76
|
Ablikim M, Achasov MN, Adlarson P, Albrecht M, Aliberti R, Amoroso A, An MR, An Q, Bai XH, Bai Y, Bakina O, Ferroli RB, Balossino I, Ban Y, Batozskaya V, Becker D, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen C, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen ZJ, Cheng WS, Chu X, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du SX, Egorov P, Fan YL, Fang J, Fang SS, Fang WX, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fischer K, Fritsch M, Fritzsch C, Fu CD, Gao H, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han TT, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Himmelreich M, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang LQ, Huang XT, Huang YP, Huang Z, Hussain T, Hüsken N, Imoehl W, Irshad M, Jackson J, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jia ZK, Jiang HB, Jiang SS, Jiang XS, Jiang Y, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li H, Li HB, Li HJ, Li HN, Li JQ, Li JS, Li JW, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li SX, Li SY, Li T, Li WD, Li WG, Li XH, Li XL, Li X, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin CX, Lin DX, Lin T, Liu BJ, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XY, Ma Y, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pelizaeus M, Peng HP, Peters K, Ping JL, Ping RG, Plura S, Pogodin S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Qu SQ, Rashid KH, Redmer CF, Ren KJ, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Ruan SN, Sang HS, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen XY, Shi BA, Shi HC, Shi JY, Shi QQ, Shi RS, Shi X, Shi XD, Song JJ, Song WM, Song YX, Sosio S, Spataro S, Stieler F, Su KX, Su PP, Su YJ, Sun GX, Sun H, Sun HK, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun X, Sun YJ, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian Y, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang F, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang YD, Wang YF, Wang YH, Wang YQ, Wang Y, Wang Z, Wang ZY, Wang Z, Wei DH, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YJ, Wu Z, Xia L, Xiang T, Xiao D, Xiao GY, Xiao H, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu XP, Xu YC, Xu ZP, Yan F, Yan L, Yan WB, Yan WC, Yang HJ, Yang HL, Yang HX, Yang L, Yang SL, Yang T, Yang YF, Yang YX, Yang Y, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu T, Yuan CZ, Yuan L, Yuan SC, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng X, Zeng Y, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang HH, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng YH, Zhong B, Zhong C, Zhong X, Zhou H, Zhou LP, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou BS, Zou JH. Evidence for a Neutral Near-Threshold Structure in the K_{S}^{0} Recoil-Mass Spectra in e^{+}e^{-}→K_{S}^{0}D_{s}^{+}D^{*-} and e^{+}e^{-}→K_{S}^{0}D_{s}^{*+}D^{-}. PHYSICAL REVIEW LETTERS 2022; 129:112003. [PMID: 36154413 DOI: 10.1103/physrevlett.129.112003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 06/16/2023]
Abstract
We study the processes e^{+}e^{-}→K_{S}^{0}D_{s}^{+}D^{*-} and e^{+}e^{-}→K_{S}^{0}D_{s}^{*+}D^{-}, as well as their charge conjugated processes, at five center-of-mass energies between 4.628 and 4.699 GeV, using data samples corresponding to an integrated luminosity of 3.8 fb^{-1} collected by the BESIII detector at the BEPCII storage ring. Based on a partial reconstruction technique, we find evidence of a structure near the thresholds for D_{s}^{+}D^{*-} and D_{s}^{*+}D^{-} production in the K_{S}^{0} recoil-mass spectrum, which we refer to as the Z_{cs}(3985)^{0}. Fitting with a Breit-Wigner line shape, we find the mass of the structure to be (3992.2±1.7±1.6) MeV/c^{2} and the width to be (7.7_{-3.8}^{+4.1}±4.3) MeV, where the first uncertainties are statistical and the second are systematic. The significance of the Z_{cs}(3985)^{0} signal is found to be 4.6σ including both the statistical and systematic uncertainty. We report the Born cross section multiplied by the branching fraction at different energy points. The mass of the Z_{cs}(3985)^{0} is close to that of the Z_{cs}(3985)^{+}. Assuming SU(3) symmetry, the cross section of the neutral channel is consistent with that of the charged one. Hence, we conclude that the Z_{cs}(3985)^{0} is the isospin partner of the Z_{cs}(3985)^{+}.
Collapse
|
77
|
Chu J, Xu ML, Lu ZL, Liu J, Chen XX, Dong J, Xu XH, Fu ZT, Jiang F, Guo XL. [Mortality level and tendency of road traffic injury in Shandong Province from 2012 to 2020]. ZHONGHUA YU FANG YI XUE ZA ZHI [CHINESE JOURNAL OF PREVENTIVE MEDICINE] 2022; 56:1307-1313. [PMID: 36207896 DOI: 10.3760/cma.j.cn112150-20220520-00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Objective: To analyze the mortality level and tendency of road traffic injury in Shandong province from 2012 to 2020. Methods: Based on the data of road traffic deaths from the cause of death registration system in Shandong province from 2012 to 2020, the mortality rates of road traffic injury were calculated by sex, age, area, and injury type. The mortality was standardized based on the age structure of the Chinese population in the sixth Population Census in 2010. The annual percent change (APC) and average annual percent change (AAPC) of the mortalities and the standarized mortalities were calculated by using Joinpoint regression model, and the trends were also examined. Results: In 2020, the crude mortality of road traffic injury in Shandong Province was 15.58/100 000, and the standardized mortality was 12.90/100 000. From 2012 to 2020, the standardized mortality of road traffic injury in Shandong province showed a downward trend with AAPC of -5.4%. The standardized mortality of middle-south mountain areas, male and children aged 0-14 years in Shandong showed a significantly decreasing trend with AAPC of -6.8%, -6.1% and -6.0%, respectively. The standardized mortality of people aged 65 years and over did not decrease significantly, but the number of deaths increased significantly by 50.96% in 2020 (5 780 cases), compared with those in 2012 (3 829 cases). The standardized mortality of pedestrian and motorcyclists decreased significantly with AAPC of -7.5% and -6.7%, respectively. There was no significant change in the standardized mortality among people who rode motor vehicles or bicycles. Conclusion: From 2012 to 2020, the standardized mortality of road traffic injury in Shandong Province showed an obvious downward trend, but the standardized mortality of people aged 65 years and over did not decrease significantly. In the future, it is still necessary to take government-led, multi-sectoral collaboration, with a focus on comprehensive preventive measures, to further reduce road traffic injury mortality.
Collapse
|
78
|
Ablikim M, Achasov MN, Adlarson P, Albrecht M, Aliberti R, Amoroso A, An MR, An Q, Bai XH, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Batozskaya V, Becker D, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen T, Chen XR, Chen XT, Chen YB, Chen ZJ, Cheng WS, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du SX, Egorov P, Fan YL, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fischer K, Fritsch M, Fu CD, Gao H, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han TT, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Himmelreich M, Holtmann T, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang LQ, Huang XT, Huang YP, Huang Z, Hussain T, Hüsken N, Imoehl W, Irshad M, Jackson J, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jia ZK, Jiang HB, Jiang SS, Jiang XS, Jiang Y, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li H, Li HB, Li HJ, Li HN, Li JQ, Li JS, Li JW, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li SX, Li SY, Li T, Li WD, Li WG, Li XH, Li XL, Li X, Li ZY, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin CX, Lin DX, Lin T, Liu BJ, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu GM, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XY, Ma Y, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pelizaeus M, Peng HP, Peters K, Ping JL, Ping RG, Plura S, Pogodin S, Poling R, Prasad V, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Ren KJ, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen XY, Shi BA, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song WM, Song YX, Sosio S, Spataro S, Stieler F, Su KX, Su PP, Su YJ, Sun GX, Sun H, Sun HK, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun X, Sun YJ, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Tao LY, Tao QT, Teng JX, Thoren V, Tian WH, Tian Y, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang F, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang YD, Wang YF, Wang YH, Wang YQ, Wang Z, Wang ZY, Wang Z, Wei DH, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YJ, Wu Z, Xia L, Xiang T, Xiao GY, Xiao H, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu XP, Xu YC, Xu ZP, Yan F, Yan L, Yan WB, Yan WC, Yang HJ, Yang HL, Yang HX, Yang L, Yang SL, Yang YX, Yang Y, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan L, Yuan SC, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng X, Zeng Y, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang GY, Zhang H, Zhang HH, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng YH, Zhong B, Zhong C, Zhong X, Zhou H, Zhou LP, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou BS, Zou JH. Observation of Resonance Structures in e^{+}e^{-}→π^{+}π^{-}ψ_{2}(3823) and Mass Measurement of ψ_{2}(3823). PHYSICAL REVIEW LETTERS 2022; 129:102003. [PMID: 36112441 DOI: 10.1103/physrevlett.129.102003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Using a data sample corresponding to an integrated luminosity of 11.3 fb^{-1} collected at center-of-mass energies from 4.23 to 4.70 GeV with the BESIII detector, we measure the product of the e^{+}e^{-}→π^{+}π^{-}ψ_{2}(3823) cross section and the branching fraction B[ψ_{2}(3823)→γχ_{c1}]. For the first time, resonance structure is observed in the cross section line shape of e^{+}e^{-}→π^{+}π^{-}ψ_{2}(3823) with significances exceeding 5σ. A fit to data with two coherent Breit-Wigner resonances modeling the sqrt[s]-dependent cross section yields M(R_{1})=4406.9±17.2±4.5 MeV/c^{2}, Γ(R_{1})=128.1±37.2±2.3 MeV, and M(R_{2})=4647.9±8.6±0.8 MeV/c^{2}, Γ(R_{2})=33.1±18.6±4.1 MeV. Though weakly disfavored by the data, a single resonance with M(R)=4417.5±26.2±3.5 MeV/c^{2}, Γ(R)=245±48±13 MeV is also possible to interpret data. This observation deepens our understanding of the nature of the vector charmoniumlike states. The mass of the ψ_{2}(3823) state is measured as (3823.12±0.43±0.13) MeV/c^{2}, which is the most precise measurement to date.
Collapse
|
79
|
Sun X, Dong J, Liu L, Xing P, Yang L. EP11.03-002 Prognostic Significance of YAP1 and Its Association with Neuroendocrine Markers in Pulmonary Large Cell Neuroendocrine Carcinoma (LCNEC). J Thorac Oncol 2022. [DOI: 10.1016/j.jtho.2022.07.915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
80
|
Yu D, Chen W, Zhang J, Wei L, Qin J, Lei M, Tang H, Wang Y, Xue S, Dong J, Chen Y, Xie L, Di H. Effects of weight loss on bone turnover, inflammatory cytokines, and adipokines in Chinese overweight and obese adults. J Endocrinol Invest 2022; 45:1757-1767. [PMID: 35635643 PMCID: PMC9360139 DOI: 10.1007/s40618-022-01815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Plenty of studies have examined the long term effect of weight loss on bone mineral density. This study aimed to explore the effects of 10% weight loss on early changes in bone metabolism as well as the possible influencing factors. METHODS Overweight and obese outpatients (BMI > 24.0 kg/m2) were recruited from the nutrition clinic and followed a calorie-restricted, high-protein, low-carbohydrate diet program. Dietary intake, body composition, serum procollagen type I N-propeptide (PINP), β-Crosslaps, PTH, 25(OH) VitD, a series of inflammatory cytokines and adipokines were measured for the participants before starting to lose weight and after 10% weight loss (NCT04207879). RESULTS A total of 75 participants were enrolled and 37 participants achieved a weight loss of at least 10%. It was found that PINP decreased (p = 0.000) and the β-Crosslaps increased (p = 0.035) in female participants. Decreases in PTH (p = 0.001), serum IL-2 (p = 0.013), leptin (p = 0.001) and increases in 25(OH) VitD (p = 0.001), serum ghrelin (p = 0.033) were found in 37 participants after 10% of their weight had been lost. Change in PINP was detected to be significantly associated with change in lean body mass (r = 0.418, p = 0.012) and change in serum ghrelin(r = - 0.374, p = 0.023). CONCLUSIONS Bone formation was suppressed and bone absorption was increased in female subjects after a 10% weight loss. Bone turnover was found to be associated with lean body mass and affected by the circulating ghrelin level.
Collapse
|
81
|
Sun X, Liu L, Dong J, Yang L, Xing P. 30P Hes1 protein expression and its significance in resected small cell lung cancers. Ann Oncol 2022. [DOI: 10.1016/j.annonc.2022.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
82
|
Sun X, Dong J, Liu L, Guo Y, Xing P, Yang L. EP14.02-007 Hes1 Protein Expression and Its Significance in Resected Small Cell Lung Cancers. J Thorac Oncol 2022. [DOI: 10.1016/j.jtho.2022.07.967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
83
|
Yue W, Zhang H, Zhou J, Li G, Tang Z, Sun Z, Cai J, Tian N, Gao S, Dong J, Liu Y, Bai X, Sheng F. Deep learning-based automatic segmentation for size and volumetric measurement of breast cancer on magnetic resonance imaging. Front Oncol 2022; 12:984626. [PMID: 36033453 PMCID: PMC9404224 DOI: 10.3389/fonc.2022.984626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose In clinical work, accurately measuring the volume and the size of breast cancer is significant to develop a treatment plan. However, it is time-consuming, and inter- and intra-observer variations among radiologists exist. The purpose of this study was to assess the performance of a Res-UNet convolutional neural network based on automatic segmentation for size and volumetric measurement of mass enhancement breast cancer on magnetic resonance imaging (MRI). Materials and methods A total of 1,000 female breast cancer patients who underwent preoperative 1.5-T dynamic contrast-enhanced MRI prior to treatment were selected from January 2015 to October 2021 and randomly divided into a training cohort (n = 800) and a testing cohort (n = 200). Compared with the masks named ground truth delineated manually by radiologists, the model performance on segmentation was evaluated with dice similarity coefficient (DSC) and intraclass correlation coefficient (ICC). The performance of tumor (T) stage classification was evaluated with accuracy, sensitivity, and specificity. Results In the test cohort, the DSC of automatic segmentation reached 0.89. Excellent concordance (ICC > 0.95) of the maximal and minimal diameter and good concordance (ICC > 0.80) of volumetric measurement were shown between the model and the radiologists. The trained model took approximately 10–15 s to provide automatic segmentation and classified the T stage with an overall accuracy of 0.93, sensitivity of 0.94, 0.94, and 0.75, and specificity of 0.95, 0.92, and 0.99, respectively, in T1, T2, and T3. Conclusions Our model demonstrated good performance and reliability for automatic segmentation for size and volumetric measurement of breast cancer, which can be time-saving and effective in clinical decision-making.
Collapse
|
84
|
Dong J, Lin P, Putra N, Tümer N, Leeflang M, Huan Z, Fratila-Apachitei L, Chang J, Zadpoor A, Zhou J. Extrusion-based additive manufacturing of Mg-Zn/bioceramic composite scaffolds. Acta Biomater 2022; 151:628-646. [DOI: 10.1016/j.actbio.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/09/2022] [Accepted: 08/01/2022] [Indexed: 11/01/2022]
|
85
|
Dong J, Jin S, Guo J, Yang R, Tian D, Xue H, Xiao L, Guo Q, Wang R, Xu M, Teng X, Wu Y. Pharmacological inhibition of eIF2alpha phosphorylation by integrated stress response inhibitor (ISRIB) ameliorates vascular calcification in rats. Physiol Res 2022; 71:379-388. [PMID: 35616039 DOI: 10.33549/physiolres.934797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Vascular calcification (VC) is an independent risk factor for cardiovascular events and all-cause mortality with the absence of current treatment. This study aimed to investigate whether eIF2alpha phosphorylation inhibition could ameliorate VC. VC in rats was induced by administration of vitamin D3 (3×10(5) IU/kg, intramuscularly) plus nicotine (25 mg/kg, intragastrically). ISRIB (0.25 mg/kg·week), an inhibitor of eIF2alpha phosphorylation, ameliorated the elevation of calcium deposition and ALP activity in calcified rat aortas, accompanied by amelioration of increased SBP, PP, and PWV. The decreased protein levels of calponin and SM22alpha, and the increased levels of RUNX2 and BMP2 in calcified aorta were all rescued by ISRIB, while the increased levels of the GRP78, GRP94, and C/EBP homologous proteins in rats with VC were also attenuated. Moreover, ISRIB could prevent the elevation of eIF2alpha phosphorylation and ATF4, and partially inhibit PERK phosphorylation in the calcified aorta. These results suggested that an eIF2alpha phosphorylation inhibitor could ameliorate VC pathogenesis by blocking eIF2alpha/ATF4 signaling, which may provide a new target for VC prevention and treatment.
Collapse
|
86
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Aliberti R, Amoroso A, An MR, An Q, Bai XH, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Batozskaya V, Becker D, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen T, Chen XR, Chen XT, Chen YB, Chen ZJ, Cheng WS, Cibinetto G, Cossio F, Cui JJ, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dong X, Du SX, Egorov P, Fan YL, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fritsch M, Fu CD, Gao YN, Gao Y, Garzia I, Ge PT, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu MH, Guan CY, Guo AQ, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han TT, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Himmelreich M, Holtmann T, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang YP, Huang Z, Hussain T, Hüsken N, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jiang HB, Jiang SS, Jiang XS, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li H, Li HB, Li HJ, Li HN, Li JL, Li JQ, Li JS, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li SX, Li SY, Li T, Li WD, Li WG, Li XH, Li XL, Li X, Li ZY, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin CX, Lin DX, Lin T, Liu BJ, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu GM, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu T, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XX, Ma XY, Ma Y, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Plura S, Pogodin S, Poling R, Prasad V, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Ren KJ, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sang HS, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen XY, Shi BA, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song WM, Song YX, Sosio S, Spataro S, Stieler F, Su KX, Su PP, Su YJ, Sun GX, Sun HK, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun X, Sun YJ, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Tao LY, Tao QT, Teng JX, Thoren V, Tian WH, Tian YT, Uman I, Wang B, Wang DY, Wang F, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang S, Wang TJ, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang YD, Wang YF, Wang YQ, Wang YY, Wang Y, Wang Z, Wang ZY, Wang Z, Wang Z, Wei DH, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Z, Xia L, Xiang T, Xiao H, Xiao SY, Xiao YL, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xu CF, Xu CJ, Xu GF, Xu QJ, Xu SY, Xu W, Xu XP, Xu YC, Yan F, Yan L, Yan WB, Yan WC, Yang HJ, Yang HX, Yang L, Yang SL, Yang YX, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan L, Yuan SC, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng X, Zeng Y, Zhang AQ, Zhang BL, Zhang BX, Zhang GY, Zhang H, Zhang HH, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang P, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu TJ, Zhu WJ, Zhu WJ, Zhu YC, Zhu ZA, Zou BS, Zou JH. Observation of a State X(2600) in the π^{+}π^{-}η' System in the Process J/ψ→γπ^{+}π^{-}η'. PHYSICAL REVIEW LETTERS 2022; 129:042001. [PMID: 35939017 DOI: 10.1103/physrevlett.129.042001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Based on (10087±44)×10^{6} J/ψ events collected with the BESIII detector, the process J/ψ→γπ^{+}π^{-}η^{'} is studied using two largest decay channels of the η^{'} meson, η^{'}→γπ^{+}π^{-} and η^{'}→ηπ^{+}π^{-}, η→γγ. A new resonance, which we denote as the X(2600), is observed with a statistical significance larger than 20σ in the π^{+}π^{-}η^{'} invariant mass spectrum, and it has a connection to a structure around 1.5 GeV/c^{2} in the π^{+}π^{-} invariant mass spectrum. A simultaneous fit on the π^{+}π^{-}η^{'} and π^{+}π^{-} invariant mass spectra with the two η^{'} decay modes indicates that the mass and width of the X(2600) state are 2618.3±2.0_{-1.4}^{+16.3} MeV/c^{2} and 195±5_{-17}^{+26} MeV, where the first uncertainties are statistical, and the second systematic.
Collapse
|
87
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Aliberti R, Amoroso A, An MR, An Q, Bai XH, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Chen ZJ, Cheng WS, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai XC, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dong X, Du SX, Fan YL, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fritsch M, Fu CD, Gao Y, Gao Y, Gao Y, Gao YG, Garzia I, Ge PT, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han TT, Han WY, Hao XQ, Harris FA, He KL, Heinsius FH, Heinz CH, Held T, Heng YK, Herold C, Himmelreich M, Holtmann T, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang YP, Huang Z, Hussain T, Hüsken N, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jiang HB, Jiang XS, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li H, Li HB, Li HJ, Li JL, Li JQ, Li JS, Li K, Li LK, Li L, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li X, Li ZY, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Liu BJ, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu L, Liu MH, Liu PL, Liu Q, Liu Q, Liu SB, Liu S, Liu T, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XX, Ma XY, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Mo YJ, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Poling R, Prasad V, Qi H, Qi HR, Qi KH, Qi M, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sang HS, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan DC, Shan W, Shan XY, Shangguan JF, Shao M, Shen CP, Shen HF, Shen PX, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song WM, Song YX, Sosio S, Spataro S, Su KX, Su PP, Sui FF, Sun GX, Sun HK, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun WY, Sun X, Sun YJ, Sun YK, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Teng JX, Thoren V, Tian WH, Tian YT, Uman I, Wang B, Wang CW, Wang DY, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang YY, Wang Z, Wang ZY, Wang Z, Wang Z, Wei DH, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xu GF, Xu QJ, Xu W, Xu XP, Xu YC, Yan F, Yan L, Yan WB, Yan WC, Yan X, Yang HJ, Yang HX, Yang L, Yang SL, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan L, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Yuncu A, Zafar AA, Zeng X, Zeng Y, Zhang AQ, Zhang BX, Zhang G, Zhang H, Zhang HH, Zhang HH, Zhang HY, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang S, Zhang SF, Zhang S, Zhang XD, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu TJ, Zhu WJ, Zhu WJ, Zhu YC, Zhu ZA, Zou BS, Zou JH. Observation of J/ψ Electromagnetic Dalitz Decays to X(1835), X(2120), and X(2370). PHYSICAL REVIEW LETTERS 2022; 129:022002. [PMID: 35867444 DOI: 10.1103/physrevlett.129.022002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/07/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Using a sample of about 10^{10} J/ψ events collected at a center-of-mass energy sqrt[s]=3.097 GeV with the BESIII detector, the electromagnetic Dalitz decays J/ψ→e^{+}e^{-}π^{+}π^{-}η^{'}, with η^{'}→γπ^{+}π^{-} and η^{'}→π^{+}π^{-}η, have been studied. The decay J/ψ→e^{+}e^{-}X(1835) is observed with a significance of 15σ, and also an e^{+}e^{-} invariant-mass dependent transition form factor of J/ψ→e^{+}e^{-}X(1835) is presented for the first time. The intermediate states X(2120) and X(2370) are also observed in the π^{+}π^{-}η^{'} invariant-mass spectrum with significances of 5.3σ and 7.3σ. The corresponding product branching fractions for J/ψ→e^{+}e^{-}X, X→π^{+}π^{-}η^{'} [X=X(1835), X(2120), and X(2370)] are reported.
Collapse
|
88
|
Ablikim M, Achasov M, Adlarson P, Albrecht M, Aliberti R, Amoroso A, An M, An Q, Bai X, Bai Y, Bakina O, Ferroli RB, Balossino I, Ban Y, Batozskaya V, Becker D, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere R, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao G, Cao N, Cetin S, Chang J, Chang W, Chelkov G, Chen C, Chen G, Chen H, Chen M, Chen S, Chen T, Chen X, Chen X, Chen Y, Chen Z, Cheng W, Cibinetto G, Cossio F, Cui J, Dai H, Dai J, Dbeyssi A, de Boer R, Dedovich D, Deng Z, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong J, Dong L, Dong M, Dong X, Du S, Egorov P, Fan Y, Fang J, Fang S, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng C, Feng J, Fischer K, Fritsch M, Fu C, Gao H, Gao Y, Gao Y, Garbolino S, Garzia I, Ge P, Ge Z, Geng C, Gersabeck E, Gilman A, Goetzen K, Gong L, Gong W, Gradl W, Greco M, Gu L, Gu M, Gu Y, Guan C, Guo A, Guo L, Guo R, Guo Y, Guskov A, Han T, Han W, Hao X, Harris F, He K, He K, Heinsius F, Heinz C, Heng Y, Herold C, Himmelreich M, Holtmann T, Hou G, Hou Y, Hou Z, Hu H, Hu J, Hu T, Hu Y, Huang G, Huang K, Huang L, Huang L, Huang X, Huang Y, Huang Z, Hussain T, Hüsken N, Imoehl W, Irshad M, Jackson J, Jaeger S, Janchiv S, Ji Q, Ji Q, Ji X, Ji X, Ji Y, Jia Z, Jiang H, Jiang S, Jiang X, Jiang Y, Jiao J, Jiao Z, Jin S, Jin Y, Jing M, Johansson T, Kalantar-Nayestanaki N, Kang X, Kappert R, Ke B, Keshk I, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu O, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kühn W, Lane J, Lange J, Larin P, Lavania A, Lavezzi L, Lei Z, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li C, Li C, Li D, Li F, Li G, Li H, Li H, Li H, Li H, Li H, Li J, Li J, Li J, Li K, Li L, Li L, Li L, Li M, Li P, Li S, Li S, Li T, Li W, Li W, Li X, Li X, Li X, Liang H, Liang H, Liang H, Liang Y, Liang Y, Liao G, Liao L, Libby J, Limphirat A, Lin C, Lin D, Lin T, Liu B, Liu C, Liu D, Liu F, Liu F, Liu F, Liu G, Liu H, Liu H, Liu H, Liu H, Liu J, Liu J, Liu J, Liu K, Liu K, Liu K, Liu L, Liu L, Liu L, Liu M, Liu P, Liu Q, Liu S, Liu T, Liu W, Liu W, Liu X, Liu Y, Liu Y, Liu Z, Liu Z, Lou X, Lu F, Lu H, Lu J, Lu X, Lu Y, Lu Y, Lu Z, Luo C, Luo M, Luo T, Luo X, Lyu X, Lyu Y, Ma F, Ma H, Ma L, Ma M, Ma Q, Ma R, Ma R, Ma X, Ma Y, Maas F, Maggiora M, Maldaner S, Malde S, Malik Q, Mangoni A, Mao Y, Mao Z, Marcello S, Meng Z, Messchendorp J, Mezzadri G, Miao H, Min T, Mitchell R, Mo X, Muchnoi N, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev I, Ning Z, Nisar S, Niu Y, Olsen S, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pathak A, Pelizaeus M, Peng H, Peters K, Ping J, Ping R, Plura S, Pogodin S, Poling R, Prasad V, Qi H, Qi H, Qi M, Qi T, Qian S, Qian W, Qian Z, Qiao C, Qin J, Qin L, Qin X, Qin X, Qin Z, Qiu J, Qu S, Qu S, Rashid K, Ravindran K, Redmer C, Ren K, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Sang H, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan K, Shan W, Shan X, Shangguan J, Shao L, Shao M, Shen C, Shen H, Shen X, Shi B, Shi H, Shi R, Shi X, Shi X, Song J, Song W, Song Y, Sosio S, Spataro S, Stieler F, Su K, Su P, Su Y, Sun G, Sun H, Sun H, Sun J, Sun L, Sun S, Sun T, Sun W, Sun X, Sun Y, Sun Y, Sun Z, Tan Y, Tan Y, Tang C, Tang G, Tang J, Tao L, Tao Q, Teng J, Thoren V, Tian W, Tian Y, Uman I, Wang B, Wang B, Wang C, Wang D, Wang F, Wang H, Wang H, Wang K, Wang L, Wang M, Wang M, Wang M, Wang S, Wang S, Wang T, Wang T, Wang W, Wang W, Wang W, Wang X, Wang X, Wang X, Wang Y, Wang Y, Wang Y, Wang Y, Wang Z, Wang Z, Wang Z, Wei D, Weidner F, Wen S, White D, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu J, Wu L, Wu L, Wu X, Wu X, Wu Y, Wu Z, Xia L, Xiang T, Xiao G, Xiao H, Xiao S, Xiao Y, Xiao Z, Xie C, Xie X, Xie Y, Xie Y, Xie Y, Xie Z, Xing T, Xu C, Xu C, Xu G, Xu H, Xu Q, Xu X, Xu Y, Xu Z, Yan F, Yan L, Yan W, Yan W, Yang H, Yang H, Yang H, Yang L, Yang S, Yang Y, Yang Y, Ye M, Ye M, Yin J, You Z, Yu B, Yu C, Yu G, Yu J, Yu T, Yuan C, Yuan L, Yuan S, Yuan X, Yuan Y, Yuan Z, Yue C, Zafar A, Zeng F, Zeng XZ, Zeng Y, Zhan Y, Zhang A, Zhang B, Zhang B, Zhang G, Zhang H, Zhang H, Zhang H, Zhang H, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang L, Zhang L, Zhang L, Zhang P, Zhang Q, Zhang S, Zhang S, Zhang X, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Z, Zhang Z, Zhang Z, Zhao G, Zhao J, Zhao J, Zhao J, Zhao L, Zhao L, Zhao M, Zhao Q, Zhao S, Zhao Y, Zhao Y, Zhao Z, Zhemchugov A, Zheng B, Zheng J, Zheng Y, Zhong B, Zhong C, Zhong X, Zhou H, Zhou L, Zhou X, Zhou X, Zhou X, Zhou X, Zhou Y, Zhu J, Zhu K, Zhu K, Zhu L, Zhu S, Zhu S, Zhu T, Zhu W, Zhu Y, Zhu Z, Zou B, Zou J. Measurement of the branching fraction of the doubly Cabibbo-suppressed decay
D0→K+π−π0
and search for
D0→K+π−π0π0. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.105.112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
89
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Aliberti R, Amoroso A, An MR, An Q, Bai XH, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Chen ZJ, Cheng WS, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai XC, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dong X, Du SX, Fan YL, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fritsch M, Fu CD, Gao Y, Gao Y, Gao Y, Gao YG, Garzia I, Ge PT, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han TT, Han WY, Hansson J, Hao XQ, Harris FA, Hüsken N, He KL, Heinsius FH, Heinz CH, Held T, Heng YK, Herold C, Himmelreich M, Holtmann T, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang YP, Huang Z, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jiang HB, Jiang XS, Jiao JB, Jiao Z, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li H, Li HB, Li HJ, Li HJ, Li JL, Li JQ, Li JS, Li K, Li LK, Li L, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li X, Li ZY, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Liu BJ, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu MH, Liu PL, Liu Q, Liu Q, Liu SB, Liu S, Liu T, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu FX, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XX, Ma XY, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Mo YJ, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Ping JL, Ping RG, Poling R, Prasad V, Qi H, Qi HR, Qi KH, Qi M, Qi TY, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sang HS, Sarantsev A, Schelhaas Y, Schnier C, Schönning K, Scodeggio M, Shan DC, Shan W, Shan XY, Shangguan JF, Shao M, Shen CP, Shen PX, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song WM, Song YX, Sosio S, Spataro S, Su KX, Su PP, Sui FF, Sun GX, Sun HK, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun WY, Sun X, Sun YJ, Sun YK, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Teng JX, Thoren V, Tian YT, Uman I, Wang B, Wang CW, Wang DY, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang YY, Wang Z, Wang ZY, Wang Z, Wang Z, Wei DH, Weidenkaff P, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xu GF, Xu QJ, Xu W, Xu XP, Xu YC, Yan F, Yan L, Yan WB, Yan WC, Yan X, Yang HJ, Yang HX, Yang L, Yang SL, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan L, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng Y, Zhang BX, Zhang G, Zhang H, Zhang HH, Zhang HH, Zhang HY, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang S, Zhang SF, Zhang S, Zhang XD, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu TJ, Zhu WJ, Zhu WJ, Zhu YC, Zhu ZA, Zou BS, Zou JH. Probing CP symmetry and weak phases with entangled double-strange baryons. Nature 2022; 606:64-69. [PMID: 35650355 PMCID: PMC9159954 DOI: 10.1038/s41586-022-04624-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/08/2022] [Indexed: 12/03/2022]
Abstract
Though immensely successful, the standard model of particle physics does not offer any explanation as to why our Universe contains so much more matter than antimatter. A key to a dynamically generated matter-antimatter asymmetry is the existence of processes that violate the combined charge conjugation and parity (CP) symmetry1. As such, precision tests of CP symmetry may be used to search for physics beyond the standard model. However, hadrons decay through an interplay of strong and weak processes, quantified in terms of relative phases between the amplitudes. Although previous experiments constructed CP observables that depend on both strong and weak phases, we present an approach where sequential two-body decays of entangled multi-strange baryon-antibaryon pairs provide a separation between these phases. Our method, exploiting spin entanglement between the double-strange Ξ- baryon and its antiparticle2 [Formula: see text], has enabled a direct determination of the weak-phase difference, (ξP - ξS) = (1.2 ± 3.4 ± 0.8) × 10-2 rad. Furthermore, three independent CP observables can be constructed from our measured parameters. The precision in the estimated parameters for a given data sample size is several orders of magnitude greater than achieved with previous methods3. Finally, we provide an independent measurement of the recently debated Λ decay parameter αΛ (refs. 4,5). The [Formula: see text] asymmetry is in agreement with and compatible in precision to the most precise previous measurement4.
Collapse
|
90
|
Nastoupil LJ, Dahiya S, Miklos DB, Reagan PM, Ulrickson M, Jung AS, Kloos I, Dong J, Chou J, Murakami J, Rodriguez K, Nahas M. KITE-363: A phase 1 study of an autologous anti-CD19/CD20 chimeric antigen receptor (CAR) T-cell therapy in patients with relapsed/refractory (R/R) B-cell lymphoma (BCL). J Clin Oncol 2022. [DOI: 10.1200/jco.2022.40.16_suppl.tps7579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TPS7579 Background: One mechanism by which B-cell tumors can resist the effects of CD19-targeted CAR T-cell therapy is through CD19 antigen escape (Neelapu et al. ASH 2019). Recent analyses in large B-cell lymphoma (LBCL) demonstrated that approximately one-third to two-thirds of relapses after infusion of CAR T-cell therapy were CD19 negative (Plaks et al. Blood. 2021; Spiegel, Dahiya et al. Blood. 2021; Spiegel et al. Nat Med. 2021). KITE-363 is an autologous CAR T cell transduced with a bicistronic vector with resultant expression of a CD19 CAR with a CD28 costimulatory domain and a CD20 CAR with a 41BB costimulatory domain. In preclinical studies, KITE-363 recognized and eliminated tumor cells expressing CD19 and/or CD20. KITE-363 CAR T-cell therapy has the potential to rescue CD19-negative relapsing patients with BCL as well as prevent CD19 antigen escape by minimizing selective pressure through upfront therapeutic dual targeting. This Phase 1, first-in-human, open-label, multicenter study (NCT04989803) will evaluate the safety and preliminary efficacy of KITE-363 in patients with R/R BCL. Methods: The Phase 1 design includes a 3+3 dose-escalation portion (1A), with 5 planned CAR T-cell levels, and a dose expansion portion (1B). Patients may receive optional corticosteroid bridging therapy following leukapheresis. Patients will then receive conditioning chemotherapy (cyclophosphamide and fludarabine) on Day ‒5 to Day ‒3 followed by KITE-363 infusion on Day 0. The primary endpoint for Phase 1A is the incidence of adverse events defined as dose-limiting toxicities. The primary endpoint for Phase 1B is investigator-assessed objective response rate per Lugano criteria (Cheson et al. J Clin Oncol. 2014). Secondary endpoints include complete response rate, time to next treatment, duration of response, progression-free survival, overall survival, safety, and levels of CAR T cells in blood and cytokines in serum. Eligible adult patients have histologically confirmed BCL, including LBCL, indolent non-Hodgkin lymphoma, nodular lymphocyte-predominant Hodgkin lymphoma (HL), and BCL, unclassifiable (with features intermediate between diffuse LBCL and classical HL), that is R/R after ≥2 lines of therapy (patients with LBCL may have primary refractory disease). Other key inclusion criteria are adequate bone marrow and organ function and ECOG performance status 0‒1. Key exclusion criteria are central nervous system (CNS) involvement from lymphoma, active infection including hepatitis B and C, and clinically significant CNS disorder. This study is currently open and accruing patients. Clinical trial information: NCT04989803.
Collapse
|
91
|
Strati P, Leslie LA, Shiraz P, Budde LE, Oluwole OO, Ulrickson M, Ramakrishnan A, Sun J, Shen R, Kanska J, McCroskery P, Dong J, Schupp MA, Xu H, Patel K. Axicabtagene ciloleucel (axi-cel) in combination with rituximab (Rtx) for the treatment (Tx) of refractory large B-cell lymphoma (R-LBCL): Outcomes of the phase 2 ZUMA-14 study. J Clin Oncol 2022. [DOI: 10.1200/jco.2022.40.16_suppl.7567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
7567 Background: Despite the success of axi-cel, ≈60% of patients (pts) have no response or relapse within ̃2 y after Tx (Jacobson C, et al. ASH 2021. #1764), highlighting the need for more therapeutic strategies. In preclinical studies, Rtx augmented CD19 CAR T-cell function and increased tumor reduction and survival in murine models via synergistic targeting with CAR T-cells (Mihara K, et al. Br J Haematol. 2010). Here, we report outcomes of ZUMA-14, a Phase 2, multicenter study of axi-cel in combination with Rtx in pts with R-LBCL after ≥2 lines of systemic therapy. Methods: Eligible pts were ≥18 y with R/R LBCL. Pts received one Rtx dose (375 mg/m2) on Day -5, a conditioning regimen of cyclophosphamide and fludarabine on Days -5, -4, and -3, and a single axi-cel infusion of 2×106 CAR T cells/kg on Day 0. Starting on Day 21 post–axi-cel infusion, pts received 1 Rtx dose every 28 d for up to 5 doses. The primary endpoint was investigator-assessed complete response (CR) rate. Secondary endpoints included objective response rate (ORR), duration of response (DOR), progression-free survival (PFS), overall survival (OS), safety, and biomarker assessments. The analysis reported here occurred after all treated pts had ≥12 mo of follow-up. Results: As of 12/2/21, 27 pts were enrolled, and 26 received axi-cel and ≥1 Rtx dose (15 pts received all 6 Rtx doses); 1 pt discontinued Tx due to an adverse event (AE). Median age was 63 y (range, 38-82), 54% of pts were male, 81% had stage III/IV disease, 62% had extranodal disease, 38% had elevated LDH, and 85% had an aaIPI ≥1 (35% aaIPI 2). The CR rate was 65% (95% CI, 44-83), and the ORR was 88% (95% CI, 70-98). With a median follow-up of 17 mo, 65% of the pts had ongoing response, with 57% ongoing in CR. Medians for DOR, PFS and OS were not reached. The estimated DOR and PFS rates at 12 mo were 64% and 56%, respectively. The estimated 12 mo OS rate was 76%, and 6 pts (23%) died of progressive disease. Most pts (92%) experienced Grade ≥3 AEs. Grade ≥3 cytopenias were reported in 85% of pts, with 38% ongoing on Day 30. Grade ≥3 neurologic events (NEs) occurred in 4 pts (15%), and there was no Grade ≥3 cytokine release syndrome (CRS). Median times to onset of CRS and NEs were 4 d (range, 1-7) and 6 d (range, 3-32), respectively, with median durations of 5 d (range, 2-15) and 7 d (range, 1-39). No pts experienced myelodysplastic syndrome. Median peak CAR T-cell levels were comparable to the ZUMA-1 pharmacokinetic profile. Immune-modulating cytokines, including granzyme B, IL-6, CXCL10, IFN-g and IL-2, were induced in pts following axi-cel and Rtx infusion and were more prominently elevated in responders vs non-responders. Peak Rtx levels were also elevated in responders vs non-responders. Conclusions: Results from ZUMA-14 demonstrated that axi-cel in combination with Rtx elicited a high CR rate with no new safety signals detected in pts with R-LBCL. Clinical trial information: NCT04002401.
Collapse
|
92
|
Wang H, Dong J, Bao JF, Wang CB, Lyu JX. [Analysis of the diagnostic efficiency of combining multiple laboratory hematological indicators in alpha-fetoprotein-negative hepatocellular carcinoma]. ZHONGHUA YI XUE ZA ZHI 2022; 102:1303-1310. [PMID: 35488700 DOI: 10.3760/cma.j.cn112137-20220115-00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Objective: To establish a diagnostic model for alpha-fetoprotein-negative hepatocellular carcinoma (AFP-NHCC) by combining multiple laboratory hematological indicators and explore its clinical diagnostic efficiency. Methods: A total of 124 inpatients, including 110 males and 14 females, aged 57 (51, 66) years, who were first diagnosed with AFP-NHCC in the PLA General Hospital were included from December 2011 to June 2017. Meanwhile, 331 cases of non-HCC were enrolled as the control group, including 279 males and 52 females, aged 58 (51, 63) years old, with 47 cases of hepatitis B virus (HBV) infection, 40 cases of liver cirrhosis, 64 cases of hepatic hemangioma or cysts, 7 cases of liver nodules, 8 cases of fatty liver, 146 cases of non-liver disease and 19 health controls. Subjects in the AFP-NHCC group and the control group were divided into a training group and a validation group. A total of 196 subjects were involved in the training group, including 103 AFP-NHCC patients and 93 non-HCC patients (19 healthy controls, 25 patients with HBV infection, 22 patients with liver cirrhosis, 23 patients with hepatic hemangioma or cyst, and 4 patients with liver nodules). The differences in laboratory parameters were analyzed, and a diagnostic model of AFP-NHCC under different AFP levels was established. Likewise, 259 subjects, including 113 patients with liver disease, were involved in the validation group to verify the diagnostic efficiency of the model for AFP-NHCC. The receiver operating characteristic (ROC) curve was used to analyze the sensitivity and specificity of different models, and the area under the curve (AUC) was calculated to evaluate the diagnostic performance of different models. Results: In the training group, the indicators of AFP-NHCC diagnostic model included platelet (PLT), prothrombin activity (PTA), serum albumin (ALB), prothrombin time (PT) and carbohydrate antigen 19-9 (CA19-9), and the AUC of the model was 0.848 (95%CI: 0.786-0.911) when AFP≤5 μg/L. Similarly, the indicators of AFP-NHCC diagnostic model included PLT, PTA, ALB, PT and hematocrit (HCT), and the AUC of the model was 0.839 (95%CI: 0.780-0.897) when AFP≤10 μg/L. When AFP≤20 μg/L, the indicators of AFP-NHCC diagnostic model contained PLT, PTA, ALB, PT, HCT and AFP, and the AUC of the model was 0.866 (95%CI: 0.815-0.917). The AUC values of these three models were higher than those of AFP and CA19-9 alone for the diagnosis of AFP-NHCC [0.634 (95%CI: 0.560-0.709), 0.691 (95%CI:0.620-0.761), all P<0.05]. The indicators screened by these three models were combined to establish the final diagnostic model, and the AUC of the model was 0.873 (95%CI: 0.824-0.923), with the sensitivity of 78.6% (81/103) and the specificity of 81.7% (76/93). In the validation group, the predictive AUC of the final model in liver disease patients was 0.892 (95%CI: 0.832-0.951), with the sensitivity of 100% (21/21) and the specificity of 71.7% (66/92), while in the total validation population, the predictive AUC was 0.931 (95%CI: 0.890-0.972), with the sensitivity of 100.0% (21/21) and the specificity of 75.6% (180/238). Conclusion: The final diagnostic model includes PLT, PTA, ALB, PT, HCT, CA19-9 and AFP, which has higher sensitivity and specificity, and has good diagnostic efficiency for the clinical diagnosis of AFP-NHCC.
Collapse
|
93
|
Chu J, Lu ZL, Liu J, Fu ZT, Liu T, Dong J, Ren J, Chen XX, Guo XL, Xu A. [Spatio-temporal trend of female breast cancer mortality in Shandong Province from 1970 to 2013]. ZHONGHUA YU FANG YI XUE ZA ZHI [CHINESE JOURNAL OF PREVENTIVE MEDICINE] 2022; 56:609-613. [PMID: 35644975 DOI: 10.3760/cma.j.cn112150-20210630-00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mortality of female breast cancer in Shandong Province has increased since the 1970. The differential decomposition analysis found that the slight decline in the crude mortality of breast cancer among women was entirely due to non-demographic factors during the 1970-1990, and the significant increase in the crude mortality was due to a combination of demographic and non-demographic factors since the 1990. The contribution rate of demographic factor has gradually increased from 53.5% in 2004-2005 to 59.5% in 2011-2013, while that of non-demographic factor has decreased from 46.5% to 40.5%. The women aged 45-64 years old were the major population of female breast cancer deaths, accounting for 40%-60% of total breast cancer deaths in different times, and then the mortality in female aged 55-64 years old increased rapidly, with increases of 52.12%, 115.19% and 29.01% in 2011-2013 over the 1970-1974, 1990-1992 and 2004-2005, respectively (Z=-7.342,P<0.001). Compared with 1970-1974, the age-standardized mortality rate of rural women increased by 41.86% in 2011-2013 (Z=-17.933, P<0.001), and that of urban women increased by 18.62% in 2011-2013 (Z=-25.642, P<0.001). The age-standardized mortality rate of breast cancer in urban women was higher than that in rural women in different times (all P<0.05). The spatial scan analysis found that eastern Shandong Province was found to be a sustained high-risk area for death, and other high-risk areas were transferred from north to southwest of Shandong between 1970 and 2013.
Collapse
|
94
|
Ablikim M, Achasov M, Adlarson P, Ahmed S, Albrecht M, Aliberti R, Amoroso A, An M, An Q, Bai X, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere R, Cai H, Cai X, Calcaterra A, Cao G, Cao N, Cetin S, Chang J, Chang W, Chelkov G, Chen D, Chen G, Chen H, Chen M, Chen S, Chen X, Chen Y, Chen Z, Cheng W, Cibinetto G, Cossio F, Cui X, Dai H, Dai J, Dai X, Dbeyssi A, de Boer R, Dedovich D, Deng Z, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong L, Dong M, Dong X, Du S, Egorov P, Fan Y, Fang J, Fang S, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng C, Feng J, Fritsch M, Fu C, Gao Y, Gao Y, Gao Y, Garzia I, Ge P, Geng C, Gersabeck E, Gilman A, Goetzen K, Gong L, Gong W, Gradl W, Greco M, Gu L, Gu M, Guan C, Guo A, Guo A, Guo L, Guo R, Guo Y, Guskov A, Han T, Han W, Hao X, Harris F, He K, He K, Heinsius F, Heinz C, Heng Y, Herold C, Himmelreich M, Holtmann T, Hou G, Hou Y, Hou Z, Hu H, Hu J, Hu T, Hu Y, Huang G, Huang L, Huang X, Huang Y, Huang Z, Hussain T, Hüsken N, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji Q, Ji X, Ji X, Ji Y, Jiang H, Jiang X, Jiao J, Jiao Z, Jin S, Jin Y, Jing M, Johansson T, Kalantar-Nayestanaki N, Kang X, Kappert R, Kavatsyuk M, Ke B, Keshk I, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu O, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kühn W, Lane J, Lange J, Larin P, Lavania A, Lavezzi L, Lei Z, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li C, Li D, Li F, Li G, Li H, Li H, Li H, Li H, Li H, Li J, Li J, Li J, Li K, Li L, Li L, Li P, Li S, Li W, Li W, Li X, Li X, Li X, Li Z, Liang H, Liang H, Liang H, Liang Y, Liang Y, Liao G, Liao L, Libby J, Limphirat A, Lin C, Lin D, Lin T, Liu B, Liu C, Liu D, Liu F, Liu F, Liu F, Liu G, Liu H, Liu H, Liu H, Liu J, Liu J, Liu J, Liu K, Liu K, Liu K, Liu L, Liu M, Liu P, Liu Q, Liu Q, Liu S, Liu T, Liu T, Liu W, Liu X, Liu Y, Liu Y, Liu Z, Liu Z, Lou X, Lu F, Lu H, Lu J, Lu J, Lu X, Lu Y, Lu Y, Luo C, Luo M, Luo P, Luo T, Luo X, Lyu X, Ma F, Ma H, Ma L, Ma M, Ma Q, Ma R, Ma R, Ma X, Ma X, Maas F, Maggiora M, Maldaner S, Malde S, Malik Q, Mangoni A, Mao Y, Mao Z, Marcello S, Meng Z, Messchendorp J, Mezzadri G, Min T, Mitchell R, Mo X, Muchnoi N, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev I, Ning Z, Nisar S, Olsen S, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pathak A, Patteri P, Pelizaeus M, Peng H, Peters K, Pettersson J, Ping J, Ping R, Plura S, Pogodin S, Poling R, Prasad V, Qi H, Qi H, Qi M, Qi T, Qian S, Qian W, Qian Z, Qiao C, Qin J, Qin L, Qin X, Qin X, Qin Z, Qiu J, Qu S, Rashid K, Ravindran K, Redmer C, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sang H, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan W, Shan X, Shangguan J, Shao M, Shen C, Shen H, Shen X, Shi H, Shi R, Shi X, Shi X, Song J, Song J, Song W, Song Y, Sosio S, Spataro S, Stieler F, Su K, Su P, Sui F, Sun G, Sun H, Sun J, Sun L, Sun S, Sun T, Sun W, Sun X, Sun Y, Sun Y, Sun Z, Tan Y, Tan Y, Tang C, Tang G, Tang J, Teng J, Thoren V, Tian W, Tian Y, Uman I, Wang B, Wang C, Wang D, Wang H, Wang H, Wang K, Wang L, Wang M, Wang M, Wang M, Wang S, Wang W, Wang W, Wang W, Wang X, Wang X, Wang X, Wang Y, Wang Y, Wang Y, Wang Y, Wang Y, Wang Z, Wang Z, Wang Z, Wang Z, Wei D, Weidner F, Wen S, White D, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu J, Wu L, Wu L, Wu X, Wu X, Wu Z, Xia L, Xiao H, Xiao S, Xiao Z, Xie X, Xie Y, Xie Y, Xing T, Xu C, Xu G, Xu Q, Xu W, Xu X, Xu Y, Yan F, Yan L, Yan W, Yan W, Yang H, Yang H, Yang L, Yang S, Yang Y, Yang Y, Yang Z, Ye M, Ye M, Yin J, You Z, Yu B, Yu C, Yu G, Yu J, Yu T, Yuan C, Yuan L, Yuan Y, Yuan Z, Yue C, Zafar A, Zeng XZ, Zeng Y, Zhang A, Zhang B, Zhang G, Zhang H, Zhang H, Zhang H, Zhang H, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang L, Zhang L, Zhang L, Zhang S, Zhang S, Zhang S, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Z, Zhao G, Zhao J, Zhao J, Zhao J, Zhao L, Zhao L, Zhao M, Zhao Q, Zhao S, Zhao Y, Zhao Y, Zhao Z, Zhemchugov A, Zheng B, Zheng J, Zheng Y, Zhong B, Zhong C, Zhou L, Zhou Q, Zhou X, Zhou X, Zhou X, Zhou X, Zhu A, Zhu J, Zhu K, Zhu K, Zhu S, Zhu T, Zhu W, Zhu W, Zhu Y, Zhu Z, Zou B, Zou J. Partial wave analysis of
J/ψ→γη′η′. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.105.072002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
95
|
Gao HL, Dong J, Xu J, Yu XJ. [Efficacy of conversion therapy and direct surgical resection in patients with metastatic pancreatic neuroendocrine tumors]. ZHONGHUA YI XUE ZA ZHI 2022; 102:1007-1013. [PMID: 35399020 DOI: 10.3760/cma.j.cn112137-20210805-01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Objective: To explore the prognosis of Chinese patients with metastatic pancreatic neuroendocrine tumor (PanNET) treated with conversion therapy and surgical resection. Methods: The pathological data and prognostic information was retrospectively collected of patients with metastatic PanNET treated in Fudan University Shanghai cancer center from January 2010 to May 2021, and propensity score matching was used to analyze the prognosis difference between conversion treatment followed surgery and direct surgery. Results: There were 58 males and 43 females in 101 patients with metastatic PanNET. The age raged from 18 to 74 years, with a median age of 51 years. A total of 88 patients received primary tumor with liver metastases resection, 1 receied of primary tumor resection and 12 received primary tumor resection and combined organs or extrahepatic metastases. Multivariate analysis showed that R2(HR=1.943,95%CI:1.262-2.990,P=0.003)resection and G3(HR=1.876,95%CI:1.001-3.516,P=0.05) were independent risk factors for postoperative progression of metastatic patients. There were 63 patients (62.4%) who had received direct surgery, and 38 patients (37.6%) who had received preoperative conversion therapy. The conversion therapy had a higher proportion of T3/T4 stage (68.1% vs 39.7%, P=0.007), resection with combined organs/extrahepatic metastasis (26.3% vs 9.5%, P=0.005) and R2 resection (71.1% vs 42.9%, P=0.005). The median progression-free survival (mPFS) between conversion therapy and direct surgery had no statistically significant, but after the propensity score matching the mPFS of the conversion therapy group was significantly longer than direct surgery group (HR=0.442,95%CI:0.207-0.943,P=0.027). Conclusions: Conversion therapy for partially metastatic PanNET is better than that of direct surgery. Radical resection and grade are independent prognostic factors for metastatic PanNET after resection.
Collapse
|
96
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Aliberti R, Amoroso A, An MR, An Q, Bai XH, Bai Y, Bakina O, Ferroli RB, Balossino I, Ban Y, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Chen ZJ, Cheng WS, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dong X, Du SX, Egorov P, Fan YL, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fritsch M, Fu CD, Gao Y, Gao Y, Gao YG, Garzia I, Ge PT, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Guan CY, Guo AQ, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han TT, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Himmelreich M, Holtmann T, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang YP, Huang Z, Hussain T, Hüsken N, Andersson WI, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jiang HB, Jiang XS, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li H, Li HB, Li HJ, Li HN, Li JL, Li JQ, Li JS, Li K, Li LK, Li L, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li X, Li ZY, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin CX, Lin DX, Lin T, Liu BJ, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu GM, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu MH, Liu PL, Liu Q, Liu Q, Liu SB, Liu T, Liu T, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XX, Ma XY, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Plura S, Pogodin S, Poling R, Prasad V, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sang HS, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan W, Shan XY, Shangguan JF, Shao M, Shen CP, Shen HF, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song JJ, Song WM, Song YX, Sosio S, Spataro S, Stieler F, Su KX, Su PP, Sui FF, Sun GX, Sun HK, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun X, Sun YJ, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Teng JX, Thoren V, Tian WH, Tian YT, Uman I, Wang B, Wang CW, Wang DY, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang S, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang YD, Wang YF, Wang YQ, Wang YY, Wang Z, Wang ZY, Wang Z, Wang Z, Wei DH, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Z, Xia L, Xiao H, Xiao SY, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xu CJ, Xu GF, Xu QJ, Xu W, Xu XP, Xu YC, Yan F, Yan L, Yan WB, Yan WC, Yang HJ, Yang HX, Yang L, Yang SL, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan L, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng X, Zeng Y, Zhang AQ, Zhang BX, Zhang G, Zhang H, Zhang HH, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang S, Zhang SF, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu TJ, Zhu WJ, Zhu WJ, Zhu YC, Zhu ZA, Zou BS, Zou JH. Observation of the Singly Cabibbo Suppressed Decay Λ_{c}^{+}→nπ^{+}. PHYSICAL REVIEW LETTERS 2022; 128:142001. [PMID: 35476477 DOI: 10.1103/physrevlett.128.142001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/05/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The singly Cabibbo-suppressed decay Λ_{c}^{+}→nπ^{+} is observed for the first time with a statistical significance of 7.3σ by using 3.9 fb^{-1} of e^{+}e^{-} collision data collected at center-of-mass energies between 4.612 and 4.699 GeV with the BESIII detector at BEPCII. The branching fraction of Λ_{c}^{+}→nπ^{+} is measured to be (6.6±1.2_{stat}±0.4_{syst})×10^{-4}. By taking the upper limit of branching fractions of Λ_{c}^{+}→pπ^{0} from the Belle experiment, the ratio of branching fractions between Λ_{c}^{+}→nπ^{+} and Λ_{c}^{+}→pπ^{0} is calculated to be larger than 7.2 at the 90% confidence level, which disagrees with most predictions of the available phenomenological models. In addition, the branching fractions of the Cabibbo-favored decays Λ_{c}^{+}→Λπ^{+} and Λ_{c}^{+}→Σ^{0}π^{+} are measured to be (1.31±0.08_{stat}±0.05_{syst})×10^{-2} and (1.22±0.08_{stat}±0.07_{syst})×10^{-2}, respectively, which are consistent with previous results.
Collapse
|
97
|
Neelapu SS, Dickinson M, Munoz J, Ulrickson ML, Thieblemont C, Oluwole OO, Herrera AF, Ujjani CS, Lin Y, Riedell PA, Kekre N, de Vos S, Lui C, Milletti F, Dong J, Xu H, Chavez JC. Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: the phase 2 ZUMA-12 trial. Nat Med 2022; 28:735-742. [PMID: 35314842 PMCID: PMC9018426 DOI: 10.1038/s41591-022-01731-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
High-risk large B-cell lymphoma (LBCL) has poor outcomes with standard first-line chemoimmunotherapy. In the phase 2, multicenter, single-arm ZUMA-12 study (ClinicalTrials.gov NCT03761056) we evaluated axicabtagene ciloleucel (axi-cel), an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy, as part of first-line treatment in 40 patients with high-risk LBCL. This trial has completed accrual. The primary outcome was complete response rate (CRR). Secondary outcomes were objective response rate (ORR), duration of response (DOR), event-free survival (EFS), progression-free survival (PFS), overall survival (OS), assessment of safety, central nervous system (CNS) relapse and blood levels of CAR T cells and cytokines. The primary endpoint in efficacy-evaluable patients (n = 37) was met, with 78% CRR (95% confidence interval (CI), 62-90) and 89% ORR (95% CI, 75-97). As of 17 May 2021 (median follow-up, 15.9 months), 73% of patients remained in objective response; median DOR, EFS and PFS were not reached. Grade ≥3 cytokine release syndrome (CRS) and neurologic events occurred in three patients (8%) and nine patients (23%), respectively. There were no treatment-related grade 5 events. Robust CAR T-cell expansion occurred in all patients with a median time to peak of 8 days. We conclude that axi-cel is highly effective as part of first-line therapy for high-risk LBCL, with a manageable safety profile.
Collapse
|
98
|
Fang K, Ma AJ, Dong J, Jiang B, Xie J, Wei YQ, Xie C, Qi K, Zhao Y, Dong Z. [Investigation on knowledge, attitude and behavior of salt reduction in adults of Beijing in 2017]. ZHONGHUA YU FANG YI XUE ZA ZHI [CHINESE JOURNAL OF PREVENTIVE MEDICINE] 2022; 56:340-345. [PMID: 35381656 DOI: 10.3760/cma.j.cn112150-20210422-00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Objective: To explore the knowledge, attitude and behavior of salt reduction in adults of Beijing in 2017. Methods: Based on the monitoring data of chronic diseases and corresponding risk factors in adults of Beijing in 2017, the indicators of salt reduction knowledge, attitude and behavior of 13 240 participants aged 18-79 years old were analyzed. The awareness rate, attitude support rate and behavior rate were calculated by complex weighting method, and compared among different age groups, genders, residential areas, and history of hypertension. The proportion of people taking various salt reduction measures to the total number of people was compared. Results: The awareness rate of recommended daily salt intake, the awareness of hypertension caused or aggravated by more salt intake, the attitude support rate and behavior rate of adults were 31.77%, 88.56%, 90.27% and 53.86%, respectively. After weighted adjustment, the awareness rate of recommended daily salt intake was 31.08%, which increased with age (χ2trend=431.56, P<0.001) and education level (χ2trend=95.44, P<0.001). The awareness rate of women was higher than that of men (χ²=118.89, P<0.001), and the awareness rate of population in urban areas was higher than that of population in suburban areas (χ²=34.09, P=0.001). The awareness rate of hypertension caused or aggravated by eating more salt was 86.73%. The support rate of salt reduction attitude was 90.45%. The rate of salt-reducing behavior was 54.05%. Among different salt reduction measures, reducing salt when cooking was the most common measure (52.41%), while the least common one (35.22%) was using low sodium salt. Logistic regression model analysis showed that the gender, age, education level, self-reported history of hypertension, awareness of salt recommendation, awareness of hypertension caused or aggravated by eating more salt, and salt reduction attitude were significantly associated with salt reduction behavior. Conclusion: In 2017, adults in Beijing have a basic understanding of the impact of high-salt diet on health and support salt reduction, but the rate of salt reduction behavior is still relatively low. There are obvious gender and age differences, and the salt reduction measure is simple. Targeted measures should be taken to promote the formation of salt reduction behavior.
Collapse
|
99
|
Neelapu SS, Chavez JC, Sehgal AR, Epperla N, Ulrickson ML, Bachy E, Munshi PN, Casulo C, Maloney DG, de Vos S, Reshef R, Leslie LA, Oluwole OO, Yakoub-Agha I, Khanal R, Rosenblatt J, Sherman M, Dong J, Giovanetti A, Yang Y, Lui C, Bashir Z, Jung AS, Jacobson CA. Long-Term Follow-up Analysis of Zuma-5: A Phase 2 Study of Axicabtagene Ciloleucel (Axi-Cel) in Patients (Pts) with Relapsed/Refractory (R/R) Indolent Non-Hodgkin Lymphoma (iNHL). Transplant Cell Ther 2022. [DOI: 10.1016/s2666-6367(22)00236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
100
|
Chou J, Arihara Y, Budka J, Huang L, Tiwari G, Falk A, Jacobson CA, Rodig S, Armand P, Miklos DB, Neelapu SS, Locke FL, Lekakis LJ, Ghobadi A, Lin Y, Dong J, Milletti F, Mattie M, Bot A, Ritz J. Pre and Post-Treatment CD27+ T Cells Track with Clinical Efficacy of Axi-Cel in DLBCL Patients. Transplant Cell Ther 2022. [DOI: 10.1016/s2666-6367(22)00368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|