726
|
Zheng L, Cleppien D, Gass N, Falfan-Melgoza C, Vollmayr B, Hesser J, Weber-Fahr W, Sartorius A. Influence of regional cerebral blood volume on voxel-based morphometry. NMR IN BIOMEDICINE 2016; 29:787-795. [PMID: 27074152 DOI: 10.1002/nbm.3519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/23/2015] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
The investigation of structural brain alterations is one focus in research of brain diseases like depression. Voxel-based morphometry (VBM) based on high-resolution 3D MRI images is a widely used non-invasive tool for such investigations. However, the result of VBM might be sensitive to local physiological parameters such as regional cerebral blood volume (rCBV) changes. In order to investigate whether rCBV changes may contribute to variation in VBM, we performed analyses in a study with the congenital learned helplessness (cLH) model for long-term findings. The 3D structural and rCBV data were acquired with T2 -weighted rapid acquisition with relaxation enhancement (RARE) pulse sequences. The group effects were determined by standard statistical parametric mapping (SPM) and biological parametric mapping (BPM) and examined further using atlas-based regions. In our genetic animal model of depression, we found co-occurrence of differences in gray matter volume and rCBV, while there was no evidence of significant interaction between both. However, the multimodal analysis showed similar gray matter differences compared with the standard VBM approach. Our data corroborate the idea that two group VBM differences might not be influenced by rCBV differences in genetically different strains. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
|
727
|
Eom J, Shin JG, Park S, Rim S, Lee BH. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography. SENSORS 2016; 16:s16050734. [PMID: 27213392 PMCID: PMC4883425 DOI: 10.3390/s16050734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
Abstract
We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.
Collapse
|
728
|
MRI Reporter Genes for Noninvasive Molecular Imaging. Molecules 2016; 21:molecules21050580. [PMID: 27213309 PMCID: PMC6273230 DOI: 10.3390/molecules21050580] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 01/17/2023] Open
Abstract
Magnetic resonance imaging (MRI) is one of the most important imaging technologies used in clinical diagnosis. Reporter genes for MRI can be applied to accurately track the delivery of cell in cell therapy, evaluate the therapy effect of gene delivery, and monitor tissue/cell-specific microenvironments. Commonly used reporter genes for MRI usually include genes encoding the enzyme (e.g., tyrosinase and β-galactosidase), the receptor on the cells (e.g., transferrin receptor), and endogenous reporter genes (e.g., ferritin reporter gene). However, low sensitivity limits the application of MRI and reporter gene-based multimodal imaging strategies are common including optical imaging and radionuclide imaging. These can significantly improve diagnostic efficiency and accelerate the development of new therapies.
Collapse
|
729
|
Santini C, Kuil J, Bunschoten A, Pool S, de Blois E, Ridwan Y, Essers J, Bernsen MR, van Leeuwen FWB, de Jong M. Evaluation of a Fluorescent and Radiolabeled Hybrid Somatostatin Analog In Vitro and in Mice Bearing H69 Neuroendocrine Xenografts. J Nucl Med 2016; 57:1289-95. [PMID: 27127222 DOI: 10.2967/jnumed.115.164970] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/17/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED In the treatment of neuroendocrine tumors (NETs), complete surgical removal of malignancy is generally desirable, because it offers curative results. Preoperative guidance with radiolabeled somatostatin analogs, commonly used for NET diagnosis and preoperative planning, is limited by its low resolution, with the risk that tumor margins and small metastases will be incompletely resected with subsequent recurrence. A single hybrid probe combining radiotracer and optical dye would enable high-resolution optical guidance, also during surgery. In the current study, the hybrid labeled somatostatin analog Cy5-DTPA-Tyr(3)-octreotate (DTPA is diethylene triamine pentaacetic acid) was synthesized and evaluated for its ability to specifically trace NET cells in vitro and in an animal model. The performance of the hybrid tracer was compared with that of octreotate with only radiolabel or only optical label. METHODS The binding affinity and internalization capacity of Cy5-DTPA-Tyr(3)-octreotate were assessed in vitro. Biodistribution profiles and both nuclear and optical in vivo imaging of Cy5-(111)In -DTPA-Tyr(3)-octreotate were performed in NET-bearing mice and compared with the performance of (111)In-DTPA-Tyr(3)-octreotate. RESULTS In vitro studies showed a low receptor affinity and internalization rate for Cy5-DTPA-Tyr(3)-octreotate. The dissociation constant value was 387.7 ± 97.9 nM for Cy5-DTPA-Tyr(3)-octreotate, whereas it was 120.5 ± 18.1 nM for DTPA-Tyr(3)-octreotate. Similarly, receptor-mediated internalization reduced from 33.76% ± 1.22% applied dose for DTPA-Tyr(3)-octreotate to 1.32% ± 0.02% applied dose for Cy5-DTPA-Tyr(3)-octreotate. In contrast, in vivo and ex vivo studies revealed similar tumor uptake values of Cy5-(111)In-DTPA-Tyr(3)-octreotate and (111)In -DTPA-Tyr(3)-octreotate (6.93 ± 2.08 and 5.16 ± 1.27, respectively). All organs except the kidneys showed low background radioactivity, with especially low activities in the liver, and high tumor-to-tissue ratios were achieved-both favorable for the tracer's toxicity profile. Hybrid imaging in mice confirmed that the nuclear and fluorescence signals colocalized. CONCLUSION The correlation between findings with the optical and the nuclear probes underlines the potential of combining SPECT imaging with fluorescence guidance and shows the promise of this novel hybrid peptide for preoperative and intraoperative imaging of NET.
Collapse
|
730
|
Zhao Y, Liang M, Li X, Fan K, Xiao J, Li Y, Shi H, Wang F, Choi HS, Cheng D, Yan X. Bioengineered Magnetoferritin Nanoprobes for Single-Dose Nuclear-Magnetic Resonance Tumor Imaging. ACS NANO 2016; 10:4184-4191. [PMID: 26959856 DOI: 10.1021/acsnano.5b07408] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Despite all the advances in multimodal imaging, it remains a significant challenge to acquire both magnetic resonance and nuclear imaging in a single dose because of the enormous difference in sensitivity. Indeed, nuclear imaging is almost 10(6)-fold more sensitive than magnetic resonance imaging (MRI); thus, repeated injections are generally required to obtain sufficient MR signals after nuclear imaging. Here, we show that strategically engineered magnetoferritin nanoprobes can image tumors with high sensitivity and specificity using SPECT and MRI in living mice after a single intravenous injection. The magnetoferritin nanoprobes composed of (125)I radionuclide-conjugated human H-ferritin iron nanocages ((125)I-M-HFn) internalize robustly into cancer cells via a novel tumor-specific HFn-TfR1 pathway. In particular, the endocytic recycling characteristic of TfR1 transporters solves the nuclear signal blocking issue caused by the high dose nanoprobes injected for MRI, thus enabling simultaneous functional and morphological tumor imaging without reliance on multi-injections.
Collapse
|
731
|
Bowman FD, Drake DF, Huddleston DE. Multimodal Imaging Signatures of Parkinson's Disease. Front Neurosci 2016; 10:131. [PMID: 27147942 PMCID: PMC4834347 DOI: 10.3389/fnins.2016.00131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/15/2016] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder that manifests through hallmark motor symptoms, often accompanied by a range of non-motor symptoms. There is a putative delay between the onset of the neurodegenerative process, marked by the death of dopamine-producing cells, and the onset of motor symptoms, creating an urgent need to develop biomarkers that may yield early PD detection. Neuroimaging offers a non-invasive approach to examining the potential utility of a vast number of functional and structural brain characteristics as biomarkers. We present a statistical framework for analyzing neuroimaging data from multiple modalities to determine features that reliably distinguish PD patients from healthy control (HC) subjects. Our approach builds on elastic net, performing regularization and variable selection, while introducing additional criteria centering on parsimony and reproducibility. We apply our method to data from 42 subjects (28 PD patients and 14 HC). Our approach demonstrates extremely high accuracy, assessed via cross-validation, and isolates brain regions that are implicated in the neurodegenerative PD process.
Collapse
|
732
|
Warbrick T, Fegers-Stollenwerk V, Maximov II, Grinberg F, Shah NJ. Using Structural and Functional Brain Imaging to Investigate Responses to Acute Thermal Pain. THE JOURNAL OF PAIN 2016; 17:836-44. [PMID: 27102895 DOI: 10.1016/j.jpain.2016.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/21/2016] [Accepted: 03/05/2016] [Indexed: 02/04/2023]
Abstract
UNLABELLED Despite a fundamental interest in the relationship between structure and function, the relationships between measures of white matter microstructural coherence and functional brain responses to pain are poorly understood. We investigated whether fractional anisotropy (FA) in 2 white matter regions in pathways associated with pain is related to the functional magnetic resonance imaging (fMRI) blood oxygen level-dependent (BOLD) response to thermal stimulation. BOLD fMRI was measured from 16 healthy male subjects during painful thermal stimulation of the right arm. Diffusion-weighted images were acquired for each subject and FA estimates were extracted from the posterior internal capsule and the cingulum (cingulate gyrus). These values were then included as covariates in the fMRI data analysis. We found BOLD response in the midcingulate cortex (MCC) to be positively related to FA in the posterior internal capsule and negatively related to FA in the cingulum. Our results suggest that the MCC's involvement in processing pain can be further delineated by considering how the magnitude of the BOLD response is related to white matter microstructural coherence and to subjective perception of pain. Considering relationships to white matter microstructural coherence in tracts involved in transmitting information to different parts of the pain network can help interpretation of MCC BOLD activation. PERSPECTIVE Relationships between functional brain responses, white matter microstructural coherence, and subjective ratings are crucial for understanding the role of the MCC in pain. These findings provide a basis for investigating the effect of the reduced white matter microstructural coherence observed in some pain disorders on the functional responses to pain.
Collapse
|
733
|
Wong RH, Ho JY, Underwood MJ. Multimodality imaging assessment for Thoraflex hybrid total arch replacement. Asian Cardiovasc Thorac Ann 2016; 24:496-501. [PMID: 27072867 DOI: 10.1177/0218492316643844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Conventionally, aortic pathologies involving the ascending, arch, and descending thoracic aorta are treated by a staged operation. The Thoraflex device is a composite 4-branched graft with a distal endovascular stent, which allows one-stage treatment of these pathologies. We describe our multimodality hybrid approach for total arch replacement using the Thoraflex device with the adjunct of intraoperative 3-dimensional transesophageal echocardiography, Endo-EYE endoscopy, and on-table aortography in a hybrid operating room. These multimodality assessments can ascertain adequate sealing of a distal aortic tear and proper opening of the endograft, and provide on-table functional assessment of false lumen hemodynamics. Early results are promising.
Collapse
|
734
|
Iyer S, Bauer T, Yeung M, Ramm C, Kiser AC, Caranasos TG, Vavalle JP. A heart team and multi-modality imaging approach to percutaneous closure of a post-myocardial infarction ventricular septal defect. Cardiovasc Diagn Ther 2016; 6:180-4. [PMID: 27054108 DOI: 10.21037/cdt.2015.10.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Post-infarction ventricular septal defect (PI-VSD) is a devastating complication that carries a high mortality with or without surgical repair. Percutaneous closure is an attractive alternative in select patients though requires appropriate characterization of the PI-VSD as well as careful device and patient selection. We describe a multidisciplinary and multi-modality imaging approach to successful percutaneous closure of a PI-VSD.
Collapse
|
735
|
Malhotra K, Liebeskind DS. Wake-up stroke: Dawn of a new era. Brain Circ 2016; 2:72-79. [PMID: 30276276 PMCID: PMC6126251 DOI: 10.4103/2394-8108.186266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/08/2016] [Accepted: 06/12/2016] [Indexed: 12/13/2022] Open
Abstract
Wake-up stroke or stroke with unclear onset of symptoms is known to occur in one-fourth of ischemic stroke patients. These patients are not considered for thrombolytic therapy based on time designation of their symptom onset as per the current guidelines. Observational studies have investigated the pathophysiology and suggested actual onset of symptoms to be approximate to the awakening time for these patients. Use of advanced imaging modalities in these patients tends to identify favorable patient profiles for thrombolysis. Results of the ongoing trials will likely beckon a seminal juncture in stroke therapy and deliver critical modifications in the current treatment guidelines for thrombolysis in this substantial, yet neglected, group of stroke patients. In this article, we have reviewed the predisposing factors, preferred imaging modalities and various ongoing thrombolytic and endovascular trials to date for patients with unclear time of symptom onset or who wake up with stroke symptoms.
Collapse
|
736
|
Berman JI, Edgar JC, Blaskey L, Kuschner ES, Levy SE, Ku M, Dell J, Roberts TPL. Multimodal Diffusion-MRI and MEG Assessment of Auditory and Language System Development in Autism Spectrum Disorder. Front Neuroanat 2016; 10:30. [PMID: 27047349 PMCID: PMC4803725 DOI: 10.3389/fnana.2016.00030] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/07/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Auditory processing and language impairments are prominent in children with autism spectrum disorder (ASD). The present study integrated diffusion MR measures of white-matter microstructure and magnetoencephalography (MEG) measures of cortical dynamics to investigate associations between brain structure and function within auditory and language systems in ASD. Based on previous findings, abnormal structure-function relationships in auditory and language systems in ASD were hypothesized. METHODS Evaluable neuroimaging data was obtained from 44 typically developing (TD) children (mean age 10.4 ± 2.4 years) and 95 children with ASD (mean age 10.2 ± 2.6 years). Diffusion MR tractography was used to delineate and quantitatively assess the auditory radiation and arcuate fasciculus segments of the auditory and language systems. MEG was used to measure (1) superior temporal gyrus auditory evoked M100 latency in response to pure-tone stimuli as an indicator of auditory system conduction velocity, and (2) auditory vowel-contrast mismatch field (MMF) latency as a passive probe of early linguistic processes. RESULTS Atypical development of white matter and cortical function, along with atypical lateralization, were present in ASD. In both auditory and language systems, white matter integrity and cortical electrophysiology were found to be coupled in typically developing children, with white matter microstructural features contributing significantly to electrophysiological response latencies. However, in ASD, we observed uncoupled structure-function relationships in both auditory and language systems. Regression analyses in ASD indicated that factors other than white-matter microstructure additionally contribute to the latency of neural evoked responses and ultimately behavior. RESULTS also indicated that whereas delayed M100 is a marker for ASD severity, MMF delay is more associated with language impairment. CONCLUSION Present findings suggest atypical development of primary auditory as well as auditory language systems in ASD. Findings demonstrate the need for additional multimodal studies to better characterize the different structural features (white matter, gray matter, neurochemical concentration) that contribute to brain activity, both in typical development and in ASD. Finally, the neural latency measures were found to be of clinical significance, with M100 associated with overall ASD severity, and with MMF latency associated with language performance.
Collapse
|
737
|
Popp PS, Herrmann JF, Fritz EC, Ravoo BJ, Höppener C. Impact of the Nanoscale Gap Morphology on the Plasmon Coupling in Asymmetric Nanoparticle Dimer Antennas. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1667-75. [PMID: 26849412 DOI: 10.1002/smll.201503536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/13/2016] [Indexed: 05/12/2023]
Abstract
Coupling of plasmon resonances in metallic gap antennas is of interest for a wide range of applications due to the highly localized strong electric fields supported by these structures, and their high sensitivity to alterations of their structure, geometry, and environment. Morphological alterations of asymmetric nanoparticle dimer antennas with (sub)-nanometer size gaps are assigned to changes of their optical response in correlative dark-field spectroscopy and high-resolution transmission electron microscopy (HR-TEM) investigations. This multimodal approach to investigate individual dimer structures clearly demonstrates that the coupling of the plasmon modes, in addition to well-known parameters such as the particle geometry and the gap size, is also affected by the relative alignment of both nanoparticles. The investigations corroborate that the alignment of the gap forming facets, and with that the gap area, is crucial for their scattering properties. The impact of a flat versus a rounded gap structure on the optical properties of equivalent dimers becomes stronger with decreasing gap size. These results hint at a higher confinement of the electric field in the gap and possibly a different onset of quantum transport effects for flat and rounded gap antennas in corresponding structures for very narrow gaps.
Collapse
|
738
|
Wang T, Wang D, Yu H, Wang M, Liu J, Feng B, Zhou F, Yin Q, Zhang Z, Huang Y, Li Y. Intracellularly Acid-Switchable Multifunctional Micelles for Combinational Photo/Chemotherapy of the Drug-Resistant Tumor. ACS NANO 2016; 10:3496-508. [PMID: 26866752 DOI: 10.1021/acsnano.5b07706] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The intrinsic or acquired drug resistance is the main challenge for cancer chemotherapy today. So far, many nanosized drug delivery systems (NDDS) have been exploited to combat cancer drug resistance. However, the therapy efficacy of current NDDS is severely impaired by the limited tumor penetration of the nanoparticles due to the existence of physiological and pathological barriers in the solid tumor. In this study, we report on the design and fabrication of intracellularly acid-switchable multifunctional micelles for combinational photo- and chemotherapy of the drug-resistant tumor. The micelles were composed of a pH-responsive diblock copolymer, a photosensitizer, and a polymeric prodrug of doxorubicin. The micelle displayed silenced fluorescence and photoactivity during the blood circulation and switched to an active state in weakly acid conditions (i.e., pH ≤ 6.2) in the endocytic vesicles to dramatically induce a 7.5-fold increase of the fluorescence signal for fluorescence imaging. Upon near-infrared (NIR) laser irradiation, the micelle induced notable reactive oxygen species generation to trigger cytosol release of the chemotherapeutics and perform photodynamic therapy (PDT). Moreover, the micelle efficiently converted the NIR light to local heat for enhancing tumor penetration of the anticancer drug, tumor specific photothermal therapy, and photoacoustic (PA) imaging. Furthermore, the micelles could generate amplified magnetic resonance (MR) signal in an acidic microenvironment to perform MR imaging. Collectively, this study presents a robust nanoplatform for multimodal imaging and combinational therapy of the drug-resistant tumor, which might provide an insight for developing polymer-based NDDS for cancer therapy.
Collapse
|
739
|
Dopamine D1 Binding Potential Predicts Fusiform BOLD Activity during Face-Recognition Performance. J Neurosci 2016; 35:14702-7. [PMID: 26538642 DOI: 10.1523/jneurosci.1298-15.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The importance of face memory in humans and primates is well established, but little is known about the neurotransmitter systems involved in face recognition. We tested the hypothesis that face recognition is linked to dopamine (DA) activity in fusiform gyrus (FFG). DA availability was assessed by measuring D1 binding potential (BP) during rest using PET. We further assessed blood-oxygen-level-dependent (BOLD) signal change while subjects performed a face-recognition task during fMRI scanning. There was a strong association between D1 BP and BOLD activity in FFG, whereas D1 BP in striatal and other extrastriatal regions were unrelated to neural activity in FFG. These results suggest that D1 BP locally modulates FFG function during face recognition. Observed relationships among D1 BP, BOLD activity, and face-recognition performance further suggest that D1 receptors place constraints on the responsiveness of FFG neurons. SIGNIFICANCE STATEMENT The importance of face memory in humans and primates is well established, but little is known about the neurotransmitter systems involved in face recognition. Our work shows a role for a specific neurotransmitter system in face memory.
Collapse
|
740
|
Sun M, Xu L, Ma W, Wu X, Kuang H, Wang L, Xu C. Hierarchical Plasmonic Nanorods and Upconversion Core-Satellite Nanoassemblies for Multimodal Imaging-Guided Combination Phototherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:898-904. [PMID: 26635317 DOI: 10.1002/adma.201505023] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 10/28/2015] [Indexed: 06/05/2023]
Abstract
DNA-driven hierarchical core-satellite nanostructures with plasmonic gold nanorod dimers and upconversion nanoparticles are fabricated. Once the core-satellite structure is activated, combined photothermal therapy and photodynamic therapy are carried out under the guidance of upconversion luminesce, T1 -weighted magnetic resonance, photoacoustics, and computed tomography imaging of tumors in vivo, which exhibit the multifunctional biological applications of the DNA-based self-assemblies.
Collapse
|
741
|
Zhou H, Hou X, Liu Y, Zhao T, Shang Q, Tang J, Liu J, Wang Y, Wu Q, Luo Z, Wang H, Chen C. Superstable Magnetic Nanoparticles in Conjugation with Near-Infrared Dye as a Multimodal Theranostic Platform. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4424-4433. [PMID: 26821997 DOI: 10.1021/acsami.5b11308] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Near-infrared (NIR) dyes functionalized magnetic nanoparticles (MNPs) have been widely applied in magnetic resonance imaging (MRI), NIR fluorescence imaging, drug delivery, and magnetic hyperthermia. However, the stability of MNPs and NIR dyes in water is a key problem to be solved for long-term application. In this study, a kind of superstable iron oxide nanoparticles was synthesized by a facile way, which can be used as T1 and T2 weighted MRI contrast agent. IR820 was grafted onto the surface of nanoparticles by 6-amino hexanoic acid to form IR820-CSQ-Fe conjugates. Attached IR820 showed increased stability in water at least for three months and an enhanced ability of singlet oxygen production of almost double that of free dyes, which will improve its efficiency for photodynamic therapy. Meanwhile, the multispectral optoacoustic tomography (MSOT) and NIR imaging ability of IR820-CSQ-Fe will greatly increase the accuracy of disease detection. All of these features will broaden the application of this material as a multimodal theranostic platform.
Collapse
|
742
|
Abstract
The integration of PET and MRI modalities into a single hybrid imaging system has been demonstrated to synergistically compensate for the limitations of each modality, with the potential to enhance diagnostic accuracy and improve development of therapeutics. To take advantage of the progress of the hybrid PET/MRI hardware, nanoparticle-based probes are being developed for multimodal applications. In this paper, recent advances in the development of nanoparticle-based, multimodal PET/MRI probes are reviewed. Common MRI contrast agents, PET tracers and chelators and surface functionality that comprised PET/MRI nanoprobes reported in the last 10 years are summarized, followed by a description of the physical properties of these probes and their imaging applications.
Collapse
|
743
|
Wang Y, Wu B, Yang C, Liu M, Sum TC, Yong KT. Synthesis and Characterization of Mn:ZnSe/ZnS/ZnMnS Sandwiched QDs for Multimodal Imaging and Theranostic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:534-546. [PMID: 26663023 DOI: 10.1002/smll.201503352] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 06/05/2023]
Abstract
In this work, a facile aqueous synthesis method is optimized to produce Mn:ZnSe/ZnS/ZnMnS sandwiched quantum dots (SQDs). In this core-shell co-doped system, paramagnetic Mn(2+) ions are introduced as core and shell dopants to generate Mn phosphorescence and enhance the magnetic resonance imaging signal, respectively. T1 relaxivity of the nanoparticles can be improved and manipulated by raising the shell doping level. Steady state and time-resolved optical measurements suggest that, after high level shell doping, Mn phosphorescence of the core can be sustained by the sandwiched ZnS shell. Because the SQDs are free of toxic heavy metal compositions, excellent biocompatibility of the prepared nanocrystals is verified by in vitro MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. To explore the theranostic applications of SQDs, liposome-SQD assemblies are prepared and used for ex vivo optical and magnetic resonance imaging. In addition, these engineered SQDs as nanocarrier for gene delivery in therapy of Panc-1 cancer cells are employed. The therapeutic effects of the nanocrystals formulation are confirmed by gene expression analysis and cell viability assay.
Collapse
|
744
|
Ruiz-de-Angulo A, Zabaleta A, Gómez-Vallejo V, Llop J, Mareque-Rivas JC. Microdosed Lipid-Coated (67)Ga-Magnetite Enhances Antigen-Specific Immunity by Image Tracked Delivery of Antigen and CpG to Lymph Nodes. ACS NANO 2016; 10:1602-1618. [PMID: 26678549 DOI: 10.1021/acsnano.5b07253] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Development of vaccines to prevent and treat emerging new pathogens and re-emerging infections and cancer remains a major challenge. An attractive approach is to build the vaccine upon a biocompatible NP that simultaneously acts as accurate delivery vehicle and radiotracer for PET/SPECT imaging for ultrasensitive and quantitative in vivo imaging of NP delivery to target tissues/organs. Success in developing these nanovaccines will depend in part on having a "correct" NP size and accommodating and suitably displaying antigen and/or adjuvants (e.g., TLR agonists). Here we develop and evaluate a NP vaccine based on iron oxide-selective radio-gallium labeling suitable for SPECT((67)Ga)/PET((68)Ga) imaging and efficient delivery of antigen (OVA) and TLR 9 agonists (CpGs) using lipid-coated magnetite micelles. OVA, CpGs and rhodamine are easily accommodated in the hybrid micelles, and the average size of the construct can be controlled to be ca. 40 nm in diameter to target direct lymphatic delivery of the vaccine cargo to antigen presenting cells (APCs) in the lymph nodes (LNs). While the OVA/CpG-loaded construct showed effective delivery to endosomal TLR 9 in APCs, SPECT imaging demonstrated migration from the injection site to regional and nonregional LNs. In correlation with the imaging results, a range of in vitro and in vivo studies demonstrate that by using this microdosed nanosystem the cellular and humoral immune responses are greatly enhanced and provide protection against tumor challenge. These results suggest that these nanosystems have considerable potential for image-guided development of targeted vaccines that are more effective and limit toxicity.
Collapse
|
745
|
Ortgies DH, de la Cueva L, Del Rosal B, Sanz-Rodríguez F, Fernández N, Iglesias-de la Cruz MC, Salas G, Cabrera D, Teran FJ, Jaque D, Martín Rodríguez E. In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1406-1414. [PMID: 26713893 DOI: 10.1021/acsami.5b10617] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Breakthroughs in nanotechnology have made it possible to integrate different nanoparticles in one single hybrid nanostructure (HNS), constituting multifunctional nanosized sensors, carriers, and probes with great potential in the life sciences. In addition, such nanostructures could also offer therapeutic capabilities to achieve a wider variety of multifunctionalities. In this work, the encapsulation of both magnetic and infrared emitting nanoparticles into a polymeric matrix leads to a magnetic-fluorescent HNS with multimodal magnetic-fluorescent imaging abilities. The magnetic-fluorescent HNS are capable of simultaneous magnetic resonance imaging and deep tissue infrared fluorescence imaging, overcoming the tissue penetration limits of classical visible-light based optical imaging as reported here in living mice. Additionally, their applicability for magnetic heating in potential hyperthermia treatments is assessed.
Collapse
|
746
|
Chiapponi C, Piras F, Piras F, Caltagirone C, Spalletta G. GABA System in Schizophrenia and Mood Disorders: A Mini Review on Third-Generation Imaging Studies. Front Psychiatry 2016; 7:61. [PMID: 27148090 PMCID: PMC4835487 DOI: 10.3389/fpsyt.2016.00061] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
Third-generation neuroimaging research has been enriched by advances in magnetic resonance spectroscopy (MRS) measuring the concentration of important neurotrasmitters, such as the inhibitory amino acid GABA. Here, we performed a systematic mini-review on brain MRS studies measuring GABA concentration in patients affected by schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). We wondered whether multimodal investigations could overcome intrinsic technical limits of MRS giving a broader view of mental disorders pathogenesis. In SZ, unimodal studies gave mixed results, as increased, decreased, or unaltered GABA levels were reported depending on region, disease phase, and treatment. Conversely, multimodal results showed reduced level of glutamate, but not of GABA, in patients mirrored by in vitro biochemical findings revealing hippocampal reduction in glutamate signaling in SZ, and no deficits in GABA synthesis. Moreover, a mouse model confirmed the unique pathological characteristic of glutamate function in SZ. Unimodal studies in BD revealed again, inconsistent results, while no multimodal investigations including MRS on GABA exist. In MDD, unimodal studies could not differentiate patients from controls nor characterize high-risk subjects and remitted patients. However, a multimodal study combining functional magnetic resonance imaging and MRS revealed that cingulate cortex activity is related to glutamate, N-acetylaspartate levels and anhedonia in patients, and to GABA concentration in healthy subjects, improving the distinction between MDD and physiology. Overall, our results show that unimodal studies do not indicate GABA as a biomarker for the psychiatric disorders considered. Conversely, multimodal studies can widen the understanding of the link between psychopathology, genetics, neuroanatomy, and functional-biochemical brain activity in mental disorders. Although scarce, multimodal approaches seem promising for moving from GABA MRS unimodal-descriptive to causal level, and for integrating GABA results into a more comprehensive interpretation of mental disorder pathophysiology.
Collapse
|
747
|
Lukić A, Dochow S, Chernavskaia O, Latka I, Matthäus C, Schwuchow A, Schmitt M, Popp J. Fiber probe for nonlinear imaging applications. JOURNAL OF BIOPHOTONICS 2016; 9:138-43. [PMID: 25924223 DOI: 10.1002/jbio.201500010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 05/12/2023]
Abstract
Over the past years it had been demonstrated that multimodal imaging combining the nonlinear modalities coherent anti-Stokes Raman scattering (CARS), two-photon excited auto-fluorescence (TPEF) and second harmonic generation (SHG) show a great potential for tissue diagnosis and tumor identification. To extend the applicability of this multimodal imaging approach for in-vivo tissue screening of difficult to access body regions the development of suitable fiber optic probes is required. Here we report about a novel CARS imaging fiber probe consisting of 10,000 coherent light guiding elements preserving the spatial relationship between the entrance and the output of the fiber. Therefore the scanning procedure can be shifted from the distal to the proximal end of the fiber probe and no moving parts or driving current are required to realize in-vivo CARS endoscopy.
Collapse
|
748
|
Abstract
Accurate diagnosis of tumors needs much detailed information. However, available single imaging modality cannot provide complete or comprehensive data. Nanomedicine is the application of nanotechnology to medicine, and multimodality imaging based on nanoparticles has been receiving extensive attention. This new hybrid imaging technology could provide complementary information from different imaging modalities using only a single injection of contrast agent. In this review, we introduce recent developments in multifunctional nanoparticles and their biomedical applications to multimodal imaging and theragnosis as nanomedicine. Most of the reviewed studies are based on the intrinsic properties of nanoparticles and their application in clinical imaging technology. The imaging techniques include positron emission tomography, single-photon emission computed tomography, computerized tomography, magnetic resonance imaging, optical imaging, and ultrasound imaging.
Collapse
|
749
|
O'Halloran R, Kopell BH, Sprooten E, Goodman WK, Frangou S. Multimodal Neuroimaging-Informed Clinical Applications in Neuropsychiatric Disorders. Front Psychiatry 2016; 7:63. [PMID: 27148092 PMCID: PMC4835492 DOI: 10.3389/fpsyt.2016.00063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/29/2016] [Indexed: 01/10/2023] Open
Abstract
Recent advances in neuroimaging data acquisition and analysis hold the promise to enhance the ability to make diagnostic and prognostic predictions and perform treatment planning in neuropsychiatric disorders. Prior research using a variety of types of neuroimaging techniques has confirmed that neuropsychiatric disorders are associated with dysfunction in anatomical and functional brain circuits. We first discuss current challenges associated with the identification of reliable neuroimaging markers for diagnosis and prognosis in mood disorders and for neurosurgical treatment planning for deep brain stimulation (DBS). We then present data on the use of neuroimaging for the diagnosis and prognosis of mood disorders and for DBS treatment planning. We demonstrate how multivariate analyses of functional activation and connectivity parameters can be used to differentiate patients with bipolar disorder from those with major depressive disorder and non-affective psychosis. We also present data on connectivity parameters that mediate acute treatment response in affective and non-affective psychosis. We then focus on precision mapping of functional connectivity in native space. We describe the benefits of integrating anatomical fiber reconstruction with brain functional parameters and cortical surface measures to derive anatomically informed connectivity metrics within the morphological context of each individual brain. We discuss how this approach may be particularly promising in psychiatry, given the clinical and etiological heterogeneity of the disorders, and particularly in treatment response prediction and planning. Precision mapping of connectivity is essential for DBS. In DBS, treatment electrodes are inserted into positions near key gray matter nodes within the circuits considered relevant to disease expression. However, targeting white matter tracts that underpin connectivity within these circuits may increase treatment efficacy and tolerability therefore relevant for effective treatment. We demonstrate how this approach can be validated in the treatment of Parkinson's disease by identifying connectivity patterns that can be used as biomarkers for treatment planning and thus refine the traditional approach of DBS planning that uses only gray matter landmarks. Finally, we describe how this approach could be used in planning DBS treatment of psychiatric disorders.
Collapse
|
750
|
Komljenovic D, Wiessler M, Waldeck W, Ehemann V, Pipkorn R, Schrenk HH, Debus J, Braun K. NIR-Cyanine Dye Linker: a Promising Candidate for Isochronic Fluorescence Imaging in Molecular Cancer Diagnostics and Therapy Monitoring. Am J Cancer Res 2016; 6:131-41. [PMID: 26722379 PMCID: PMC4679360 DOI: 10.7150/thno.11460] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 08/07/2015] [Indexed: 12/11/2022] Open
Abstract
Personalized anti-cancer medicine is boosted by the recent development of molecular diagnostics and molecularly targeted drugs requiring rapid and efficient ligation routes. Here, we present a novel approach to synthetize a conjugate able to act simultaneously as an imaging and as a chemotherapeutic agent by coupling functional peptides employing solid phase peptide synthesis technologies. Development and the first synthesis of a fluorescent dye with similarity in the polymethine part of the Cy7 molecule whose indolenine-N residues were substituted with a propylene linker are described. Methylating agent temozolomide is functionalized with a tetrazine as a diene component whereas Cy7-cell penetrating peptide conjugate acts as a dienophilic reaction partner for the inverse Diels-Alder click chemistry-mediated ligation route yielding a theranostic conjugate, 3-mercapto-propionic-cyclohexenyl-Cy7-bis-temozolomide-bromide-cell penetrating peptide. Synthesis route described here may facilitate targeted delivery of the therapeutic compound to achieve sufficient local concentrations at the target site or tissue. Its versatility allows a choice of adequate imaging tags applicable in e.g. PET, SPECT, CT, near-infrared imaging, and therapeutic substances including cytotoxic agents. Imaging tags and therapeutics may be simultaneously bound to the conjugate applying click chemistry. Theranostic compound presented here offers a solid basis for a further improvement of cancer management in a precise, patient-specific manner.
Collapse
|