51
|
Synthesis of Oleanolic Acid-Dithiocarbamate Conjugates and Evaluation of Their Broad-Spectrum Antitumor Activities. Molecules 2023; 28:molecules28031414. [PMID: 36771080 PMCID: PMC9920998 DOI: 10.3390/molecules28031414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Efficient and mild synthetic routes for bioactive natural product derivatives are of current interest for drug discovery. Herein, on the basis of the pharmacophore hybrid strategy, we report a two-step protocol to obtain a series of structurally novel oleanolic acid (OA)-dithiocarbamate conjugates in mild conditions with high yields. Moreover, biological evaluations indicated that representative compound 3e exhibited the most potent and broad-spectrum antiproliferative effects against Panc1, A549, Hep3B, Huh-7, HT-29, and Hela cells with low cytotoxicity on normal cells. In terms of the IC50 values, these OA-dithiocarbamate conjugates were up to 30-fold more potent than the natural product OA. These compounds may be promising hit compounds for the development of novel anti-cancer drugs.
Collapse
|
52
|
Qin H, Zhang J, Zhao Y, Zhang L, Feng J, Zhang L. Discovery of a potent olaparib-chlorambucil hybrid inhibitor of PARP1 for the treatment of cancer. Front Pharmacol 2023; 13:1054616. [PMID: 36699082 PMCID: PMC9868654 DOI: 10.3389/fphar.2022.1054616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: Development of Poly (ADP-ribose) polymerase (PARP) inhibitors has been extensively studied in cancer treatment. Olaparib, the first approved PARP inhibitor, showed potency in the inhibition of both BRCA (breast cancer associated)-mutated and BRCA-unmutated cancers. Methods: Aiming to the discovery of olaparib analogs for the treatment of cancer, structural modifications were performed based on the scaffold of olaparib. In the first series, reduction of carbonyl group to CH2 led to decrease of PARP1 inhibitory activity. Preserving the original carbonyl group, molecules with potent PARP1 inhibitory activities were derived by introduction of hydrazide and aromatic nitrogen mustard groups. The synthesized compounds were evaluated in the in the PARP1 enzyme inhibitory screening, cancer cell based antiproliferative assay, cell cycle arrest and apoptosis studies. Results: It is remarkable that, molecule C2 with chlorambucil substitution, exhibited potent PARP1 inhibitory activity and a broad-spectrum of anticancer potency in the in vitro antiproliferative assay. Compared with olaparib and chlorambucil, molecule C2 also showed significant potency in inhibition of a variety of BRCA-unmutated cell lines. Further analysis revealed the effects of C2 in induction of G2/M phase cell cycle arrest and promotion of apoptosis. Discussion: Collectively, the olaparib-chlorambucil hybrid molecule (C2) could be utilized as a lead compound for further drug design.
Collapse
|
53
|
Wang C, Shi L, Yang S, Chang J, Liu W, Zeng J, Meng J, Zhang R, Xing D. Research progress on antitumor activity of XRP44X and analogues as microtubule targeting agents. Front Chem 2023; 11:1096666. [PMID: 36936533 PMCID: PMC10014799 DOI: 10.3389/fchem.2023.1096666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Cancer threatens human health and life. Therefore, it is particularly important to develop safe and effective antitumor drugs. Microtubules, the main component of cytoskeleton, play an important role in maintaining cell morphology, mitosis, and signal transduction, which are one of important targets of antitumor drug research and development. Colchicine binding site inhibitors have dual effects of inhibiting proliferation and destroying blood vessels. In recent years, a series of inhibitors targeting this target have been studied and some progress has been made. XRP44X has a novel structure and overcomes some disadvantages of traditional inhibitors. It is also a multifunctional molecule that regulates not only the function of tubulin but also a variety of biological pathways. Therefore, the structure, synthesis, structure-activity relationship, and biological activity of XRP44X analogues reported in recent years were summarized in this paper, to provide a useful reference for the rational design of efficient colchicine binding site inhibitors.
Collapse
|
54
|
Xia Z, Yu X, Feng F, Song P, Yang W, Wang J, Wang Q. Discovery of Resveratrol and its Derivatives as Novel Antiviral and Anti- Phytopathogenic-Fungus Agents. Curr Org Synth 2023; 20:351-359. [PMID: 36200163 DOI: 10.2174/1570179420666221005124445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Plant diseases caused by viruses and pathogens have posed a serious threat to global agricultural production and are difficult to control. Natural products have always been a valuable source for lead discovery in medicinal and agricultural chemistry. The natural product resveratrol was found to have good antiviral activity against the tobacco mosaic virus (TMV) and fungicidal activities against 14 kinds of phytopathogenic fungi. OBJECTIVE The aim of this work was to design, synthesize a series of derivatives of resveratrol, and evaluate their antiviral and fungicidal activities systematically. METHODS Novel resveratrol sulfonate derivatives were prepared by a convenient synthesis method from resveratrol, alkyl sulfonyl chloride, aryl sulfonyl chloride, and heterocyclic sulfonyl chloride. Their structures were also identified by nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HRMS). RESULTS Most of the targets were obtained at a high yield. Compounds I-2, I-5, I-10, II-2, and II-4, with excellent antiviral activities, showed higher anti-TMV activities than those of lead compounds and commercial ribavirin (inhibitory rates of 38, 37, and 38% at 500 μg/mL for inactivation, curative, and protection activities in vivo, respectively). In particular, compounds I-5, I-10, II-2, and II-4 displayed similar inhibitory effects as ningnanmycin (inhibitory rates of 54, 56, and 58% at 500 μg/mL for inactivation, curative, and protection activities in vivo, respectively), the best antiviral agent at present, thereby emerging as new antiviral pilot compounds. Further fungicidal activity tests showed that resveratrol derivatives also displayed broad-spectrum fungicidal activities. CONCLUSION The anti-TMV activities of these compounds were discovered for the first time. Some of these simply structured compounds showed higher TMV inhibitory effects than ribavirin. The current study provided valuable insights into the antiviral and fungicidal activities of resveratrol derivatives, but more modification of the structure should be conducted.
Collapse
|
55
|
Ren G, Zhang Q, Xia P, Wang J, Fang P, Jin X, Peng X, Xu Y, Zhang J, Zhao L. Synthesis and Biological Evaluation of Gentiopicroside Derivatives as Novel Cyclooxygenase-2 Inhibitors with Anti-Inflammatory Activity. Drug Des Devel Ther 2023; 17:919-935. [PMID: 36992901 PMCID: PMC10042259 DOI: 10.2147/dddt.s398861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Purpose Nonsteroidal anti-inflammatory drugs cause a series of adverse reactions. Thus, the search for new cyclooxygenase-2 selective inhibitors have become the main direction of research on anti-inflammatory drugs. Gentiopicroside is a novel selective inhibitor of cyclooxygenase-2 from Chinese herbal medicine. However, it is highly hydrophilic owing to the presence of the sugar fragment in its structure that reduces its oral bioavailability and limits efficacy. This study aimed to design and synthesize novel cyclooxygenase-2 inhibitors by modifying gentiopicroside structure and reducing its polarity. Materials and Methods We introduced hydrophobic acyl chloride into the gentiopicroside structure to reduce its hydrophilicity and obtained some new derivatives. Their in vitro anti-inflammatory activities were evaluated against NO, TNF-α, PGE2, and IL-6 production in the mouse macrophage cell line RAW264.7 stimulated by lipopolysaccharide. The in vivo inhibitory activities were further tested against xylene-induced mouse ear swelling. Molecular docking predicted that whether new compounds could effectively bind to target protein cyclooxygenase-2. The inhibitory activity of new compounds to cyclooxygenase-2 enzyme were verified by the in vitro experiment. Results A total of 21 novel derivatives were synthesized, and exhibit lower polarities than the gentiopicroside. Most compounds have good in vitro anti-inflammatory activity. The in vivo activity results demonstrated that 8 compounds were more active than gentiopicroside. The inhibition rate of some compounds was higher than celecoxib. Molecular docking predicted that 6 compounds could bind to cyclooxygenase-2 and had high docking scores in accordance with their potency of the anti-inflammatory activity. The confirmatory experiment proved that these 6 compounds had significant inhibitory effect against cyclooxygenase-2 enzyme. Structure-activity relationship analysis presumed that the para-substitution with the electron-withdrawing groups may benefit the anti-inflammatory activity. Conclusion These gentiopicroside derivatives especially PL-2, PL-7 and PL-8 may represent a novel class of cyclooxygenase-2 inhibitors and could thus be developed as new anti-inflammatory agents.
Collapse
|
56
|
Li T, Lv M, Wen H, Wang Y, Thapa S, Zhang S, Xu H. Synthesis of Piperine-Based Ester Derivatives with Diverse Aromatic Rings and Their Agricultural Bioactivities against Tetranychus cinnabarinus Boisduval, Aphis citricola Van der Goot, and Eriosoma lanigerum Hausmann. INSECTS 2022; 14:40. [PMID: 36661967 PMCID: PMC9862344 DOI: 10.3390/insects14010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Exploration of plant secondary metabolites or by using them as leads for development of new pesticides has become one of the focal research topics nowadays. Herein, a series of new ester derivatives of piperine were prepared via the Vilsmeier−Haack−Arnold (VHA) reaction, and their structures were characterized by infrared spectroscopy (IR), melting point (mp), proton nuclear magnetic resonance spectroscopy (1H NMR), and carbon nuclear magnetic resonance spectroscopy (13C NMR). Notably, the steric configurations of compounds 6 and 7 were confirmed by single-crystal analysis. Against T. cinnabarinus, compounds 9 and 11 exhibited 47.6- and 45.4-fold more pronounced acaricidal activity than piperine. In particular, compounds 9 and 11 also showed 2.6-fold control efficiency on the fifth day of piperine. In addition, compound 6 (>10−fold higher than piperine) displayed the most potent aphicidal activity against A. citricola. Furthermore, some derivatives showed good aphicidal activities against E. lanigerum. Moreover, the effects of compounds on the cuticles of T. cinnabarinus were investigated by the scanning electron microscope (SEM) imaging method. This study will pave the way for future high value added application of piperine and its derivatives as botanical pesticides.
Collapse
|
57
|
Chemistry and Biological Activities of Naturally Occurring and Structurally Modified Podophyllotoxins. Molecules 2022; 28:molecules28010302. [PMID: 36615496 PMCID: PMC9822336 DOI: 10.3390/molecules28010302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/17/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023] Open
Abstract
Plants containing podophyllotoxin and its analogues have been used as folk medicines for centuries. The characteristic chemical structures and strong biological activities of this class of compounds attracted attention worldwide. Currently, more than ninety natural podophyllotoxins were isolated, and structure modifications of these molecules were performed to afford a variety of derivatives, which offered optimized anti-tumor activity. This review summarized up to date reports on natural occurring podophyllotoxins and their sources, structural modification and biological activities. Special attention was paid to both structural modification and optimized antitumor activity. It was noteworthy that etoposide, a derivative of podophyllotoxin, could prevent cytokine storm caused by the recent SARS-CoV-2 viral infection.
Collapse
|
58
|
Li T, Lv M, Wen H, Wang J, Wang Z, Xu J, Fang S, Xu H. High Value-Added Application of Natural Plant Products in Crop Protection: Construction and Pesticidal Activities of Piperine-Type Ester Derivatives and Their Toxicology Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16126-16134. [PMID: 36525582 DOI: 10.1021/acs.jafc.2c06136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To discover new potential pesticide candidates, recently, structural modification of natural bioactive products has received much attention. In this work, a series of new piperine-type ester derivatives were regio- and stereoselectively synthesized based on a natural alkaloid piperine isolated from Piper nigrum. Their structures were characterized by IR, mp, 1H NMR (13C NMR), and high-resolution mass spectrometry (HRMS). Against Tetranychus cinnabarinus Boisduval (Acari: Tetranychidae), compounds 4e, 4f, 4u, and 4v displayed the most significant acaricidal activity with LC50 values of 0.155, 0.117, 0.177, and 0.164 mg/mL, respectively. Particularly, compound 4f showed >120-fold higher acaricidal activity than piperine (LC50: 14.198 mg/mL). Notably, the acaricidal activity of 4f was equivalent to that of the commercial acaricide spirodiclofen (LC50: 0.115 mg/mL). Additionally, against Eriosoma lanigerum Hausmann (Hemiptera: Aphididae), compounds 4w and 4b' showed 1.8-fold aphicidal activity of piperine. Furthermore, via the scanning electron microscope (SEM) imaging method, the obvious destruction of the construction of the cuticle layer of 4f-treated T. cinnabarinus was observed. Compound 4f could be further studied as a lead acaricidal agent.
Collapse
|
59
|
Semisynthesis and Pesticidal Activities of Novel Cholesterol Ester Derivatives Containing Cinnamic Acid-like Fragments. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238437. [PMID: 36500528 PMCID: PMC9735938 DOI: 10.3390/molecules27238437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
Due to the extensive use of agrochemicals resulting in the emergence of pesticide resistance and ecological environment problems, the research and development of new alternatives for crop protection is highly desirable. In order to discover potent natural product-based insecticide candidates, a series of new cholesterol ester derivatives containing cinnamic acid-like fragments at the C-7 position were synthesized. Some derivatives showed potent pesticidal activities. Against Mythimna separata Walker, compounds 2a, Id, Ig, and IIg showed 2.1-2.4-fold growth-inhibitory activity of the precursor cholesterol. Against Plutella xylostella Linnaeus, compounds Ig, IIf, and IIi exhibited 1.9-2.1-fold insecticidal activity of cholesterol. These results will pave the way for the future synthesis of cholesterol-based derivatives as agrochemicals.
Collapse
|
60
|
Yu X, Zhang Y, Zhang M, Chen Y, Yang W. Natural products as sources of acetylcholinesterase inhibitors: Synthesis, biological activities, and molecular docking studies of osthole-based ester derivatives. FRONTIERS IN PLANT SCIENCE 2022; 13:1054650. [PMID: 36466282 PMCID: PMC9716088 DOI: 10.3389/fpls.2022.1054650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Osthole is a natural coumarin compound which isolated from Cnidium monnieri (L.) Cusson, has extensive pharmacological activities and could be used as a leading compound for drug research and development. In a continuous effort to develop new acetylcholinesterase inhibitors from natural products, eighteen osthole esters were designed, synthesized, and confirmed by 1H NMR, 13C NMR and HRMS. The anti-AChE activity of These derivatives was measured at a concentration of 1.0 mol/mL in vitro by Ellman's method, and the result showed that 4m and 4o had moderate inhibitory activities with 68.8% and 62.6%, respectively. Molecular docking study results further revealed AChE interacted optimally with docking poses 4m and 4o. Network pharmacology also predicted that compound 4m could be involved in Ras signaling pathway, which made it a potential therapeutic target of AD.
Collapse
|
61
|
Sarabandi K, Tamjidi F, Akbarbaglu Z, Samborska K, Gharehbeglou P, Kharazmi MS, Jafari SM. Modification of Whey Proteins by Sonication and Hydrolysis for the Emulsification and Spray Drying Encapsulation of Grape Seed Oil. Pharmaceutics 2022; 14:2434. [PMID: 36365250 PMCID: PMC9693466 DOI: 10.3390/pharmaceutics14112434] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 01/04/2024] Open
Abstract
In this study, whey protein concentrate (WPC) was sonicated or partially hydrolyzed by Alcalase, then examined as an emulsifier and carrier for the emulsification and spray drying of grape seed oil (GSO)-in-water emulsions. The modification treatments increased the free amino acid content and antioxidant activity (against DPPH and ABTS free radicals), as well as, the solubility, emulsifying, and foaming activities of WPC. The modified WPC-stabilized emulsions had smaller, more homogeneous droplets and a higher zeta potential as compared to intact WPC. The corresponding spray-dried powders also showed improved encapsulation efficiency, oxidative stability, reconstitution ability, flowability, solubility, and hygroscopicity. The morphology of particles obtained from the primary WPC (matrix type, irregular with surface pores) and modified WPC (reservoir type, wrinkled with surface indentations), as well as the oxidative stability of the GSO were influenced by the functional characteristics and antioxidant activity of the carriers. Changes in the secondary structures and amide regions of WPC, as well as the embedding of GSO in its matrix, were deduced from FTIR spectra after modifications. Partial enzymolysis had better results than ultrasonication; hence, the WPC hydrolysates are recommended as emulsifiers, carriers, and antioxidants for the delivery and protection of bioactive compounds.
Collapse
|
62
|
Strategies for Solubility and Bioavailability Enhancement and Toxicity Reduction of Norcantharidin. Molecules 2022; 27:molecules27227740. [PMID: 36431851 PMCID: PMC9693198 DOI: 10.3390/molecules27227740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Cantharidin (CTD) is the main active ingredient isolated from Mylabris, and norcantharidin (NCTD) is a demethylated derivative of CTD, which has similar antitumor activity to CTD and lower toxicity than CTD. However, the clinical use of NCTD is limited due to its poor solubility, low bioavailability, and toxic effects on normal cells. To overcome these shortcomings, researchers have explored a number of strategies, such as chemical structural modifications, microsphere dispersion systems, and nanodrug delivery systems. This review summarizes the structure-activity relationship of NCTD and novel strategies to improve the solubility and bioavailability of NCTD as well as reduce the toxicity. This review can provide evidence for further research of NCTD.
Collapse
|
63
|
The key new techniques in the medicinal chemist's toolkit to prioritize solubility during drug design. Future Med Chem 2022; 14:1421-1424. [PMID: 36165807 DOI: 10.4155/fmc-2022-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
64
|
Pullano SA, Marcianò G, Bianco MG, Oliva G, Rania V, Vocca C, Cione E, De Sarro G, Gallelli L, Romeo P, La Gatta A, Fiorillo AS. FT-IR Analysis of Structural Changes in Ketoprofen Lysine Salt and KiOil Caused by a Pulsed Magnetic Field. Bioengineering (Basel) 2022; 9:bioengineering9100503. [PMID: 36290471 PMCID: PMC9598906 DOI: 10.3390/bioengineering9100503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
High-intensity, low-frequency magnetic fields (MFs) have been widely used in the treatment of diseases and in drug delivery, even though they could induce structural changes in pharmacological molecules. Morphological changes in ketoprofen and KiOil were investigated through Fourier-transform infrared spectroscopy (FT-IR). Unsupervised principal component analysis was carried out for data clustering. Clinical validation on 22 patients with lower back pain was managed using diamagnetic therapy plus topical ketoprofen or KiOil. The Numerical Rating Scale (NRS) and Short-Form Health Survey 36 (SF-36) were used to evaluate clinical and functional response. Ketoprofen showed clear clustering among samples exposed to MF (4000−650 cm−1), and in the narrow frequency band (1675−1475 cm−1), results evidenced structural changes which involved other excipients than ketoprofen. KiOil has evidenced structural modifications in the subcomponents of the formulation. Clinical treatment with ketoprofen showed an average NRS of 7.77 ± 2.25 before and an average NRS of 2.45 ± 2.38 after MF treatment. There was a statistically significant reduction in NRS (p = 0.003) and in SF-36 (p < 0.005). Patients treated with KiOil showed an average NRS of 7.59 ± 2.49 before treatment and an average NRS of 1.90 ± 2.26 after treatment (p < 0.005). SF-36 showed statistical significance for all items except limitations due to emotional problems. A high-intensity pulsed magnetic field is an adjunct to topical treatment in patients with localized pain, and the effect of MF does not evidence significant effects on the molecules.
Collapse
|
65
|
Zuo SJ, Ma DL, Li J, Guo QH, Zhou L. Structural modification and antihypertensive activity study of formononetin derivatives. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:839-848. [PMID: 34844472 DOI: 10.1080/10286020.2021.2005588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
A series of formononetin derivatives with substituted benzyloxy groups on the 4' position of isoflavone were designed and synthesized. Their vasodilative activities were evaluated by wire myograph system on isolated rat mesenteric arterial ring. The preliminary SAR of target compounds was thus discussed. Compounds 3d and 3e exhibited potent vasodilative activities against the rat mesenteric arterial rings induced contraction with K+. Compounds 3d and 3e also showed antihypertensive effects in SHRs by oral administration.
Collapse
|
66
|
Che Z, Guo X, Li Y, Zhang S, Zhu L, He J, Sun D, Guo Y, Liu Y, Wei R, Huang X, Liu S, Chen G, Tian Y. Synthesis of paeonol ester derivatives and their insecticidal, nematicidal, and anti-oomycete activities. PEST MANAGEMENT SCIENCE 2022; 78:3442-3455. [PMID: 35567371 DOI: 10.1002/ps.6985] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/06/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Paeonol is extracted and isolated as a rich and sustainable natural bioresource from the root bark of Paeonia suffruticosa, the derivatives of which exhibit numerous biological activities. It is well known that ester compounds play a very important role in pest control, such as organophosphorus, carbamate and pyrethroid pesticides. RESULTS To discover biorational natural product-based pesticides, three series of (60) paeonol ester derivatives (7a-t, 8g,p, 9g,p, 10g-j,n-u, 11g,u, 12g,u, 13a-p, 14b,c, and 15b,c) were prepared by structural modification of paeonol, and their structures were well characterized by proton nuclear magnetic resonance (1 H-NMR), carbon-13 nuclear magnetic resonance (13 C-NMR), high-resolution mass spectrometry (HRMS), and melting point. Furthermore, we assessed the compounds as insecticidal, nematicidal, and anti-oomycete agents against three serious agricultural pests, Mythimna separata, Heterodera glycines, and Phytophthora capsici. Among all tested compounds: (i) compound 8p showed more significant insecticidal activity than toosendanin, and the final mortality rates of 8p and toosendanin against M. separata (1 mg mL-1 ) were 70.4%, and 51.9%, respectively; (ii) compound 7a exhibited more promising nematicidal activity than paeonol, and the median lethal concentration (LC50 ) values of 7a and 1 against H. glycines were 15.47 and 50.80 mg L-1 , respectively; (iii) compounds 7n and 13m displayed more significant anti-oomycete activity compared to zoxamide against Phytophthora capsici, and the median effective concentration (EC50 ) values of 7n, 13m, and zoxamide were 23.72, 24.51, and 26.87 mg L-1 , respectively; and the protective effect of the compounds against Phytophthora capsici in vivo further confirmed the effectiveness of the agents. CONCLUSION This study suggested that the introduction of a nitro at the C5 or C3 position of paeonol could improve its bioactivity against M. separata, H. glycines, and Phytophthora capsici. © 2022 Society of Chemical Industry.
Collapse
|
67
|
Islam MR, Zubair MA, Galib RH, Hoque MSB, Tomko JA, Aryana K, Basak AK, Hopkins PE. Vacancy-Induced Temperature-Dependent Thermal and Magnetic Properties of Holmium-Substituted Bismuth Ferrite Nanoparticle Compacts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25886-25897. [PMID: 35634978 DOI: 10.1021/acsami.2c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiferroics have gained widespread acceptance for room-temperature applications such as in spintronics, ferroelectric random access memory, and transistors because of their intrinsic magnetic and ferroelectric coupling. However, a comprehensive study, establishing a correlation between the magnetic and thermal transport properties of multiferroics, is still missing from the literature. To fill the void, this work reports the temperature-dependent thermal and magnetic properties of holmium-substituted bismuth ferrite (BiFeO3) and their dependencies on oxygen vacancies and structural modifications. Two distinct magnetic transitions on temperature-dependent magnetic and heat capacity responses are identified. Experimental analysis suggests that the excess of oxygen vacancies shifts the magnetic transition temperature by ∼64 K. The holmium substitution-induced structural modification increases BiFeO3 heat capacity by 30% up to the antiferromagnetic phase transition temperature. Furthermore, an unsaturated heat capacity even at temperatures as high as 850 K is observed and is ascribed to anharmonicity and partial densification of the nanoparticles used during heat capacity measurements. The room-temperature thermal conductivity of BiFeO3 is ∼0.33 ± 0.11 W m-1 K-1 and remains unchanged at high temperatures due to defect scattering from porosities.
Collapse
|
68
|
Fan Y, Yang Z. Inhaled siRNA Formulations for Respiratory Diseases: From Basic Research to Clinical Application. Pharmaceutics 2022; 14:1193. [PMID: 35745766 PMCID: PMC9227582 DOI: 10.3390/pharmaceutics14061193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022] Open
Abstract
The development of siRNA technology has provided new opportunities for gene-specific inhibition and knockdown, as well as new ideas for the treatment of disease. Four siRNA drugs have already been approved for marketing. However, the instability of siRNA in vivo makes systemic delivery ineffective. Inhaled siRNA formulations can deliver drugs directly to the lung, showing great potential for treating respiratory diseases. The clinical applications of inhaled siRNA formulations still face challenges because effective delivery of siRNA to the lung requires overcoming the pulmonary and cellular barriers. This paper reviews the research progress for siRNA inhalation formulations for the treatment of various respiratory diseases and summarizes the chemical structural modifications and the various delivery systems for siRNA. Finally, we conclude the latest clinical application research for inhaled siRNA formulations and discuss the potential difficulty in efficient clinical application.
Collapse
|
69
|
Meng XW, Wei YY, Nong BL, Zhao HJ, Zhang XX. Design, synthesis, and anticancer activity evaluation of curcumol derivatives. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:556-568. [PMID: 34236240 DOI: 10.1080/10286020.2021.1947255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
A new series of C-14 curcumol derivatives as potent anticancer agents were designed and synthesized by click reaction, whose structures were confirmed by 1H NMR,13C NMR, and HRMS analysis. All the synthesized compounds were evaluated for in vitro antitumor activity against colorectal cancer cell lines SW620 and HCT116. Most of them exhibited higher inhibitory activity than curcumol. Especially, compound 3j shows good inhibitory activity against SW620 with IC50 value of 8.10 ± 0.13 μM. The structure-activity relationships (SARs) of these derivatives were discussed. In addition, flow cytometry revealed that compound 3j induced SW620 cells apoptosis by facilitating apoptosis-related proteins expressions. Our findings suggested that fluorine functional group on phenyl ring tended to increase the anticancer activity.
Collapse
|
70
|
Amorim-Carmo B, Parente AMS, Souza ES, Silva-Junior AA, Araújo RM, Fernandes-Pedrosa MF. Antimicrobial Peptide Analogs From Scorpions: Modifications and Structure-Activity. Front Mol Biosci 2022; 9:887763. [PMID: 35712354 PMCID: PMC9197468 DOI: 10.3389/fmolb.2022.887763] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
The rapid development of multidrug-resistant pathogens against conventional antibiotics is a global public health problem. The irrational use of antibiotics has promoted therapeutic limitations against different infections, making research of new molecules that can be applied to treat infections necessary. Antimicrobial peptides (AMPs) are a class of promising antibiotic molecules as they present broad action spectrum, potent activity, and do not easily induce resistance. Several AMPs from scorpion venoms have been described as a potential source for the development of new drugs; however, some limitations to their application are also observed. Here, we describe strategies used in several approaches to optimize scorpion AMPs, addressing their primary sequence, biotechnological potential, and characteristics that should be considered when developing an AMP derived from scorpion venoms. In addition, this review may contribute towards improving the understanding of rationally designing new molecules, targeting functional AMPs that may have a therapeutic application.
Collapse
|
71
|
Ren Z, Lv M, Zhang Y, Li T, Xu H. High Value-Added Application of Natural Plant Products in Crop Protection: Honokiol Monoester/Diester Derivatives Containing the Novel Core Scaffold of Benzodihydrofuran and Their Agricultural Bioactivities and Control Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5319-5329. [PMID: 35441514 DOI: 10.1021/acs.jafc.1c08292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To discover new potential botanical insecticides from plant secondary metabolites, a series of new honokiol-type monoester/diester derivatives containing the core scaffold of benzodihydrofuran were synthesized by structural modification of honokiol. Against Mythimna separata Walker, 2-hydroxymethy-5-(2'-(para-chlorobenzoyloxy)-5'-(1″,2″-epoxypropanyl))phenyl-2,3-dihydrobenzofuran (5) and 2-(2″-chloropyridin-5″-ylcarbonyloxy)methylene-5-(2'-(2″-chloropyridin-5″-ylcarbonyloxy)-5'-(1″,2″-epoxypropanyl))phenyl-2,3-dihydrobenzofuran (37) displayed >2.1-fold promising insecticidal activity of the precursor honokiol. Against Aphis citricola Van der Goot, 2-hydroxymethy-5-(2'-(tridecylcarbonyloxy)-5'-(1″,2″-epoxypropanyl))phenyl-2,3-dihydrobenzofuran (21) (LD50: 0.049 μg/nymph) and 2-(para-fluorobenzylcarbonyloxy)methylene-5-(2'-(para-fluorobenzylcarbonyloxy)-5'-(1″,2″-epoxypropanyl))phenyl-2,3-dihydrobenzofuran (31) (LD50: 0.040 μg/nymph) showed 3.5- and 4.3-folds potent aphicidal activity of honokiol (LD50: 0.171 μg/nymph), respectively. Interestingly, 2-(tridecylcarbonyloxy)methylene-5-(2'-(tridecylcarbonyloxy)-5'-(1″,2″-epoxypropanyl))phenyl-2,3-dihydrobenzofuran (46) (LC50: 0.186 mg/mL) and 2-(dodecylcarbonyloxy)methylene-5-(2'-(dodecylcarbonyloxy)-5'-(1″,2″-epoxypropanyl))phenyl-2,3-dihydrobenzofuran (53) (LC50: 0.159 mg/mL: >6.4-fold of honokiol (LC50: 1.024 mg/mL)) exhibited promising acaricidal activity and control efficiency against Tetranychus cinnabarinus Boisduval. Structure-activity relationships indicated that a specific length of the aliphatic chain is necessary for the agricultural activities of honokiol monoester/diester derivatives, especially for the acaricidal activity of diester derivatives.
Collapse
|
72
|
Li M, Su F, Zhu M, Zhang H, Wei Y, Zhao Y, Li J, Lv S. Research Progress in the Field of Gambogic Acid and Its Derivatives as Antineoplastic Drugs. Molecules 2022; 27:2937. [PMID: 35566290 PMCID: PMC9102264 DOI: 10.3390/molecules27092937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 12/18/2022] Open
Abstract
Gambogic acid (GA) is a natural product with a wide range of pharmacological properties. It plays an important role in inhibiting tumor growth. A large number of GA derivatives have been designed and prepared to improve its shortcomings, such as poor water solubility, low bioavailability, poor stability, and adverse drug effects. So far, GA has been utilized to develop a variety of active derivatives with improved water solubility and bioavailability through structural modification. This article summarized the progress in pharmaceutical chemistry of GA derivatives to provide a reference and basis for further study on structural modifications of GA and expansion of its clinical applications.
Collapse
|
73
|
Nong BL, Meng XW, Wei YY, Zhao HJ, Zhang XX. Design, synthesis, and biological evaluation of C-8 modified curcumol derivatives against colorectal cancer cell lines. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 25:1-14. [PMID: 35499464 DOI: 10.1080/10286020.2022.2067533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
A series of structurally modified curcumol derivatives at C-8 position were designed and synthesized, whose structures were confirmed by 1H NMR,13C NMR, and HRMS analysis. The tested compounds were evaluated for in vitro antitumor activity against colorectal cancer cell lines SW620, HCT116, and CaCo2. Many of the tested candidates exhibited higher inhibition efficiency than curcumol. Among them, compound 3 l shows the best inhibitory effect on the viability of SW620 with IC50 value of 19.90 ± 0.64 µM. The structure-activity relationships of these derivatives were discussed, which showed that the introduction of amino or aryl groups tended to increase the anti-cancer activity. In addition, compound 3 l may inhibit cancer cell proliferation through triggering cell apoptosis.
Collapse
|
74
|
Chai K, Zhang J, Li Q, Wong D, Zheng L, Schulz C, Bartkowiak M, Smirnov D, Liu X. Facilitating Reversible Cation Migration and Suppressing O 2 Escape for High Performance Li-Rich Oxide Cathodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201014. [PMID: 35373917 DOI: 10.1002/smll.202201014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/21/2022] [Indexed: 06/14/2023]
Abstract
High-capacity Li-rich Mn-based oxide cathodes show a great potential in next generation Li-ion batteries but suffer from some critical issues, such as, lattice oxygen escape, irreversible transition metal (TM) cation migration, and voltage decay. Herein, a comprehensive structural modulation in the bulk and surface of Li-rich cathodes is proposed through simultaneously introducing oxygen vacancies and P doping to mitigate these issues, and the improvement mechanism is revealed. First, oxygen vacancies and P doping elongates OO distance, which lowers the energy barrier and enhances the reversible cation migration. Second, reversible cation migration elevates the discharge voltage, inhibits voltage decay and lattice oxygen escape by increasing the Li vacancy-TM antisite at charge, and decreasing the trapped cations at discharge. Third, oxygen vacancies vary the lattice arrangement on the surface from a layered lattice to a spinel phase, which deactivates oxygen redox and restrains oxygen gas (O2 ) escape. Fourth, P doping enhances the covalency between cations and anions and elevates lattice stability in bulk. The modulated Li-rich cathode exhibits a high-rate capability, a good cycling stability, a restrained voltage decay, and an elevated working voltage. This study presents insights into regulating oxygen redox by facilitating reversible cation migration and suppressing O2 escape.
Collapse
|
75
|
Dhakal D, Kim ES, Koffas M. Editorial: Engineering the Microbial Platform for the Production of Biologics and Small-Molecule Medicines, Volume II. Front Microbiol 2022; 13:827181. [PMID: 35387084 PMCID: PMC8978780 DOI: 10.3389/fmicb.2022.827181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
|