase II). We collected pre-pregnancy vaginal swabs from each subject; then, we followed up each subject to acquire the pregnancy-planning outcome in 1 year. In phase I, 16S rRNA gene sequencing was performed to investigate the vaginal bacterial content between the pregnancy and non-pregnancy groups. These findings were verified in phase II by applying a quantitative real-time polymerase chain reaction for the measurement of the absolute abundance of specific species. Cox models were used to estimate fecundability ratios (FR) for each vaginal microbiome type. RESULTS In phase I, 59.6% (53/89) of women became pregnant within 1 year. The principal coordinate analysis showed that the pre-pregnancy vaginal microbial community structures of the pregnant and non-pregnant groups were significantly different (PERMANOVA test, R2 = 0.025, P = 0.049). The abundance of the genus Lactobacillus in the pregnancy group was higher than that of the non-pregnant group (linear discriminant analysis effect size (LDA) > 4.0). The abundance of the genus Gardnerella in the non-pregnant group was higher than those in the pregnant group (LDA > 4.0). In phase II, female fecundability increased with higher absolute loads of Lactobacillus gasseri (quartile Q4 vs Q1, FR = 1.71, 95%CI 1.02-2.87) but decreased with higher absolute loads of Fannyhessea vaginae (Q4 vs Q1, FR = 0.62, 95%CI 0.38-1.00). Clustering analysis showed that the vaginal microbiome of type D (characterized by a higher abundance of Lactobacillus iners, a lower abundance of Lactobacillus crispatus and Lactobacillus gassri) was associated with a 55% reduction of fecundability (FR = 0.45, 95%CI 0.26-0.76) compared with type A (featuring three Lactobacillus species, low Gardnerella vaginalis and Fannyhessea vaginae abundance). CONCLUSIONS This cohort study demonstrated an association between the pre-pregnancy vaginal microbiome and female fecundability. A vaginal microbiome characterized by a higher abundance of L. iners and lower abundances of L. crispatus and L. gasseri appeared to be associated with a lower fecundability. Further research now needs to confirm whether manipulation of the vaginal microenvironment might improve human fecundability.
Collapse
|
53
|
Boetius Hertz F, Holm JB, Pallejá A, Björnsdóttir MK, Mikkelsen LS, Brandsborg E, Frimodt-Møller N. The vaginal microbiome following orally administered probiotic. APMIS 2022; 130:605-611. [PMID: 35801409 PMCID: PMC9540456 DOI: 10.1111/apm.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Here we present a longitudinal shotgun sequencing metagenomics study of 16 healthy, Danish women in the reproductive age. The aim of the study was to investigate whether lactobacilli, orally consumed, had any impact on the vaginal microbiome and its functional potential. MATERIALS AND METHODS The 16 women aged 19-45 years were recruited from Copenhagen, Denmark. One baseline vaginal sample (day 0) and two study samples (day 25-30 and day 55-60, respectively) were sampled. The vaginal samples were analyzed by shotgun metagenomics. RESULTS We detected 26 species in the vaginal microbiota of the 16 women, of which six belonged to the Lactobacillus genus. We observed three vaginal microbiome clusters mainly dominated by Gardnerella vaginalis, Lactobacillus iners or Lactobacillus crispatus. The oral probiotic had no detectable effect on either the composition or the functional potential of the vaginal microbiota. DISCUSSION Most of the study subjects (11 out of 16 women) exhibited only minor changes in the vaginal microbiome during the treatment with probiotics. Any compositional changes could not be associated to the probiotic treatment. Future studies may benefit from an increased number of participants, and administration of the probiotics during conditions with bacterial imbalance (e.g. during/after antibiotic treatment) or the use of different Lactobacillus spp. known to colonize the vagina.
Collapse
|
54
|
Ruotsalainen AL, Tejesvi MV, Vänni P, Suokas M, Tossavainen P, Pirttilä AM, Talvensaari-Mattila A, Nissi R. Child type 1 diabetes associated with mother vaginal bacteriome and mycobiome. Med Microbiol Immunol 2022; 211:185-194. [PMID: 35701558 PMCID: PMC9304052 DOI: 10.1007/s00430-022-00741-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/18/2022] [Indexed: 10/27/2022]
Abstract
Mother vaginal microbes contribute to microbiome of vaginally delivered neonates. Child microbiome can be associated with autoimmune diseases, such as type 1 diabetes (T1D). We collected vaginal DNA samples from 25 mothers with a vaginally delivered child diagnosed with T1D and samples from 24 control mothers who had vaginally delivered a healthy child and analyzed bacteriome and mycobiome of the samples. The total DNA of the samples was extracted, and ribosomal DNA regions (16S for bacteria, ITS2 for fungi) were amplified, followed by next-generation sequencing and machine learning. We found that alpha-diversity of bacteriome was increased (P < 0.002), whereas alpha-diversity of mycobiome was decreased (P < 0.001) in mothers with a diabetic child compared to the control mothers. Beta-diversity analysis suggested differences in mycobiomes between the mother groups (P = 0.001). Random forest models were able to effectively predict diabetes and control status of unknown samples (bacteria: 0.86 AUC, fungi: 0.96 AUC). Our data indicate several fungal genera and bacterial metabolic pathways of mother vaginal microbiome to be associated with child T1D. We suggest that early onset of T1D in a child has a relationship with altered mother vaginal microbiome and that both bacteriome and mycobiome contribute to this shift.
Collapse
|
55
|
Alimena S, Davis J, Fichorova RN, Feldman S. The vaginal microbiome: A complex milieu affecting risk of human papillomavirus persistence and cervical cancer. Curr Probl Cancer 2022; 46:100877. [PMID: 35709613 DOI: 10.1016/j.currproblcancer.2022.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
The purpose of this review is to describe the existing literature regarding the relationship between the vaginal microbiome, human papillomavirus persistence, and cervical cancer risk, as well as to discuss factors that mediate these relationships. Data suggest that alterations in the vaginal microbiome affect the risk of human papillomavirus infection and persistence, which has downstream effects on cervical dysplasia and cancer risk. The homeostatic Lactobillus species L. crispatus, L. gasseri, L. jensenii act to promote a healthy vaginal environment, while L. iners and pathogens causing bacterial vaginosis are associated with increased inflammation, human papillomavirus infection, cervical dysplasia, and potentially cancer. There are, however, still several large gaps in the literature, particularly related to the modifiable and non-modifiable factors that affect the vaginal microbiome and ensuing risk of pre-cancerous and cancerous lesions. Evidence currently suggests that endogenous and exogenous hormones, tobacco products, and sexual practices influence vaginal microbiome composition, but the nuances of these relationships and how changes in these factors affect dysplasia risk are yet to be delineated. Other studies examining how diet, exercise, race, socioeconomic status, and genetic factors influence the vaginal microbiome are difficult to interpret in the setting of multiple confounders. Future studies should focus on how changes in these modulatory factors might promote a healthy vaginal microbiome to prevent or treat dysplasia in the lower female genital tract.
Collapse
|
56
|
Hong X, Yin J, Wang W, Zhao F, Ding X, Yu H, Zhang X, Wang B. The associations between low abundance of Mycoplasma hominis and female fecundability: a pregnancy-planning cohort study. BMC Microbiol 2022; 22:121. [PMID: 35513786 PMCID: PMC9069813 DOI: 10.1186/s12866-022-02545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE To explore the impact of pre-pregnancy vaginal Mycoplasma hominis (M. hominis) colonization of low abundance on female fecundability. METHODS In total, 89 females participating in a pre-pregnancy health examination program were included, and their pregnancy outcomes were followed up for 1 year. Vaginal swabs were collected, 16S rRNA genes were sequenced, and M. hominis colonization was confirmed by qPCR. Cox models were used to estimate the fecundability odds ratio (FOR) for women with M. hominis. RESULTS The prevalence of M. hominis was 22.47% (20/89), and the abundance was relatively low (the cycle thresholds of the qPCR were all more than 25). In terms of the vaginal microbiome, the Simpson index of the positive group was significantly lower than that of the negative group (P = 0.003), which means that the microbiome diversity appeared to increase with M. hominis positivity. The relative abundance of M. hominis was negatively correlated with Lactobacillus crispatus (rho = - 0.24, P = 0.024), but positively correlated with Gardnerella vaginalis, Atopobium vaginae and Prevotella bivia (P all < 0.05). The cumulative one-year pregnancy rate for the M. hominis positive group was lower than that in the negative group (58.96% vs 66.76%, log-rank test: P = 0.029). After controlling for potential confounders, the risk of pregnancy in the M. hominis positive group was reduced by 38% when compared with the positive group (FOR = 0.62, 95% CI: 0.42-0.93). CONCLUSION The vaginal colonization of M. hominis at a low level in pre-pregnant women is negatively correlated with female fecundability.
Collapse
|
57
|
Gladysheva IV, Khlopko YA, Cherkasov SV, Kataev VY. Genome sequence of Corynebacterium amycolatum ICIS 99 isolated from human vagina reveals safety and beneficial properties. Arch Microbiol 2022; 204:226. [PMID: 35352202 DOI: 10.1007/s00203-022-02852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
Abstract
Corynebacterium amycolatum ICIS 99 was isolated from vaginal smears of healthy women and showed promising results in antimicrobial screenings. Here, we report the draft genome sequence of this strain and analyze its main features to assess its safety and useful properties. The genome is 2,532,503 bp long and contains 2186 CDSs with an average G + C content of 59.0%. Analyses of the ICIS 99 genome revealed the absence of true virulence factors. The genome contains genes involved in the synthesis of secondary metabolites and bacteriocins of the class sactipeptide. In the genome of ICIS 99, we identified a large number of genes responsible for adaptation and survival in the vaginal environment, including acid and oxidative stress resistance genes. The genomic information of ICIS 99 provides a basis for understanding the safety and useful properties of ICIS 99 and for considering it as a potential probiotic strain. The whole genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession number JAIUSU000000000.
Collapse
|
58
|
France MT, Fu L, Rutt L, Yang H, Humphrys MS, Narina S, Gajer PM, Ma B, Forney LJ, Ravel J. Insight into the ecology of vaginal bacteria through integrative analyses of metagenomic and metatranscriptomic data. Genome Biol 2022; 23:66. [PMID: 35232471 PMCID: PMC8886902 DOI: 10.1186/s13059-022-02635-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Vaginal bacterial communities dominated by Lactobacillus species are associated with a reduced risk of various adverse health outcomes. However, somewhat unexpectedly, many healthy women have microbiota that are not dominated by lactobacilli. To determine the factors that drive vaginal community composition we characterized the genetic composition and transcriptional activities of vaginal microbiota in healthy women. RESULTS We demonstrate that the abundance of a species is not always indicative of its transcriptional activity and that impending changes in community composition can be predicted from metatranscriptomic data. Functional comparisons highlight differences in the metabolic activities of these communities, notably in their degradation of host produced mucin but not glycogen. Degradation of mucin by communities not dominated by Lactobacillus may play a role in their association with adverse health outcomes. Finally, we show that the transcriptional activities of L. crispatus, L. iners, and Gardnerella vaginalis vary with the taxonomic composition of the communities in which they reside. Notably, L. iners and G. vaginalis both demonstrate lower expression of their cholesterol-dependent cytolysins when co-resident with Lactobacillus spp. and higher expression when co-resident with other facultative and obligate anaerobes. The pathogenic potential of these species may depend on the communities in which they reside and thus could be modulated by interventional strategies. CONCLUSIONS Our results provide insight to the functional ecology of the vaginal microbiota, demonstrate the diagnostic potential of metatranscriptomic data, and reveal strategies for the management of these ecosystems.
Collapse
|
59
|
Morikawa A, Kawabata A, Shirahige K, Akiyama T, Okamoto A, Sutani T. Altered cervicovaginal microbiota in premenopausal ovarian cancer patients. Gene 2022; 811:146083. [PMID: 34856363 DOI: 10.1016/j.gene.2021.146083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/21/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022]
Abstract
Nearly three hundred thousand female patients are diagnosed with ovarian cancer in the world annually, and this number shows an increasing trend. However, characteristic symptoms caused by ovarian cancer are so few that early diagnosis remains challenging, and an effective screening method has not yet been established. Here, we conducted a case-control study in Japan to analyze the association between cervicovaginal microbiome and ovarian cancer, using 16S rRNA amplicon sequencing. Analysis of DNA extracted from cervical smear samples revealed Lactobacillus-dominant and Lactobacillus-deficient, highly-diversified bacterial communities in premenopausal and postmenopausal healthy controls, respectively, as reported for vaginal microbiota previously. We found that cervicovaginal microbiota in ovarian cancer patients, regardless of their menopausal status, were frequently a diversified community and similar to those in healthy subjects at postmenopausal ages. The diverse microbiota was associated with the major histotypes of epithelial ovarian cancer, including serous ovarian cancer and ovarian clear cell cancer. The present study implies the potential of a cervicovaginal microbiome biomarker in screening ovarian cancer in premenopausal women.
Collapse
|
60
|
Kim S, Lee SH, Min KJ, Lee S, Hong JH, Song JY, Lee JK, Lee NW, Lee E. Females with impaired ovarian function could be vulnerable to environmental pollutants: identification via next-generation sequencing of the vaginal microbiome. J OBSTET GYNAECOL 2022; 42:1482-1488. [PMID: 34996320 DOI: 10.1080/01443615.2021.2006162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The vaginal microbiome has been widely investigated. However, its relationship with impaired ovarian function has not been evaluated. We conducted a next-generation sequencing (NGS) study of the vaginal microbiome in females with normal and decreased ovarian function and analysed its sensitivity to environmental pollutants. Vaginal swabs were collected from 92 individuals (22 with impaired ovarian function). The 16S rDNA sequences were assembled by FLASH and clustered in OTUs. Diversity analysis was performed using QIIME. The impaired function group showed lower AMH (p < .01) and higher FSH (p = .04). Only two species showed significant differences: Propionibacterium acnes and Prevotella copri. Moreover, more environmental pollutants were related to changes in the vaginal microbiome in the impaired ovarian function group than in the normal group. Vaginal microbiomes in young women with decreased ovarian function tended to be more sensitive to environmental pollutants, especially volatile organic compounds.Impact StatementWhat is already known on this subject? In this study, the possible influence of environmental pollutants, especially volatile organic compounds to ovarian function were identified via next-generation sequencing.What do the results of this study add? This is the first study that shows vaginal microbiomes in young women with decreased ovarian function to be more sensitive to environmental pollutants.What are the implications of these findings for clinical practice and/or further research? The association between impaired ovarian function and environmental pollutants from this study could be helpful when counselling patients with POI.
Collapse
|
61
|
Khan S, Hill JE. Population Density Affects the Outcome of Competition in Co-cultures of Gardnerella Species Isolated from the Human Vaginal Microbiome. MICROBIAL ECOLOGY 2022; 83:236-245. [PMID: 33782710 PMCID: PMC8007170 DOI: 10.1007/s00248-021-01745-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Negative frequency-dependent selection is one possible mechanism for maintenance of rare species in communities, but the selective advantage of rare species may be checked at lower overall population densities where resources are abundant. Gardnerella spp. belonging to cpn60 subgroup D, are detected at low levels in vaginal microbiomes and are nutritional generalists relative to other more abundant Gardnerella spp., making them good candidates for negative frequency-dependent selection. The vaginal microbiome is a dynamic environment, and the resulting changes in density of the microbiota may explain why subgroup D never gains dominance. To test this, we co-cultured subgroup D isolates with isolates from the more common and abundant subgroup C. Deep amplicon sequencing of rpoB was used to determine proportional abundance of each isolate at 0 h and 72 h in 152 co-cultures and to calculate change in proportion. D isolates had a positive change in proportional abundance in most co-cultures regardless of initial proportion. Initial density affected the change in proportion of subgroup D isolates either positively or negatively depending on the particular isolates combined, suggesting that growth rate, population density and other intrinsic features of the isolates influenced the outcome. Our results demonstrate that population density is an important factor influencing the outcome of competition between Gardnerella spp. isolated from the human vaginal microbiome.
Collapse
|
62
|
Gladysheva IV, Chertkov KL, Cherkasov SV, Khlopko YA, Kataev VY, Valyshev AV. Probiotic Potential, Safety Properties, and Antifungal Activities of Corynebacterium amycolatum ICIS 9 and Corynebacterium amycolatum ICIS 53 Strains. Probiotics Antimicrob Proteins 2021; 15:588-600. [PMID: 34807410 DOI: 10.1007/s12602-021-09876-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
The purpose of this study was to evaluate the probiotic characteristics and safety and to study the antifungal activity of C. amycolatum ICIS 9 and C. amycolatum ICIS 53 against Candida spp. The probiotic potential and safety properties were assessed by standard parameters. Both strains showed good survival at pH 3 for 3 h and high tolerance to 0.3% bile salts after 4 h of incubation. The indicators of hydrophobicity, autoaggregation, and surface tension for ICIS 9 were 89.43% (n-hexane) and 73.96% (xylene) and ranged from 13.13 to 39.86% and 34.27 mN/m, respectively. For ICIS 53, they were 59.95% (n-hexane) and 45.68% (xylene), from 35.58 to 51.53% and 32.40 mN/m, respectively. The strains ICIS 9 and ICIS 53 exhibited varying levels of coaggregation with all eight examined bacterial pathogens. The ICIS 9 strain was resistant to amikacin, amoxicillin, clarithromycin, chloramphenicol, ciprofloxacin, and gentamycin. ICIS 53 was resistant only to ciprofloxacin. The cell-free supernatant of strains ICIS 9 and ICIS 53 showed good antimicrobial and antibiofilm activity against 10 pathogenic vaginal and intestinal isolates of Candida spp. The CFS of ICIS 9 was more active against intestinal isolates, and the CFS of ICIS 53 showed good antimicrobial activity against vaginal isolates while inhibiting the growth of 2 out of 5 Candida spp. isolated from the intestine. Both of the strains were capable of reducing the biofilm formation of Candida fungi. In the case of the vaginal isolates of C. krusei V1, the results showed that the inhibition levels of ICIS 9 and ICIS 53 were 36.75 and 11.4%, respectively. In the case of C. albicans (V2, V3, V7, and V8), the inhibition of biofilm formation was no more than 7.07%. ICIS 9 and ICIS 53 also significantly inhibited biofilm formation of C. krusei 2613 intestinal isolates by 42.75 and 41.87%, respectively, with ICIS 9 inhibiting biofilm formation of C. albicans (2607, 2311, 2615, and 2615) from 3.38 to 15.69% and ICIS 53 from 5.95 to 23.48%. None of the strains showed DNase, haemolytic, or gelatinase activities. The results obtained revealed that ICIS 9 and ICIS 53 have safe properties and have the potential to be developed as probiotics.
Collapse
|
63
|
Moreno CG, Luque AT, Galvão KN, Otero MC. Bacterial communities from vagina of dairy healthy heifers and cows with impaired reproductive performance. Res Vet Sci 2021; 142:15-23. [PMID: 34847462 DOI: 10.1016/j.rvsc.2021.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 12/26/2022]
Abstract
Vaginal microenvironment plays a significant role in bovine fertility since its resident microorganisms interact with the host mucosa and constitutes the first barrier against ascending pathogens in the reproductive tract. In this study, the vaginal microbiome of healthy heifers (H) and cows with impaired reproductive performance, metritis complex (MT) or repeat breeders (RB), was assessed using a 16S rRNA gene sequencing approach. Analysis revealed that even though a vaginal microbiological guild (Firmicutes, Bacteroidetes, Proteobacteria, Tenericutes, Fusobacteria and Actinobacteria) was shared among healthy heifers and cows with uterine disease; further analysis at genus level showed significant differences depending on the reproductive health status. The relative abundances of recognized uterine pathogens such as Bacteroidetes, Fusobacterium and Helcococcus were higher in MT when compared with H and RB; therefore, their presence in vagina can be considered as a risk factor for fertility. The present study describes for the first time, the composition of native bacterial communities in the vagina of cows undergoing the repeat breeding syndrome (RBS), and reports an association between this disease and the presence of Porphyromonas and unassigned genera of the Pasteurellaceae family. In addition, this work highlights the bacteria associated with a healthy vagina: genera from the families Lachnospiraceae, Rikenellaceae and the genera Acinetobacter, Bacillus, Oscillospira, CF231 and 5-7NS. Results highlighted herein, signify the potential of the evaluation of the bovine vaginal microbiome to future design therapeutic interventions to improve pregnancy rates however, further research is needed to elucidate the balance of bacterial species resulting in an optimal reproductive health.
Collapse
|
64
|
Khan S, Vancuren SJ, Hill JE. A Generalist Lifestyle Allows Rare Gardnerella spp. to Persist at Low Levels in the Vaginal Microbiome. MICROBIAL ECOLOGY 2021; 82:1048-1060. [PMID: 33219399 PMCID: PMC7678777 DOI: 10.1007/s00248-020-01643-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Gardnerella spp. are considered a hallmark of bacterial vaginosis, a dysbiosis of the vaginal microbiome. There are four cpn60 sequence-based subgroups within the genus (A, B, C and D), and thirteen genome species have been defined recently. Gardnerella spp. co-occur in the vaginal microbiome with varying abundance, and these patterns are shaped by a resource-dependent, exploitative competition, which affects the growth rate of subgroups A, B and C negatively. The growth rate of rarely abundant subgroup D, however, increases with the increasing number of competitors, negatively affecting the growth rate of others. We hypothesized that a nutritional generalist lifestyle and minimal niche overlap with the other more abundant Gardnerella spp. facilitate the maintenance of subgroup D in the vaginal microbiome through negative frequency-dependent selection. Using 40 whole-genome sequences from isolates representing all four subgroups, we found that they could be distinguished based on the content of their predicted proteomes. Proteins associated with carbohydrate and amino acid uptake and metabolism were significant contributors to the separation of subgroups. Subgroup D isolates had significantly more of their proteins assigned to amino acid metabolism than the other subgroups. Subgroup D isolates were also significantly different from others in terms of number and type of carbon sources utilized in a phenotypic assay, while the other three could not be distinguished. Overall, the results suggest that a generalist lifestyle and lack of niche overlap with other Gardnerella spp. leads to subgroup D being favoured by negative frequency-dependent selection in the vaginal microbiome.
Collapse
|
65
|
Andrade Pessoa Morales J, Marconi C, El-Zein M, Ravel J, da Silva Pinto GV, Silveira R, de Lima MD, de Carvalho NS, Figueiredo Alves RR, de Lima Parada CMG, Morais Leite SH, Villa LL, Franco EL, Guimarães da Silva M. Vaginal microbiome components as correlates of cervical human papillomavirus infection. J Infect Dis 2021; 226:1084-1097. [PMID: 34718662 DOI: 10.1093/infdis/jiab547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/25/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The interplay between vaginal microbiome and human papillomavirus (HPV) remains unclear, partly due to heterogeneity of the microbiota. METHODS We used data from 546 women enrolled in a cross-sectional study conducted in five Brazilian regions. We genotyped vaginal samples for HPV and sequenced V3-V4 region of 16S rRNA gene for vaginal microbiome analysis. We used stepwise logistic regression to construct two linear scores to predict high-risk HPV (hrHPV) positivity: one based exclusively on presence of individual bacterial taxa (microbiome-based [MB] score) and the other exclusively on participants' sociodemographic, behavioral and clinical (SBC) characteristics. The MB score combined coefficients of 30 (out of 116) species. The SBC score retained six out of 25 candidate variables. We constructed receiver operating characteristic curves for the scores as hrHPV correlates and compared areas under the curve (AUC) and 95% confidence intervals (CI). RESULTS Overall, prevalence of hrHPV was 15.8%, and 26.2% had a Lactobacillus-depleted microbiome. The AUCs were 0.8022 (CI:0.7517-0.8527) for MB score and 0.7027 (CI:0.6419-0.7636) for SBC score (P=0.0163). CONCLUSIONS The proposed MB score is strongly correlated with hrHPV positivity - exceeding the predictive value of behavioral variables - suggesting its potential as an indicator of infection and possible value for clinical risk stratification.
Collapse
|
66
|
Bonneton M, Huynh BT, Seck A, Bercion R, Sarr FD, Delarocque-Astagneau E, Vray M. Bacterial vaginosis and other infections in pregnant women in Senegal. BMC Infect Dis 2021; 21:1090. [PMID: 34688270 PMCID: PMC8542293 DOI: 10.1186/s12879-021-06767-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/04/2021] [Indexed: 11/12/2022] Open
Abstract
Background Bacterial vaginosis (BV) is associated with a higher risk of preterm delivery and spontaneous abortion. Yet little data on BV prevalence exist for sub-Saharan countries. The aim of this study was to estimate the prevalence of bacterial vaginosis and associated risk factors among pregnant women in Senegal. Methods From October 2013 to December 2018, pregnant women in their third trimester were recruited in two primary health centers (one suburban, one rural) in Senegal. Healthcare workers interviewed women and collected a lower vaginal swab and a blood sample. Vaginal flora were classified into four categories using vaginal smear microscopic examination and Gram’s coloration. In our study, BV was defined as vaginal flora with no Lactobacillus spp. Variables associated with BV were analyzed using STATA® through univariate and multivariate analysis. Results A total of 457 women provided a vaginal sample for analysis. Overall, BV prevalence was 18.6% (85/457) [95% CI 15.4–22.6]) and was similar in suburban and rural areas (18.9% versus 18.1%, p = 0.843). Multivariate analysis showed that primigravidity was the only factor independently associated with a lower risk of BV (aOR 0.35 [95% CI 0.17–0.72]). Conclusions Our study showed significant BV prevalence among pregnant women in Senegal. Although the literature has underscored the potential consequences of BV for obstetric outcomes, data are scarce on BV prevalence in sub-Saharan African countries. Before authorities consider systematic BV screening for pregnant women, a larger study would be useful in documenting prevalence, risk factors and the impact of BV on pregnancy outcomes.
Collapse
|
67
|
Punzón-Jiménez P, Labarta E. The impact of the female genital tract microbiome in women health and reproduction: a review. J Assist Reprod Genet 2021; 38:2519-2541. [PMID: 34110573 PMCID: PMC8581090 DOI: 10.1007/s10815-021-02247-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The aim of this review is to gather the available research focusing on female genital tract (FGT) microbiome. Research question focuses in decipher which is the role of FGT microbiota in eubiosis, assisted reproduction techniques (ARTs), and gynaecological disorders, and how microbiome could be utilised to improve reproduction outcomes and to treat fertility issues. METHODS PubMed was searched for articles in English from January 2004 to April 2021 for "genital tract microbiota and reproduction", "endometrial microbiome", "microbiome and reproduction" and "microbiota and infertility". Manual search of the references within the resulting articles was performed. RESULTS Current knowledge confirms predominance of Lactobacillus species, both in vagina and endometrium, whereas higher variability of species is both found in fallopian tubes and ovaries. Microbial signature linked to different disorders such endometriosis, bacterial vaginosis, and gynaecological cancers are described. Broadly, low variability of species and Lactobacillus abundance within the FGT is associated with better reproductive and ART outcomes. CONCLUSION Further research regarding FGT microbiome configuration needs to be done in order to establish a more precise link between microbiota and eubiosis or dysbiosis. Detection of bacterial species related with poor reproductive outcomes, infertility or gynaecological diseases could shape new tools for their diagnosis and treatment, as well as resources to assess the pregnancy prognosis based on endometrial microbiota. Data available suggest future research protocols should be standardised, and it needs to include the interplay among microbiome, virome and mycobiome, and the effect of antibiotics or probiotics on the microbiome shifts.
Collapse
|
68
|
Abou Chacra L, Fenollar F. Exploring the global vaginal microbiome and its impact on human health. Microb Pathog 2021; 160:105172. [PMID: 34500016 DOI: 10.1016/j.micpath.2021.105172] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/19/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Around the world, more than 175,000,000 women are diagnosed every year with gynaecological disease, in many cases contributing to high morbidity and mortality. For this reason, knowledge of the composition of the vaginal microbiome and its variations represents a real health challenge, as this is key to improving therapeutic management. This review traces the history of the poorly known vaginal microbiome and focuses on the latest findings concerning this ecosystem. Studies in the past decade have targeted complex bacterial communities within the vagina. However, due to the development of technology and the emergence of next generation sequencing (NGS), the exact definition of the vaginal microbiome has changed and can no longer be linked solely to the presence of bacteria. In order to reach a global view of the vaginal microbiome, it is essential to take into account all microorganisms that the vagina harbours, including fungi, viruses, archaea, and candidate phyla radiation. Although these communities represent only a minimal percentage of the vaginal microbiome, they may act as modifiers of its basic physiology and may play a key role in the maintenance of microbial communities, as well as metabolic and immune functions. Studies of the complex interactions between these different microorganisms have recently begun and are not yet fully understood. Results to date indicate that these microbial communities together constitute the first line of defence against infections. On the other hand, the slightest disturbance in this microbiome may lead to disease. For this reason, enhanced knowledge of these associations is critical to better identify predispositions to certain illnesses, which may open new therapeutic avenues. Currently however, only the tip of the iceberg is understood and current research on this ecosystem is revolutionising our knowledge and understanding of human health and disease.
Collapse
|
69
|
Mngomezulu K, Mzobe G, Mtshali A, Baxter C, Ngcapu S. The use of PSA as a biomarker of recent semen exposure in female reproductive health studies. J Reprod Immunol 2021; 148:103381. [PMID: 34563757 DOI: 10.1016/j.jri.2021.103381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Semen contains potent soluble proteins, bacteria, viruses, activated immune cells as well as anti- and pro-inflammatory cytokines that may influence the inflammatory response and alter microbial composition of the female genital tract. The presence of semen in the female genital mucosa may be a significant confounder that most studies have failed to control for in their analysis. Prostate-specific antigen (PSA), a protein secreted by the prostate into the urethra during ejaculation, is a well-established biomarker of semen exposure. Several studies have demonstrated discordance between self-reports of sexual behavior and the presence of PSA. Recent semen exposure has been shown to promote pro-inflammatory responses, stimulate the recruitment of activated immune cells and decrease Lactobacilli abundance in the female genital mucosa. As a result, it is important to understand the concordance between self-reported consistent condom use and the presence of semen biomarkers. Furthermore, to ensure that the interpretation of data in clinical studies of the immunological and microbial environment in the female genital mucosa are accurate, it is essential to establish whether semen is present in the vaginal fluid. This review explores the impact of semen exposure on the mucosal microenvironment and assesses the use of the PSA as an objective biomarker of semen exposure to reduce reliance on self-reported sexual intercourse.
Collapse
|
70
|
Haahr T, Clausen TD, Thorsen J, Rasmussen MA, Mortensen MS, Lehtimäki J, Shah SA, Hjelmsø MH, Bønnelykke K, Chawes BL, Vestergaard G, Jacobsson B, Larsson PG, Brix S, Sørensen SJ, Bisgaard H, Stokholm J. Vaginal dysbiosis in pregnancy associates with risk of emergency caesarean section: a prospective cohort study. Clin Microbiol Infect 2021; 28:588-595. [PMID: 34500080 DOI: 10.1016/j.cmi.2021.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To investigate changes in vaginal microbiota during pregnancy, and the association between vaginal dysbiosis and reproductive outcomes. METHODS A total of 730 (week 24) and 666 (week 36) vaginal samples from 738 unselected pregnant women were studied by microscopy (Nugent score) and characterized by 16S rRNA gene sequencing. A novel continuous vaginal dysbiosis score was developed based on these methods using a supervised partial least squares model. RESULTS Among women with bacterial vaginosis in week 24 (n = 53), 47% (n = 25) also had bacterial vaginosis in week 36. In contrast, among women without bacterial vaginosis in week 24, only 3% (n = 18) developed bacterial vaginosis in week 36. Vaginal samples dominated by Lactobacillus crispatus (OR 0.35, 95% CI 0.20-0.60) and Lactobacillus iners (OR 0.40, 95% CI 0.23-0.68) in week 24 were significantly more stable by week 36 when compared with other vaginal community state types. Vaginal dysbiosis score at week 24 was associated with a significant increased risk of emergency, but not elective, caesarean section (OR 1.37, 955 CI 1.15-1.64, p < 0.001), suggesting a 37% increased risk per standard deviation increase in vaginal dysbiosis score. CONCLUSIONS Changes in vaginal microbiota from week 24 to week 36 of pregnancy correlated with bacterial vaginosis status and vaginal community state type. A novel vaginal dysbiosis score was associated with a significantly increased risk of emergency, but not elective, caesarean section. This was not found for bacterial vaginosis or any vaginal community state type and could point to the importance of investigating vaginal dysbiosis as a nuanced continuum instead of crude clusters.
Collapse
|
71
|
Juliana NCA, Peters RPH, Al-Nasiry S, Budding AE, Morré SA, Ambrosino E. Composition of the vaginal microbiota during pregnancy in women living in sub-Saharan Africa: a PRISMA-compliant review. BMC Pregnancy Childbirth 2021; 21:596. [PMID: 34479485 PMCID: PMC8418042 DOI: 10.1186/s12884-021-04072-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The vaginal microbiota (VMB) are the set of microorganisms residing in the human vagina. During pregnancy, their composition is Lactobacillus-dominant in most Caucasian women. Previous studies suggest that the VMB of women with African ancestry is more likely to be non-Lactobacillus dominant (dysbiotic) compared to other populations, and possibly relate to the high incidence of pregnancy complications, such as preterm birth. This work reviewed the literature on VMB composition in pregnant women from sub-Saharan Africa. METHODS A search was conducted in PubMed and Embase databases following PRISMA guidelines. Observational and intervention studies analysing VMB communities from sub-Saharan African pregnant women using molecular techniques were included. RESULTS Ten studies performed in seven sub-Saharan African countries were identified. They independently showed that Lactobacillus-dominant VMB (particularly L. iners or L. crispatus) or VMB containing Lactobacilli are the most prevalent, followed by a more diverse anaerobe-dominant VMB, in the studied populations. The majority of pregnant women with a sexually-transmitted infection had a Lactobacillus-dominant VMB, but with a significantly higher presence of anaerobic species. CONCLUSION In agreement with studies performed in other populations, Lactobacillus species are the most prevalent VMB species during pregnancy in sub-Saharan African women. The frequency of diverse anaerobe-dominant VMB is high in these populations. In Africa, studies on VMB in pregnancy are scant, heterogeneous in methodology, and knowledge remains limited. More insights on VMB composition and their possible sequalae among these populations is needed.
Collapse
|
72
|
Kumherová M, Veselá K, Kosová M, Mašata J, Horáčková Š, Šmidrkal J. Novel Potential Probiotic Lactobacilli for Prevention and Treatment of Vulvovaginal Infections. Probiotics Antimicrob Proteins 2021; 13:163-172. [PMID: 32583131 DOI: 10.1007/s12602-020-09675-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Lactobacilli in the vaginal tract are essential to protect against microbial infections. We therefore focused on isolating vaginal lactobacilli from pregnant women and testing their functional properties. Lactobacilli were isolated from 50 vaginal swabs and the purified isolates were identified by MALDI-TOF MS. Functional properties (antimicrobial activity, organic acids and hydrogen peroxide production, antibiotic susceptibility, auto-aggregation, and hydrophobicity) of selected isolates were tested. Lactobacilli (41 strains) were identified in 58% of swabs with a predominance of Lactobacillus crispatus (48%) followed by L. jensenii (21%), L. rhamnosus (14%), L. fermentum (10%), and L. gasseri (7%). The highest antibacterial activity was determined for L. fermentum and L. rhamnosus. Strong anti-Candida activity was observed for strains L. crispatus, L. fermentum, and L. rhamnosus. Strain L. jensenii 58C possessed the highest production of hydrogen peroxide (6.32 ± 0.60 mg/l). The best lactic acid producer was strain L. rhamnosus 72A (11.6 ± 0.2 g/l). All strains were resistant to fluconazole and metronidazole. The highest auto-aggregation was observed for strain L. crispatus 51A (98.8 ± 0.1% after 24 h). Strain L. rhamnosus 68A showed the highest hydrophobicity (69.1 ± 1.4%). Strains L. fermentum and L. rhamnosus showed high antibacterial activity and hydrophobicity, and strains L. crispatus possessed high auto-aggregation and anti-Candida activity. Thus, these strains alone or in a mix could be used for the preparation of probiotic products for treatment and prevention of vulvovaginal infections of pregnant and non-pregnant women.
Collapse
|
73
|
Chambers LM, Bussies P, Vargas R, Esakov E, Tewari S, Reizes O, Michener C. The Microbiome and Gynecologic Cancer: Current Evidence and Future Opportunities. Curr Oncol Rep 2021; 23:92. [PMID: 34125319 DOI: 10.1007/s11912-021-01079-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW We review the emerging evidence regarding the relationship between the microbiota of the gastrointestinal and female reproductive tracts and gynecologic cancer. RECENT FINDINGS The microbiome has essential roles in maintaining health. In recent years, the microbiota of the gastrointestinal and female reproductive tracts have been linked to many diseases, including gynecologic cancer. Alterations to the bacterial populations in a microbiota, or dysbiosis, have been shown to favor a pro-carcinogenic state through altered immune responses, dysregulated hormone metabolism, and modulation of the cell cycle. Pre-clinical and clinical studies have emerged, demonstrating that specific bacteria or microbial communities may be associated with increased risk for uterine, ovarian, and cervical cancers. Notably, numerous studies have linked a non-Lactobacillus-dominant vaginal microbiota, composed of anaerobic bacteria, with HPV infection, persistence, and development of invasive cervical cancer. Similarly, next-generation high-throughput sequencing techniques have enabled the characterization of unique microbiotas in patients with malignant and benign gynecologic conditions, shedding light on new associations between bacterial species and gynecologic cancers. Harnessing the power of the microbiome for early diagnosis, therapeutic intervention and modulation creates tremendous potential to optimize gynecologic cancer outcomes in the future.
Collapse
|
74
|
Vaginal microbiome: normalcy vs dysbiosis. Arch Microbiol 2021; 203:3793-3802. [PMID: 34120200 DOI: 10.1007/s00203-021-02414-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
It has been long understood that the vaginal microflora is crucial in maintaining a normal physiological environment for the host and its involvement is deemed indispensable for reproductive success. A global concept of normalcy vs. dysbiosis of vaginal microbiome is debatable as women of different races have a unique vaginal microflora with regional variations. Vaginal microflora is a dynamic microenvironment affected by gestational status, menstrual cycle, sexual activity, age, and contraceptive use. Normal vaginal flora is dominated by lactobacilli especially in women of European descent vs. African American women. These microbes confer the host vagina protection from potentially pathogenic microbes that may lead to urinary tract infections and sexually transmitted diseases. Changes in the vaginal microbiota including reduced lactobacilli abundance and increased facultative and anaerobic organism populations result in bacterial vaginosis, that predisposes the host to several conditions like low birth weight and increased risk of contracting bacterial infections. On the other hand, the vaginal microbiome is also reshaped during pregnancy, with less microbial diversity with a dominance of Lactobacillus species. However, an altered vaginal microbiota with low lactobacilli abundance especially during pregnancy may result in induction of excessive inflammation and pre-term labor. Since the vaginal microbiome plays an important role during embryo implantation, it is not surprising that bacterial vaginosis is more common in infertile women and associated with reduced rates of conception. Probiotic has great success in treating bacterial vaginosis and restoring the normal microbiome in recent. This report, reviewed the relationships between the vaginal microbiome and women's reproductive health.
Collapse
|
75
|
Gustin A, Cromarty R, Schifanella L, Klatt NR. Microbial mismanagement: how inadequate treatments for vaginal dysbiosis drive the HIV epidemic in women. Semin Immunol 2021; 51:101482. [PMID: 34120819 DOI: 10.1016/j.smim.2021.101482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Women and girls represent a key population driving new HIV infections and persistence of the HIV pandemic. A key determinant of HIV susceptibility is the composition of the vaginal microbiome, which can influence the local immune cell population, inflammation status, and HIV prevention drug levels. While a low-diversity composition dominated by Lactobacillus crispatus is associated with a decreased risk of HIV acquisition, high diversity environments associated with bacterial vaginosis increase risk of HIV. Given the important role of the vaginal microbiome in determining HIV susceptibility, altering the microbiome towards a Lactobacillus-dominated state is an attractive complementary strategy to reduce HIV incidence rates. Here, we provide an overview of the mechanisms by which the vaginal microbiome may contribute to HIV acquisition risk. Furthermore, we address the advantages and limitations of historical treatments and emerging technologies under investigation to modify the vaginal microbiome, including: antibiotics, bacteriophages, probiotics, topicals, and engineered bacteria. By addressing the current state of vaginal microbiome knowledge and strategies for manipulation, we hope to amplify the growing calls for increased resources and research into vaginal microbial health, which will be essential to accelerating preventative efforts amongst the world's most vulnerable populations.
Collapse
|