76
|
Wong YL, Lautenschläger I, Hummitzsch L, Zitta K, Cossais F, Wedel T, Rusch R, Berndt R, Gruenewald M, Weiler N, Steinfath M, Albrecht M. Effects of different ischemic preconditioning strategies on physiological and cellular mechanisms of intestinal ischemia/reperfusion injury: Implication from an isolated perfused rat small intestine model. PLoS One 2021; 16:e0256957. [PMID: 34478453 PMCID: PMC8415612 DOI: 10.1371/journal.pone.0256957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/19/2021] [Indexed: 01/03/2023] Open
Abstract
Background Intestinal ischemia/reperfusion (I/R)-injury often results in sepsis and organ failure and is of major importance in the clinic. A potential strategy to reduce I/R-injury is the application of ischemic preconditioning (IPC) during which repeated, brief episodes of I/R are applied. The aim of this study was to evaluate physiological and cellular effects of intestinal I/R-injury and to compare the influence of in-vivo IPC (iIPC) with ex-vivo IPC (eIPC), in which blood derived factors and nerval regulations are excluded. Methods Using an established perfused rat intestine model, effects of iIPC and eIPC on physiological as well as cellular mechanisms of I/R-injury (60 min hypoxia, 30 min reperfusion) were investigated. iIPC was applied by three reversible occlusions of the mesenteric artery in-vivo for 5 min followed by 5 min of reperfusion before isolating the small intestine, eIPC was induced by stopping the vascular perfusion ex-vivo 3 times for 5 min followed by 5 min of reperfusion after isolation of the intestine. Study groups (each N = 8–9 animals) were: iIPC, eIPC, I/R (iIPC group), I/R (eIPC group), iIPC+I/R, eIPC+I/R, no intervention/control (iIPC group), no intervention/control (eIPC group). Tissue morphology/damage, metabolic functions, fluid shifts and barrier permeability were evaluated. Cellular mechanisms were investigated using signaling arrays. Results I/R-injury decreased intestinal galactose uptake (iIPC group: p<0.001), increased vascular perfusion pressure (iIPC group: p<0.001; eIPC group: p<0.01) and attenuated venous flow (iIPC group: p<0.05) while lactate-to-pyruvate ratio (iIPC group, eIPC group: p<0.001), luminal flow (iIPC group: p<0.001; eIPC group: p<0.05), goblet cell ratio (iIPC group, eIPC group: p<0.001) and apoptosis (iIPC group, eIPC group: p<0.05) were all increased. Application of iIPC prior to I/R increased vascular galactose uptake (P<0.05) while eIPC had no significant impact on parameters of I/R-injury. On cellular level, I/R-injury resulted in a reduction of the phosphorylation of several MAPK signaling molecules. Application of iIPC prior to I/R increased phosphorylation of JNK2 and p38δ while eIPC enhanced CREB and GSK-3α/β phosphorylation. Conclusion Intestinal I/R-injury is associated with major physiological and cellular changes. However, the overall influence of the two different IPC strategies on the acute phase of intestinal I/R-injury is rather limited.
Collapse
|
77
|
Albrecht M, Hadaschik E, Zimmer L, Livingstone E, Hamacher R, Bauer S, Schadendorf D, Ugurel S. [Cutaneous angiosarcoma clinically presenting as Quincke's edema]. DER HAUTARZT 2021; 72:801-804. [PMID: 33439269 PMCID: PMC8416850 DOI: 10.1007/s00105-020-04748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 11/28/2022]
Abstract
We report a case of a 75-year-old man with facial edema that also affected the periorbital area who was admitted to the hospital with the suspected diagnosis of Quincke's edema. The diagnosis of cutaneous angiosarcoma was made by microscopic examination and immunohistochemical staining. Chemotherapy was initially initiated because the angiosarcoma was unresectable and the radiation situation was difficult. Therapy has to be switched to second and third line therapy due to disease progression. The case illustrates the complexity of diagnosis and therapy in patients with cutaneous angiosarcoma.
Collapse
|
78
|
Peters A, Völzke H, Pischon T, Löffler M, Schmidt M, Albrecht M, Bohn B, Panreck L, Greiser KH. Die NAKO Gesundheitsstudie – Design, Methoden und Datennutzung für wissenschaftliche Auswertungen. DAS GESUNDHEITSWESEN 2021. [DOI: 10.1055/s-0041-1732015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
79
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Amoroso A, An Q, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, de Boer RB, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao XL, Gao Y, Gao Y, Gao YG, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guo YP, Guskov A, Han S, Han TT, Han TZ, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Holtmann T, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang Z, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HB, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavezzi L, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li JL, Li JQ, Li K, Li LK, Li L, Li PL, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao LZ, Libby J, Lin CX, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LY, Liu Q, Liu SB, Liu T, Liu X, Liu YB, Liu ZA, Liu ZQ, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Mo YJ, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schnier C, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song QQ, Song YX, Sosio S, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun YJ, Sun YK, Sun YZ, Sun ZT, Tan YX, Tang CJ, Tang GY, Tang J, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang Z, Wang ZY, Wang Z, Wang Z, Weber T, Wei DH, Weidenkaff P, Weidner F, Wen HW, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao YJ, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xiong XA, Xu GF, Xu JJ, Xu QJ, Xu W, Xu XP, Yan L, Yan L, Yan WB, Yan WC, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan W, Yuan XQ, Yuan Y, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang G, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang L, Zhang L, Zhang S, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu ZA, Zou BS, Zou JH. Direct Measurement of the Branching Fractions B(ψ(3686)→J/ψX) and B(ψ(3770)→J/ψX), and Observation of the State R(3760) in e^{+}e^{-}→J/ψX. PHYSICAL REVIEW LETTERS 2021; 127:082002. [PMID: 34477419 DOI: 10.1103/physrevlett.127.082002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
We report a measurement of the observed cross sections of e^{+}e^{-}→J/ψX based on 3.21 fb^{-1} of data accumulated at energies from 3.645 to 3.891 GeV with the BESIII detector operated at the BEPCII collider. In analysis of the cross sections, we measured the decay branching fractions of B(ψ(3686)→J/ψX)=(64.4±0.6±1.6)% and B(ψ(3770)→J/ψX)=(0.5±0.2±0.1)% for the first time. The energy-dependent line shape of these cross sections cannot be well described by two Breit-Wigner (BW) amplitudes of the expected decays ψ(3686)→J/ψX and ψ(3770)→J/ψX. Instead, it can be better described with one more BW amplitude of the decay R(3760)→J/ψX. Under this assumption, we extracted the R(3760) mass M_{R(3760)}=3766.2±3.8±0.4 MeV/c^{2} , total width Γ_{R(3760)}^{tot}=22.2±5.9±1.4 MeV, and product of leptonic width and decay branching fraction Γ_{R(3760)}^{ee}B[R(3760)→J/ψX]=(79.4±85.5±11.7) eV. The significance of the R(3760) is 5.3σ. The first uncertainties of these measured quantities are from fits to the cross sections and second systematic.
Collapse
|
80
|
Ablikim M, Achasov M, Adlarson P, Ahmed S, Albrecht M, Aliberti R, Amoroso A, An M, An Q, Bai X, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere R, Cai H, Cai X, Calcaterra A, Cao G, Cao N, Cetin S, Chang J, Chang W, Chelkov G, Chen D, Chen G, Chen H, Chen M, Chen S, Chen X, Chen Y, Chen Z, Cheng W, Cibinetto G, Cossio F, Cui X, Dai H, Dai X, Dbeyssi A, de Boer R, Dedovich D, Deng Z, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong L, Dong M, Dong X, Du S, Fan Y, Fang J, Fang S, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng C, Feng J, Fritsch M, Fu C, Gao Y, Gao Y, Gao Y, Gao Y, Garzia I, Ge P, Geng C, Gersabeck E, Gilman A, Goetzen K, Gong L, Gong W, Gradl W, Greco M, Gu L, Gu M, Gu S, Gu Y, Guan C, Guo A, Guo L, Guo R, Guo Y, Guskov A, Han T, Han W, Hao X, Harris F, He K, Heinsius F, Heinz C, Held T, Heng Y, Herold C, Himmelreich M, Holtmann T, Hou G, Hou Y, Hou Z, Hu H, Hu J, Hu T, Hu Y, Huang G, Huang L, Huang X, Huang Y, Huang Z, Hussain T, Hüsken N, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji Q, Ji X, Ji X, Ji Y, Jiang H, Jiang X, Jiao J, Jiao Z, Jin S, Jin Y, Jing M, Johansson T, Kalantar-Nayestanaki N, Kang X, Kappert R, Kavatsyuk M, Ke B, Keshk I, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu O, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kühn W, Lane J, Lange J, Larin P, Lavania A, Lavezzi L, Lei Z, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li C, Li D, Li F, Li G, Li H, Li H, Li H, Li H, Li J, Li J, Li J, Li K, Li L, Li L, Li P, Li S, Li W, Li W, Li X, Li X, Li X, Li Z, Liang H, Liang H, Liang H, Liang Y, Liang Y, Liao G, Liao L, Libby J, Lin C, Liu B, Liu C, Liu D, Liu F, Liu F, Liu F, Liu H, Liu H, Liu H, Liu H, Liu J, Liu J, Liu J, Liu K, Liu K, Liu L, Liu M, Liu P, Liu Q, Liu Q, Liu S, Liu S, Liu T, Liu W, Liu X, Liu Y, Liu Y, Liu Z, Liu Z, Lou X, Lu F, Lu H, Lu J, Lu J, Lu X, Lu Y, Lu Y, Luo C, Luo M, Luo P, Luo T, Luo X, Lyu X, Ma F, Ma H, Ma L, Ma M, Ma Q, Ma R, Ma R, Ma X, Ma X, Maas F, Maggiora M, Maldaner S, Malde S, Malik Q, Mangoni A, Mao Y, Mao Z, Marcello S, Meng Z, Messchendorp J, Mezzadri G, Min T, Mitchell R, Mo X, Mo Y, Muchnoi N, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev I, Ning Z, Nisar S, Olsen S, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pathak A, Patteri P, Pelizaeus M, Peng H, Peters K, Pettersson J, Ping J, Ping R, Poling R, Prasad V, Qi H, Qi H, Qi K, Qi M, Qi T, Qian S, Qian W, Qian Z, Qiao C, Qin L, Qin X, Qin X, Qin Z, Qiu J, Qu S, Rashid K, Ravindran K, Redmer C, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sang H, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan D, Shan W, Shan X, Shangguan J, Shao M, Shen C, Shen H, Shen P, Shen X, Shi H, Shi R, Shi X, Shi X, Song J, Song W, Song Y, Sosio S, Spataro S, Su K, Su P, Sui F, Sun G, Sun H, Sun J, Sun L, Sun S, Sun T, Sun W, Sun W, Sun X, Sun Y, Sun Y, Sun Y, Sun Z, Tan Y, Tan Y, Tang C, Tang G, Tang J, Teng J, Thoren V, Tian W, Tian Y, Uman I, Wang B, Wang C, Wang D, Wang H, Wang H, Wang K, Wang L, Wang M, Wang M, Wang M, Wang W, Wang W, Wang W, Wang X, Wang X, Wang X, Wang Y, Wang Y, Wang Y, Wang Y, Wang Y, Wang Y, Wang Z, Wang Z, Wang Z, Wang Z, Wei D, Weidner F, Wen S, White D, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu J, Wu L, Wu L, Wu X, Wu Z, Xia L, Xiao H, Xiao S, Xiao Z, Xie X, Xie Y, Xie Y, Xing T, Xu G, Xu Q, Xu W, Xu X, Xu Y, Yan F, Yan L, Yan W, Yan W, Yan X, Yang H, Yang H, Yang L, Yang S, Yang Y, Yang Y, Yang Z, Ye M, Ye M, Yin J, You Z, Yu B, Yu C, Yu G, Yu J, Yu T, Yuan C, Yuan L, Yuan X, Yuan Y, Yuan Z, Yue C, Zafar A, Zeng XZ, Zeng Y, Zhang A, Zhang B, Zhang G, Zhang H, Zhang H, Zhang H, Zhang H, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang L, Zhang L, Zhang L, Zhang S, Zhang S, Zhang S, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Z, Zhang Z, Zhao G, Zhao J, Zhao J, Zhao J, Zhao L, Zhao L, Zhao M, Zhao Q, Zhao S, Zhao Y, Zhao Y, Zhao Z, Zhemchugov A, Zheng B, Zheng J, Zheng Y, Zheng Y, Zhong B, Zhong C, Zhou L, Zhou Q, Zhou X, Zhou X, Zhou X, Zhou X, Zhu A, Zhu J, Zhu K, Zhu K, Zhu S, Zhu T, Zhu W, Zhu W, Zhu Y, Zhu Z, Zou B, Zou J. Measurement of the branching fraction of leptonic decay
Ds+→τ+ντ
via
τ+→π+π0ν¯τ. Int J Clin Exp Med 2021. [DOI: 10.1103/physrevd.104.032001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
81
|
Ablikim M, Achasov M, Adlarson P, Ahmed S, Albrecht M, Amoroso A, An Q, Anita, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett J, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Bortone A, Boyko I, Briere R, Cai H, Cai X, Calcaterra A, Cao G, Cao N, Cetin S, Chang J, Chang W, Chelkov G, Chen D, Chen G, Chen H, Chen M, Chen S, Chen X, Chen Y, Cheng W, Cibinetto G, Cossio F, Cui X, Dai H, Dai J, Dai X, Dbeyssi A, de Boer R, Dedovich D, Deng Z, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong L, Dong M, Du S, Fang J, Fang S, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng C, Fritsch M, Fu C, Fu Y, Gao X, Gao Y, Gao Y, Gao Y, Garzia I, Gersabeck E, Gilman A, Goetzen K, Gong L, Gong W, Gradl W, Greco M, Gu L, Gu M, Gu S, Gu Y, Guan C, Guo A, Guo L, Guo R, Guo Y, Guo Y, Guskov A, Han S, Han T, Han T, Hao X, Harris F, He K, Heinsius F, Held T, Heng Y, Himmelreich M, Holtmann T, Hou Y, Hou Z, Hu H, Hu J, Hu T, Hu Y, Huang G, Huang L, Huang X, Huang Z, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji Q, Ji X, Ji X, Jiang H, Jiang X, Jiang X, Jiao J, Jiao Z, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang X, Kappert R, Kavatsyuk M, Ke B, Keshk I, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu O, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kühn W, Lane J, Lange J, Larin P, Lavezzi L, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li C, Li D, Li F, Li G, Li H, Li H, Li J, Li J, Li K, Li L, Li L, Li P, Li P, Li S, Li W, Li W, Li X, Li X, Li Z, Li Z, Liang H, Liang H, Liang Y, Liang Y, Liao L, Libby J, Lin C, Liu B, Liu B, Liu C, Liu D, Liu D, Liu F, Liu F, Liu F, Liu H, Liu H, Liu H, Liu H, Liu J, Liu J, Liu K, Liu K, Liu K, Liu L, Liu Q, Liu S, Liu S, Liu T, Liu X, Liu Y, Liu Z, Liu Z, Long Y, Lou X, Lu F, Lu H, Lu J, Lu J, Lu X, Lu Y, Lu Y, Luo C, Luo M, Luo P, Luo T, Luo X, Lusso S, Lyu X, Ma F, Ma H, Ma L, Ma M, Ma Q, Ma R, Ma R, Ma X, Ma X, Ma X, Ma Y, Maas F, Maggiora M, Maldaner S, Malde S, Malik Q, Mangoni A, Mao Y, Mao Z, Marcello S, Meng Z, Messchendorp J, Mezzadri G, Min T, Mitchell R, Mo X, Mo Y, Muchnoi N, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev I, Ning Z, Nisar S, Olsen S, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pelizaeus M, Peng H, Peters K, Pettersson J, Ping J, Ping R, Pitka A, Poling R, Prasad V, Qi H, Qi H, Qi M, Qi T, Qian S, Qian WB, Qian Z, Qiao C, Qin L, Qin X, Qin X, Qin Z, Qiu J, Qu S, Rashid K, Ravindran K, Redmer C, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Shan D, Shan W, Shan X, Shao M, Shen C, Shen P, Shen X, Shi H, Shi R, Shi X, Shi X, Song J, Song Q, Song W, Song Y, Sosio S, Spataro S, Sui F, Sun G, Sun J, Sun L, Sun S, Sun T, Sun W, Sun X, Sun Y, Sun Y, Sun Y, Sun Z, Tan Y, Tan Y, Tang C, Tang G, Tang J, Thoren V, Tsednee B, Uman I, Wang B, Wang B, Wang C, Wang D, Wang H, Wang K, Wang L, Wang M, Wang M, Wang M, Wang W, Wang W, Wang X, Wang X, Wang X, Wang Y, Wang Y, Wang Y, Wang Y, Wang Y, Wang Z, Wang Z, Wang Z, Wang Z, Wei D, Weidenkaff P, Weidner F, Wen S, White D, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu J, Wu L, Wu L, Wu X, Wu Z, Xia L, Xiao H, Xiao S, Xiao Y, Xiao Z, Xie X, Xie Y, Xie Y, Xing T, Xiong X, Xu G, Xu J, Xu Q, Xu W, Xu X, Yan L, Yan L, Yan W, Yan W, Yan X, Yang H, Yang H, Yang L, Yang R, Yang S, Yang Y, Yang Y, Yang Y, Yang Z, Ye M, Ye M, Yin J, You Z, Yu B, Yu C, Yu G, Yu J, Yu T, Yuan C, Yuan W, Yuan X, Yuan Y, Yuan Z, Yue C, Yuncu A, Zafar A, Zeng Y, Zhang B, Zhang G, Zhang H, Zhang H, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang L, Zhang L, Zhang S, Zhang S, Zhang T, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Z, Zhang Z, Zhao G, Zhao J, Zhao J, Zhao J, Zhao L, Zhao L, Zhao M, Zhao Q, Zhao S, Zhao Y, Zhao Y, Zhao Z, Zhemchugov A, Zheng B, Zheng J, Zheng Y, Zheng Y, Zhong B, Zhong C, Zhou L, Zhou Q, Zhou X, Zhou X, Zhou X, Zhu A, Zhu J, Zhu K, Zhu K, Zhu S, Zhu W, Zhu X, Zhu Y, Zhu Z, Zou B, Zou J. Amplitude analysis and branching fraction measurement of
Ds+→K+K−π+. Int J Clin Exp Med 2021. [DOI: 10.1103/physrevd.104.012016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
82
|
Ablikim M, Achasov M, Adlarson P, Ahmed S, Albrecht M, Aliberti R, Amoroso A, An M, An Q, Bai X, Bai Y, Bakina O, Ferroli RB, Balossino I, Ban Y, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere R, Cai H, Cai X, Calcaterra A, Cao G, Cao N, Cetin S, Chang J, Chang W, Chelkov G, Chen D, Chen G, Chen H, Chen M, Chen S, Chen X, Chen Y, Chen Z, Cheng W, Cibinetto G, Cossio F, Cui X, Dai H, Dai X, Dbeyssi A, de Boer R, Dedovich D, Deng Z, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong L, Dong M, Dong X, Du S, Fan Y, Fang J, Fang S, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng C, Feng J, Fritsch M, Fu C, Gao Y, Gao Y, Gao Y, Gao Y, Garzia I, Ge P, Geng C, Gersabeck E, Gilman A, Goetzen K, Gong L, Gong W, Gradl W, Greco M, Gu L, Gu M, Gu S, Gu Y, Guan C, Guo A, Guo L, Guo R, Guo Y, Guskov A, Han T, Han W, Hao X, Harris F, Hüsken N, He K, Heinsius F, Heinz C, Held T, Heng Y, Herold C, Himmelreich M, Holtmann T, Hou G, Hou Y, Hou Z, Hu H, Hu J, Hu T, Hu Y, Huang G, Huang L, Huang X, Huang Y, Huang Z, Hussain T, Andersson WI, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji Q, Ji X, Ji X, Ji Y, Jiang H, Jiang X, Jiao J, Jiao Z, Jin S, Jin Y, Jing M, Johansson T, Kalantar-Nayestanaki N, Kang X, Kappert R, Kavatsyuk M, Ke B, Keshk I, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu O, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kühn W, Lane J, Lange J, Larin P, Lavania A, Lavezzi L, Lei Z, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li C, Li D, Li F, Li G, Li H, Li H, Li H, Li H, Li J, Li J, Li J, Li K, Li L, Li L, Li P, Li S, Li W, Li W, Li X, Li X, Li X, Li Z, Liang H, Liang H, Liang H, Liang Y, Liang Y, Liao G, Liao L, Libby J, Lin C, Liu B, Liu C, Liu D, Liu F, Liu F, Liu F, Liu H, Liu H, Liu H, Liu H, Liu J, Liu J, Liu J, Liu K, Liu K, Liu L, Liu M, Liu P, Liu Q, Liu Q, Liu S, Liu S, Liu T, Liu W, Liu X, Liu Y, Liu Y, Liu Z, Liu Z, Lou X, Lu F, Lu H, Lu J, Lu J, Lu X, Lu Y, Lu Y, Luo C, Luo M, Luo P, Luo T, Luo X, Lyu X, Ma F, Ma H, Ma L, Ma M, Ma Q, Ma R, Ma R, Ma X, Ma X, Maas F, Maggiora M, Maldaner S, Malde S, Malik Q, Mangoni A, Mao Y, Mao Z, Marcello S, Meng Z, Messchendorp J, Mezzadri G, Min T, Mitchell R, Mo X, Mo Y, Muchnoi N, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev I, Ning Z, Nisar S, Olsen S, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pelizaeus M, Peng H, Peters K, Pettersson J, Ping J, Ping R, Poling R, Prasad V, Qi H, Qi H, Qi K, Qi M, Qi T, Qian S, Qian W, Qian Z, Qiao C, Qin L, Qin X, Qin X, Qin Z, Qiu J, Qu S, Rashid K, Ravindran K, Redmer C, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sang H, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan D, Shan W, Shan X, Shangguan J, Shao M, Shen C, Shen H, Shen P, Shen X, Shi H, Shi R, Shi X, Shi X, Song J, Song W, Song Y, Sosio S, Spataro S, Su K, Su P, Sui F, Sun G, Sun H, Sun J, Sun L, Sun S, Sun T, Sun W, Sun W, Sun X, Sun Y, Sun Y, Sun Y, Sun Z, Tan Y, Tan Y, Tang C, Tang G, Tang J, Teng J, Thoren V, Tian W, Tian Y, Uman I, Wang B, Wang C, Wang D, Wang H, Wang H, Wang K, Wang L, Wang M, Wang M, Wang M, Wang W, Wang W, Wang W, Wang X, Wang X, Wang X, Wang Y, Wang Y, Wang Y, Wang Y, Wang Y, Wang Y, Wang Z, Wang Z, Wang Z, Wang Z, Wei D, Weidner F, Wen S, White D, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu J, Wu L, Wu L, Wu X, Wu Z, Xia L, Xiao H, Xiao S, Xiao Z, Xie X, Xie Y, Xie Y, Xing T, Xu G, Xu Q, Xu W, Xu X, Xu Y, Yan F, Yan L, Yan W, Yan W, Yan X, Yang H, Yang H, Yang L, Yang S, Yang Y, Yang Y, Yang Z, Ye M, Ye M, Yin J, You Z, Yu B, Yu C, Yu G, Yu J, Yu T, Yuan C, Yuan L, Yuan X, Yuan Y, Yuan Z, Yue C, Yuncu A, Zafar A, Zeng X, Zeng Y, Zhang A, Zhang B, Zhang G, Zhang H, Zhang H, Zhang H, Zhang H, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang L, Zhang L, Zhang L, Zhang S, Zhang S, Zhang S, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Z, Zhang Z, Zhao G, Zhao J, Zhao J, Zhao J, Zhao L, Zhao L, Zhao M, Zhao Q, Zhao S, Zhao Y, Zhao Y, Zhao Z, Zhemchugov A, Zheng B, Zheng J, Zheng Y, Zheng Y, Zhong B, Zhong C, Zhou L, Zhou Q, Zhou X, Zhou X, Zhou X, Zhou X, Zhu A, Zhu J, Zhu K, Zhu K, Zhu S, Zhu T, Zhu W, Zhu W, Zhu Y, Zhu Z, Zou B, Zou J. Study of the decay
D+→K*(892)+KS0
in
D+→K+KS0π0. Int J Clin Exp Med 2021. [DOI: 10.1103/physrevd.104.012006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
83
|
Arendt C, De Leuw P, Haberl A, Kann G, Wolf T, Stephan C, Schuettfort G, Arcari L, Vasquez M, Albrecht M, Escher F, Vogl T, Zeiher A, Nagel E, Puntmann V. Outcomes of cardiovascular magnetic resonance imaging in people living with HIV. Eur Heart J Cardiovasc Imaging 2021. [DOI: 10.1093/ehjci/jeab090.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Funding Acknowledgements
Type of funding sources: None.
Background/Introduction
People living with human immunodeficiency virus (HIV, PLWH) are at increased risk of cardiovascular disease (CVD). HIV infection and accelerated traditional risk factors due to highly-active antiretroviral therapy (HAART) are proposed mechanisms for increased rate of heart failure (HF). The pathophysiological drivers of myocardial dysfunction and worse cardiovascular outcome in HIV remain poorly understood.
Purpose
To examine prognostic relationships of cardiac imaging measures with cardiovascular outcome in PLWH on HAART.
Methods
This is a prospective observational longitudinal study using cardiac magnetic resonance (CMR) imaging in consecutive PLHWH on long-term HAART who were screened for underlying CVD and followed up clinically for adjudicated adverse cardiovascular events (cardiovascular mortality, non-fatal acute coronary syndrome, an appropriate device discharge, or a documented HF hospitalization). Imaging protocol included routine assessment of cardiac volumes and function, scar by late gadolinium enhancement, myocardial perfusion and native T1 /T2 mapping. Time-to-event analysis was performed from the index CMR exam to the first single event per patient Systematic risk scores for CVD (Framingham risk score (FRS), Data Collection on Adverse effects of anti-HIV Drugs score, D:A:D and MAGGIC integer score) were calculated using original online calculators.
Results
156 participants (males 62%, 50 [42-57] years of age) were included. 24 events were observed (4 HF deaths, 1 sudden cardiac death, 2 non-fatal acute myocardial infarction, 1 appropriate device discharge and 16 HF hospitalizations) during a median follow-up of 13 [9-19] months. Patients with events had higher native T1 (ms, 1149 [1115-1163] ms vs. 1110 [1075-1138] ms), native T2 (ms, 40 [38-41] vs. 37 [36-39]), LV mass index (g/m², 65 [49-77] vs. 57 [49-64]) p < 0.05 for all). In multivariable analyses, native T1 was independently predictive of adverse events (ChiSq 15.9, p < 0.001, native T1 (10 ms) hazard ratio (95% confidence interval) 1.20 (1.08-1.33), p = 0.001), followed by a model that also included LV mass (ChiSq 17.1, p < 0.001). Traditional cardiovascular risk scores were not predictive of the adverse events.
Conclusions
Native myocardial T1 and LV mass by CMR, as opposed to traditional cardiovascular risk scores, predict cardiovascular outcome in PLWH, together reflecting the pathological myocardial remodeling of myocardial fibrosis and inflammation that potentially explain higher rates of HF in PLWH as compared to the non-infected population. These findings may inform personalized approaches to screening and early intervention to reduce the burden of HF.
Collapse
|
84
|
Ablikim M, Achasov M, Adlarson P, Ahmed S, Albrecht M, Aliberti R, Amoroso A, An M, An Q, Bai X, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere R, Cai H, Cai X, Calcaterra A, Cao G, Cao N, Cetin S, Chang J, Chang W, Chelkov G, Chen D, Chen G, Chen H, Chen M, Chen S, Chen X, Chen Y, Chen Z, Cheng W, Cibinetto G, Cossio F, Cui X, Dai H, Dai X, Dbeyssi A, de Boer R, Dedovich D, Deng Z, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong L, Dong M, Dong X, Du S, Fan Y, Fang J, Fang S, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng C, Feng J, Fritsch M, Fu C, Gao Y, Gao Y, Gao Y, Gao Y, Garzia I, Ge P, Geng C, Gersabeck E, Gilman A, Goetzen K, Gong L, Gong W, Gradl W, Greco M, Gu L, Gu M, Gu Y, Guan C, Guo A, Guo L, Guo R, Guo Y, Guskov A, Han T, Han W, Hao X, Harris F, He K, Heinsius F, Heinz C, Held T, Heng Y, Herold C, Himmelreich M, Holtmann T, Hou G, Hou Y, Hou Z, Hu H, Hu J, Hu T, Hu Y, Huang G, Huang L, Huang X, Huang Y, Huang Z, Hussain T, Hüsken N, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji Q, Ji X, Ji X, Ji Y, Jiang H, Jiang X, Jiao J, Jiao Z, Jin S, Jin Y, Jing M, Johansson T, Kalantar-Nayestanaki N, Kang X, Kappert R, Kavatsyuk M, Ke B, Keshk I, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu O, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kühn W, Lane J, Lange J, Larin P, Lavania A, Lavezzi L, Lei Z, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li C, Li D, Li F, Li G, Li H, Li H, Li H, Li H, Li J, Li J, Li J, Li K, Li L, Li L, Li P, Li S, Li W, Li W, Li X, Li X, Li X, Li Z, Liang H, Liang H, Liang H, Liang Y, Liang Y, Liao G, Liao L, Libby J, Lin C, Liu B, Liu C, Liu D, Liu F, Liu F, Liu F, Liu H, Liu H, Liu H, Liu H, Liu J, Liu J, Liu J, Liu K, Liu K, Liu L, Liu M, Liu P, Liu Q, Liu Q, Liu S, Liu S, Liu T, Liu W, Liu X, Liu Y, Liu Y, Liu Z, Liu Z, Lou X, Lu F, Lu H, Lu J, Lu J, Lu X, Lu Y, Lu Y, Luo C, Luo M, Luo P, Luo T, Luo X, Lyu X, Ma F, Ma H, Ma L, Ma M, Ma Q, Ma R, Ma R, Ma X, Ma X, Maas F, Maggiora M, Maldaner S, Malde S, Malik Q, Mangoni A, Mao Y, Mao Z, Marcello S, Meng Z, Messchendorp J, Mezzadri G, Min T, Mitchell R, Mo X, Mo Y, Muchnoi N, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev I, Ning Z, Nisar S, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pathak A, Patteri P, Pelizaeus M, Peng H, Peters K, Pettersson J, Ping J, Ping R, Pogodin S, Poling R, Prasad V, Qi H, Qi H, Qi K, Qi M, Qi T, Qian S, Qian W, Qian Z, Qiao C, Qin L, Qin X, Qin X, Qin Z, Qiu J, Qu S, Rashid K, Ravindran K, Redmer C, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sang H, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan D, Shan W, Shan X, Shangguan J, Shao M, Shen C, Shen H, Shen P, Shen X, Shi H, Shi R, Shi X, Shi X, Song J, Song W, Song Y, Sosio S, Spataro S, Su K, Su P, Sui F, Sun G, Sun H, Sun J, Sun L, Sun S, Sun T, Sun W, Sun W, Sun X, Sun Y, Sun Y, Sun Y, Sun Z, Tan Y, Tan Y, Tang C, Tang G, Tang J, Teng J, Thoren V, Tian W, Tian Y, Uman I, Wang B, Wang C, Wang D, Wang H, Wang H, Wang K, Wang L, Wang M, Wang M, Wang M, Wang W, Wang W, Wang W, Wang X, Wang X, Wang X, Wang Y, Wang Y, Wang Y, Wang Y, Wang Y, Wang Y, Wang Z, Wang Z, Wang Z, Wang Z, Wei D, Weidner F, Wen S, White D, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu J, Wu L, Wu L, Wu X, Wu Z, Xia L, Xiao H, Xiao S, Xiao Z, Xie X, Xie Y, Xie Y, Xing T, Xu G, Xu Q, Xu W, Xu X, Xu Y, Yan F, Yan L, Yan W, Yan W, Yan X, Yang H, Yang H, Yang L, Yang S, Yang Y, Yang Y, Yang Z, Ye M, Ye M, Yin J, You Z, Yu B, Yu C, Yu G, Yu J, Yu T, Yuan C, Yuan L, Yuan X, Yuan Y, Yuan Z, Yue C, Zafar A, Zeng XZ, Zeng Y, Zhang A, Zhang B, Zhang G, Zhang H, Zhang H, Zhang H, Zhang H, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang L, Zhang L, Zhang L, Zhang S, Zhang S, Zhang S, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Z, Zhang Z, Zhao G, Zhao J, Zhao J, Zhao J, Zhao L, Zhao L, Zhao M, Zhao Q, Zhao S, Zhao Y, Zhao Y, Zhao Z, Zhemchugov A, Zheng B, Zheng J, Zheng Y, Zheng Y, Zhong B, Zhong C, Zhou L, Zhou Q, Zhou X, Zhou X, Zhou X, Zhou X, Zhu A, Zhu J, Zhu K, Zhu K, Zhu S, Zhu T, Zhu W, Zhu W, Zhu Y, Zhu Z, Zou B, Zou J. Measurement of the absolute branching fraction of inclusive semielectronic
Ds+
decays. Int J Clin Exp Med 2021. [DOI: 10.1103/physrevd.104.012003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
85
|
Alshakova ID, Albrecht M. Cascade Reductive Friedel–Crafts Alkylation Catalyzed by Robust Iridium(III) Hydride Complexes Containing a Protic Triazolylidene Ligand. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
86
|
Li X, Römer G, Kerindongo RP, Hermanides J, Albrecht M, Hollmann MW, Zuurbier CJ, Preckel B, Weber NC. Sodium Glucose Co-Transporter 2 Inhibitors Ameliorate Endothelium Barrier Dysfunction Induced by Cyclic Stretch through Inhibition of Reactive Oxygen Species. Int J Mol Sci 2021; 22:ijms22116044. [PMID: 34205045 PMCID: PMC8199893 DOI: 10.3390/ijms22116044] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 02/08/2023] Open
Abstract
SGLT-2i's exert direct anti-inflammatory and anti-oxidative effects on resting endothelial cells. However, endothelial cells are constantly exposed to mechanical forces such as cyclic stretch. Enhanced stretch increases the production of reactive oxygen species (ROS) and thereby impairs endothelial barrier function. We hypothesized that the SGLT-2i's empagliflozin (EMPA), dapagliflozin (DAPA) and canagliflozin (CANA) exert an anti-oxidative effect and alleviate cyclic stretch-induced endothelial permeability in human coronary artery endothelial cells (HCAECs). HCAECs were pre-incubated with one of the SGLT-2i's (1 µM EMPA, 1 µM DAPA and 3 µM CANA) for 2 h, followed by 10% stretch for 24 h. HCAECs exposed to 5% stretch were considered as control. Involvement of ROS was measured using N-acetyl-l-cysteine (NAC). The sodium-hydrogen exchanger 1 (NHE1) and NADPH oxidases (NOXs) were inhibited by cariporide, or GKT136901, respectively. Cell permeability and ROS were investigated by fluorescence intensity imaging. Cell permeability and ROS production were increased by 10% stretch; EMPA, DAPA and CANA decreased this effect significantly. Cariporide and GKT136901 inhibited stretch-induced ROS production but neither of them further reduced ROS production when combined with EMPA. SGLT-2i's improve the barrier dysfunction of HCAECs under enhanced stretch and this effect might be mediated through scavenging of ROS. Anti-oxidative effect of SGLT-2i's might be partially mediated by inhibition of NHE1 and NOXs.
Collapse
|
87
|
Müller A, Albrecht M. Zur Berechnung der Spinning Drop Methode. TENSIDE SURFACT DET 2021. [DOI: 10.1515/tsd-1990-270613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
88
|
Hassan M, Laureti S, Rinaldi C, Fagiani F, Varotto S, Barucca G, Schmidt NY, Varvaro G, Albrecht M. Perpendicularly magnetized Co/Pd-based magneto-resistive heterostructures on flexible substrates. NANOSCALE ADVANCES 2021; 3:3076-3084. [PMID: 36133649 PMCID: PMC9418425 DOI: 10.1039/d1na00110h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/08/2021] [Indexed: 06/14/2023]
Abstract
Flexible magneto-resistive heterostructures have received a great deal of attention over the past few years as they allow for new product paradigms that are not possible with conventional rigid substrates. While the progress and development of systems with longitudinal magnetic anisotropy on non-planar substrates has been remarkable, flexible magneto-resistive heterostructures with perpendicular magnetic anisotropy (PMA) have never been studied despite the possibility to obtain additional functionality and improved performance. To fill this gap, flexible PMA Co/Pd-based giant magneto-resistive (GMR) spin-valve stacks were prepared by using an innovative transfer-and-bonding strategy exploiting the low adhesion of a gold underlayer to SiO x /Si(100) substrates. The approach allows overcoming the limits of the direct deposition on commonly used polymer substrates, whose high surface roughness and low melting temperature could hinder the growth of complex heterostructures with perpendicular magnetic anisotropy. The obtained PMA flexible spin-valves show a sizeable GMR ratio (∼1.5%), which is not affected by the transfer process, and a high robustness against bending as indicated by the slight change of the magneto-resistive properties upon bending, thus allowing for their integration on curved surfaces and the development of a novel class of advanced devices based on flexible magneto-resistive structures with perpendicular magnetic anisotropy. Besides endowing the family of flexible electronics with PMA magneto-resistive heterostructures, the exploitation of the results might apply to high temperature growth processes and to the fabrication of other functional and flexible multilayer materials engineered at the nanoscale.
Collapse
|
89
|
Albrecht M, de Jonge RCJ, Nadkarni VM, de Hoog M, Hunfeld M, Kammeraad JAE, Moors XRJ, van Zellem L, Buysse CMP. Association between shockable rhythms and long-term outcome after pediatric out-of-hospital cardiac arrest in Rotterdam, the Netherlands: An 18-year observational study. Resuscitation 2021; 166:110-120. [PMID: 34082030 DOI: 10.1016/j.resuscitation.2021.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Shockable rhythm following pediatric out-of-hospital cardiac arrest (pOHCA) is consistently associated with hospital and short-term survival. Little is known about the relationship between shockable rhythm and long-term outcomes (>1 year) after pOHCA. The aim was to investigate the association between first documented rhythm and long-term outcomes in a pOHCA cohort over 18 years. METHODS All children aged 1 day-18 years who experienced non-traumatic pOHCA between 2002-2019 and were subsequently admitted to the emergency department (ED) or pediatric intensive care unit (PICU) of Erasmus MC-Sophia Children's Hospital were included. Data was abstracted retrospectively from patient files, (ground) ambulance and Helicopter Emergency Medical Service (HEMS) records, and follow-up clinics. Long-term outcome was determined using a Pediatric Cerebral Performance Category (PCPC) score at the longest available follow-up interval through august 2020. The primary outcome measure was survival with favorable neurologic outcome, defined as PCPC 1-2 or no difference between pre- and post-arrest PCPC. The association between first documented rhythm and the primary outcome was calculated in a multivariable regression model. RESULTS 369 children were admitted, nine children were lost to follow-up. Median age at arrest was age 3.4 (IQR 0.8-9.9) years, 63% were male and 14% had a shockable rhythm (66% non-shockable, 20% unknown or return of spontaneous circulation (ROSC) before emergency medical service (EMS) arrival). In adolescents (aged 12-18 years), 39% had shockable rhythm. 142 (39%) of children survived to hospital discharge. On median follow-up interval of 25 months (IQR 5.1-49.6), 115/142 (81%) of hospital survivors had favorable neurologic outcome. In multivariable analysis, shockable rhythm was associated with survival with favorable long-term neurologic outcome (OR 8.9 [95%CI 3.1-25.9]). CONCLUSION In children with pOHCA admitted to ED or PICU shockable rhythm had significantly higher odds of survival with long-term favorable neurologic outcome compared to non-shockable rhythm. Survival to hospital discharge after pOHCA was 39% over the 18-year study period. Of survivors to discharge, 81% had favorable long-term (median 25 months, IQR 5.1-49.6) neurologic outcome. Efforts for improving outcome of pOHCA should focus on early recognition and treatment of shockable pOHCA at scene.
Collapse
|
90
|
Ablikim M, Achasov M, Adlarson P, Ahmed S, Albrecht M, Aliberti R, Amoroso A, An M, An Q, Bai X, Bai Y, Bakina O, Ferroli RB, Balossino I, Ban Y, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere R, Cai H, Cai X, Calcaterra A, Cao G, Cao N, Cetin S, Chang J, Chang W, Chelkov G, Chen D, Chen G, Chen H, Chen M, Chen S, Chen X, Chen Y, Chen Z, Cheng W, Cibinetto G, Cossio F, Cui X, Dai H, Dai X, Dbeyssi A, de Boer R, Dedovich D, Deng Z, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong L, Dong M, Dong X, Du S, Fan Y, Fang J, Fang S, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng C, Feng J, Fritsch M, Fu C, Gao Y, Gao Y, Gao Y, Gao Y, Garzia I, Ge P, Geng C, Gersabeck E, Gilman A, Goetzen K, Gong L, Gong W, Gradl W, Greco M, Gu L, Gu M, Gu S, Gu Y, Guan C, Guo A, Guo L, Guo R, Guo Y, Guskov A, Han T, Han W, Hao X, Harris F, He K, Heinsius F, Heinz C, Held T, Heng Y, Herold C, Himmelreich M, Holtmann T, Hou G, Hou Y, Hou Z, Hu H, Hu J, Hu T, Hu Y, Huang G, Huang L, Huang X, Huang Y, Huang Z, Hussain T, Hüsken N, Andersson WI, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji Q, Ji X, Ji X, Ji Y, Jiang H, Jiang X, Jiao J, Jiao Z, Jin S, Jin Y, Jing M, Johansson T, Kalantar-Nayestanaki N, Kang X, Kappert R, Kavatsyuk M, Ke B, Keshk I, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu O, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kühn W, Lane J, Lange J, Larin P, Lavania A, Lavezzi L, Lei Z, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li C, Li D, Li F, Li G, Li H, Li H, Li H, Li H, Li J, Li J, Li J, Li K, Li L, Li L, Li P, Li S, Li W, Li W, Li X, Li X, Li X, Li Z, Liang H, Liang H, Liang H, Liang Y, Liang Y, Liao G, Liao L, Libby J, Lin C, Liu B, Liu C, Liu D, Liu F, Liu F, Liu F, Liu H, Liu H, Liu H, Liu H, Liu J, Liu J, Liu J, Liu K, Liu K, Liu L, Liu M, Liu P, Liu Q, Liu Q, Liu S, Liu S, Liu T, Liu W, Liu X, Liu Y, Liu Y, Liu Z, Liu Z, Lou X, Lu F, Lu F, Lu H, Lu J, Lu J, Lu X, Lu Y, Lu Y, Luo C, Luo M, Luo P, Luo T, Luo X, Lusso S, Lyu X, Ma F, Ma H, Ma L, Ma M, Ma Q, Ma R, Ma R, Ma X, Ma X, Maas F, Maggiora M, Maldaner S, Malde S, Malik Q, Mangoni A, Mao Y, Mao Z, Marcello S, Meng Z, Messchendorp J, Mezzadri G, Min T, Mitchell R, Mo X, Mo Y, Muchnoi N, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev I, Ning Z, Nisar S, Olsen S, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pelizaeus M, Peng H, Peters K, Pettersson J, Ping J, Ping R, Poling R, Prasad V, Qi H, Qi H, Qi K, Qi M, Qi T, Qi T, Qian S, Qian W, Qian Z, Qiao C, Qin L, Qin X, Qin X, Qin Z, Qiu J, Qu S, Rashid K, Ravindran K, Redmer C, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sang H, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan D, Shan W, Shan X, Shangguan J, Shao M, Shen C, Shen H, Shen P, Shen X, Shi H, Shi R, Shi X, Shi X, Song J, Song W, Song Y, Sosio S, Spataro S, Su K, Su P, Sui F, Sun G, Sun H, Sun J, Sun L, Sun S, Sun T, Sun W, Sun W, Sun X, Sun Y, Sun Y, Sun Y, Sun Z, Tan Y, Tan Y, Tang C, Tang G, Tang J, Teng J, Thoren V, Tian W, Tian Y, Uman I, Wang B, Wang C, Wang D, Wang H, Wang H, Wang K, Wang L, Wang M, Wang M, Wang M, Wang W, Wang W, Wang W, Wang X, Wang X, Wang X, Wang Y, Wang Y, Wang Y, Wang Y, Wang Y, Wang Y, Wang Z, Wang Z, Wang Z, Wang Z, Wei D, Weidenkaff P, Weidner F, Wen S, White D, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu J, Wu L, Wu L, Wu X, Wu Z, Xia L, Xiao H, Xiao S, Xiao Z, Xie X, Xie Y, Xie Y, Xing T, Xu G, Xu Q, Xu W, Xu X, Xu Y, Yan F, Yan L, Yan W, Yan W, Yan X, Yang H, Yang H, Yang L, Yang S, Yang Y, Yang Y, Yang Z, Ye M, Ye M, Yin J, You Z, Yu B, Yu C, Yu G, Yu J, Yu T, Yuan C, Yuan L, Yuan X, Yuan Y, Yuan Z, Yue C, Zafar A, Zeng XZ, Zeng Y, Zhang A, Zhang B, Zhang G, Zhang H, Zhang H, Zhang H, Zhang H, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang L, Zhang L, Zhang L, Zhang S, Zhang S, Zhang S, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Z, Zhang Z, Zhao G, Zhao J, Zhao J, Zhao J, Zhao L, Zhao L, Zhao M, Zhao Q, Zhao S, Zhao Y, Zhao Y, Zhao Z, Zhemchugov A, Zheng B, Zheng J, Zheng Y, Zheng Y, Zhong B, Zhong C, Zhou L, Zhou Q, Zhou X, Zhou X, Zhou X, Zhou X, Zhu A, Zhu J, Zhu K, Zhu K, Zhu S, Zhu T, Zhu W, Zhu W, Zhu Y, Zhu Z, Zou B, Zou J. Search for the decay
Ds+→a0(980)0e+νe. Int J Clin Exp Med 2021. [DOI: 10.1103/physrevd.103.092004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
91
|
Ó Máille GM, Dall'Anese A, Grossenbacher P, Montini T, Milani B, Albrecht M. Modulation of N^N'-bidentate chelating pyridyl-pyridylidene amide ligands offers mechanistic insights into Pd-catalysed ethylene/methyl acrylate copolymerisation. Dalton Trans 2021; 50:6133-6145. [PMID: 33973584 DOI: 10.1039/d1dt00389e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient copolymerisation of functionalised olefins with alkenes continues to offer considerable challenges to catalyst design. Based on recent work using palladium complexes containing a dissymmetric N^N'-bidentate pyridyl-PYA ligand (PYA = pyridylidene amide), which showed a high propensity to insert methyl acrylate, we have here modified this catalyst structure by inserting shielding groups either into the pyridyl fragment, or the PYA unit, or both to avoid fast β-hydrogen elimination. While a phenyl substituent at the pyridyl side impedes catalytic activity completely and leads to an off-cycle cyclometallation, the introduction of an ortho-methyl group on the PYA side of the N^N'-ligand was more prolific and doubled the catalytic productivity. Mechanistic investigations with this ligand system indicated the stabilisation of a 4-membered metallacycle intermediate at room temperature, which has previously been postulated and detected only at 173 K, but never observed at ambient temperature so far. This intermediate was characterised by solution NMR spectroscopy and rationalises, in part, the formation of α,β-unsaturated esters under catalytic conditions, thus providing useful principles for optimised catalyst design.
Collapse
|
92
|
Nylund PVS, Ségaud NC, Albrecht M. Highly Modular Piano-Stool N-Heterocyclic Carbene Iron Complexes: Impact of Ligand Variation on Hydrosilylation Activity. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
93
|
Friães S, Realista S, Gomes CSB, Martinho PN, Veiros LF, Albrecht M, Royo B. Manganese complexes with chelating and bridging di-triazolylidene ligands: synthesis and reactivity. Dalton Trans 2021; 50:5911-5920. [PMID: 33949500 DOI: 10.1039/d1dt00444a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
New manganese complexes bearing di-triazolylidene (di-trz) ligands are described. Depending on the wingtip substituents of the triazolylidene ligand and the synthetic procedure, two different ligand coordination modes were observed, i.e, bridging and chelating. A series of Mn(i) complexes of the general type fac-[Mn(di-trzR)(CO)3Br] (R = Me, Et, Mes) with a chelating di-trz ligand were prepared via Ag-transmetalation. In contrast, the in situ deprotonation of the triazolium salts with KOBut yielded the bimetallic Mn(0) complexes [Mn2(CO)8(μ-di-trzR)] with a bridging di-trz ligand when short alkyl chains (Me, Et, i-Pr) are present as the N1 substituents of the triazolylidene ligand. The molecular structures of monometallic and bimetallic complexes were determined by X-ray diffraction studies. In addition, the cationic fac-[Mn(di-trzEt)(CO)2(PPh3)2]Br complex, a rare example of a dicarbonyl Mn(i) N-heterocyclic carbene, was obtained when fac-[Mn(di-trzEt)(CO)3Br] was irradiated with visible light in the presence of PPh3. The crystal structure revealed a slightly distorted octahedral geometry around the Mn(i) centre, with the chelating di-triazolylidene ligand situated in trans position to the two CO ligands in the equatorial plane, and the two phosphine ligands occupying the axial positions. Cyclic voltammetry studies show reversible redox processes for the monometallic Mn(i) complexes, and a quasi-reversible EC mechanism for the oxidation of the bimetallic complexes. Infrared spectroelectrochemical studies along with DFT calculations for fac-[Mn(di-trzEt)(CO)3Br] suggest that the observed two consecutive reductions both occur at the metal centre.
Collapse
|
94
|
Prelle LR, Albrecht M, Karsten U, Damer P, Giese T, Jähns J, Müller S, Schulz L, Viertel L, Glaser K. Ecophysiological and Cell Biological Traits of Benthic Diatoms From Coastal Wetlands of the Southern Baltic Sea. Front Microbiol 2021; 12:642811. [PMID: 33912148 PMCID: PMC8072133 DOI: 10.3389/fmicb.2021.642811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
The German Baltic Sea coastline is characterized by sea-land transitions zones, specifically coastal peatlands. Such transition zones exhibit highly fluctuating environmental parameters and dynamic gradients that affect physiological processes of inhabiting organisms such as microphytobenthic communities. In the present study four representative and abundant benthic diatom strains [Melosira nummuloides, Nitzschia filiformis, Planothidium sp. (st. 1) and Planothidium sp. (st.2)] were isolated from a Baltic Sea beach and three peatlands that are irregularly affected by Baltic Sea water intrusion. Ecophysiological and cell biological traits of the strains were investigated for the first time as function of light, temperature and salinity. The four strains exhibited euryhaline growth over a range of 1–39 SA, surpassing in situ salinity of the respective brackish habitats. Furthermore, they showed eurythermal growth over a temperature range from 5 to 30°C with an optimum temperature between 15 and 20°C. Growth rates did not exhibit any differences between the peatland and Baltic Sea strains. The photosynthetic temperature optimum of the peatland diatom isolates, however, was much higher (20–35°C) compared to the Baltic Sea one (10°C). All strains exhibited light saturation points ranging between 29.8 and 72.6 μmol photons m–2 s–1. The lipid content did not change in response to the tested abiotic factors. All data point to wide physiological tolerances in these benthic diatoms along the respective sea-land transitions zones. This study could serve as a baseline for future studies on microphytobenthic communities and their key functions, like primary production, under fluctuating environmental stressors along terrestrial-marine gradients.
Collapse
|
95
|
Bertini S, Rahaman M, Dutta A, Schollhammer P, Rudnev AV, Gloaguen F, Broekmann P, Albrecht M. Oxo-functionalised mesoionic NHC nickel complexes for selective electrocatalytic reduction of CO 2 to formate. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:3365-3373. [PMID: 34093085 PMCID: PMC8111538 DOI: 10.1039/d1gc00388g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Strategies for the conversion of CO2 to valuable products are paramount for reducing the environmental risks associated with high levels of this greenhouse gas and offer unique opportunities for transforming waste into useful products. While catalysts based on nickel as an Earth-abundant metal for the sustainable reduction of CO2 are known, the vast majority produce predominantly CO as a product. Here, efficient and selective CO2 reduction to formate as a synthetically valuable product has been accomplished with novel nickel complexes containing a tailored C,O-bidentate chelating mesoionic carbene ligand. These nickel(ii) complexes are easily accessible and show excellent catalytic activity for electrochemical H+ reduction to H2 (from HOAc in MeCN), and CO2 reduction (from CO2-saturated MeOH/MeCN solution) with high faradaic efficiency to yield formate exclusively as an industrially and synthetically valuable product from CO2. The most active catalyst precursor features the 4,6-di-tert-butyl substituted phenolate triazolylidene ligand, tolerates different proton donors including water, and reaches an unprecedented faradaic efficiency of 83% for formate production, constituting the most active and selective Ni-based system known to date for converting CO2 into formate as an important commodity chemical.
Collapse
|
96
|
Baki A, Stöver J, Schulz T, Markurt T, Amari H, Richter C, Martin J, Irmscher K, Albrecht M, Schwarzkopf J. Influence of Sr deficiency on structural and electrical properties of SrTiO 3 thin films grown by metal-organic vapor phase epitaxy. Sci Rep 2021; 11:7497. [PMID: 33820911 PMCID: PMC8021553 DOI: 10.1038/s41598-021-87007-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/23/2021] [Indexed: 02/01/2023] Open
Abstract
Homoepitaxial growth of SrTiO3 thin films on 0.5 wt% niobium doped SrTiO3 (100) substrates with high structural perfection was developed using liquid-delivery spin metal-organic vapor phase epitaxy (MOVPE). Exploiting the advantage of adjusting the partial pressures of the individual constituents independently, we tuned the Sr/Ti ratio of the gas phase for realizing, stoichiometric, as well as Sr deficient layers. Quantitative energy dispersive X-ray spectroscopy in a scanning transmission electron microscope confirm Sr deficiency of up to 20% in nominally off-stoichiometrically grown films. Our MOVPE process allows to grow such layers in phase pure state and without extended defect formation. Indications for oxygen deficiency could not be identified. Sr deficient layers exhibit an increased permittivity of ɛr = 202 and a larger vertical lattice parameter. Current-voltage characteristics (IVCs) of metal-oxide-semiconductor (Pt/SrTiO3/SrTiO3:Nb) structures reveal that Sr deficient SrTiO3 films show an intrinsic resistive switching with on-off ratios of three orders of magnitude at RT and seven orders of magnitude at 10 K. There is strong evidence that a large deviation from stoichiometry pronounces the resistive switching behavior. IVCs conducted at 10 K indicate a defect-based mechanism instead of mass transport by ion diffusion. This is supported by in-situ STEM investigations that show filaments to form at significant higher voltages than those were resistive switching is observed in our samples.
Collapse
|
97
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Aliberti R, Amoroso A, An Q, Bai XH, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Chen ZJ, Cheng WS, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai XC, Dbeyssi A, de Boer RB, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dong X, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Y, Gao Y, Gao Y, Gao YG, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guo YP, Guskov A, Han TT, Hao XQ, Harris FA, He KL, Heinsius FH, Heinz CH, Held T, Heng YK, Herold C, Himmelreich M, Holtmann T, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang YP, Huang Z, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HB, Jiang XS, Jiang XY, Jiang Y, Jiao JB, Jiao Z, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavezzi L, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li H, Li HB, Li HJ, Li JL, Li JQ, Li K, Li LK, Li L, Li PL, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao LZ, Libby J, Lin CX, Liu BJ, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu MH, Liu Q, Liu SB, Liu S, Liu T, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XN, Ma XX, Ma XY, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Mo YJ, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi H, Qi HR, Qi KH, Qi M, Qi TY, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin LQ, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sang HS, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan DC, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Shi BA, Shi HC, Shi RS, Shi X, Shi XD, Song WM, Song YX, Sosio S, Spataro S, Su KX, Sui FF, Sun GX, Sun HK, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun X, Sun YJ, Sun YK, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Teng JX, Thoren V, Uman I, Wang CW, Wang DY, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang Z, Wang ZY, Wang Z, Wang Z, Wei DH, Weidenkaff P, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao YJ, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xu GF, Xu JJ, Xu QJ, Xu W, Xu XP, Xu YC, Yan F, Yan L, Yan L, Yan WB, Yan WC, Yan X, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang SL, Yang YH, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan L, Yuan W, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang G, Zhang H, Zhang HH, Zhang HY, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang L, Zhang S, Zhang SF, Zhang S, Zhang XD, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu TJ, Zhu WJ, Zhu XL, Zhu YC, Zhu ZA, Zou BS, Zou JH. Observation of a Near-Threshold Structure in the K^{+} Recoil-Mass Spectra in e^{+}e^{-}→K^{+}(D_{s}^{-}D^{*0}+D_{s}^{*-}D^{0}). PHYSICAL REVIEW LETTERS 2021; 126:102001. [PMID: 33784133 DOI: 10.1103/physrevlett.126.102001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
We report a study of the processes of e^{+}e^{-}→K^{+}D_{s}^{-}D^{*0} and K^{+}D_{s}^{*-}D^{0} based on e^{+}e^{-} annihilation samples collected with the BESIII detector operating at BEPCII at five center-of-mass energies ranging from 4.628 to 4.698 GeV with a total integrated luminosity of 3.7 fb^{-1}. An excess of events over the known contributions of the conventional charmed mesons is observed near the D_{s}^{-}D^{*0} and D_{s}^{*-}D^{0} mass thresholds in the K^{+} recoil-mass spectrum for events collected at sqrt[s]=4.681 GeV. The structure matches a mass-dependent-width Breit-Wigner line shape, whose pole mass and width are determined as (3982.5_{-2.6}^{+1.8}±2.1) MeV/c^{2} and (12.8_{-4.4}^{+5.3}±3.0) MeV, respectively. The first uncertainties are statistical and the second are systematic. The significance of the resonance hypothesis is estimated to be 5.3 σ over the contributions only from the conventional charmed mesons. This is the first candidate for a charged hidden-charm tetraquark with strangeness, decaying into D_{s}^{-}D^{*0} and D_{s}^{*-}D^{0}. However, the properties of the excess need further exploration with more statistics.
Collapse
|
98
|
Broch O, Hummitzsch L, Renner J, Meybohm P, Albrecht M, Rosenthal P, Rosenthal AC, Steinfath M, Bein B, Gruenewald M. Feasibility and beneficial effects of an early goal directed therapy after cardiac arrest: evaluation by conductance method. Sci Rep 2021; 11:5326. [PMID: 33674623 PMCID: PMC7935910 DOI: 10.1038/s41598-021-83925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/09/2021] [Indexed: 11/09/2022] Open
Abstract
Although beneficial effects of an early goal directed therapy (EGDT) after cardiac arrest and successful return of spontaneous circulation (ROSC) have been described, clinical implementation in this period seems rather difficult. The aim of the present study was to investigate the feasibility and the impact of EGDT on myocardial damage and function after cardiac resuscitation. A translational pig model which has been carefully adapted to the clinical setting was employed. After 8 min of cardiac arrest and successful ROSC, pigs were randomized to receive either EGDT (EGDT group) or therapy by random computer-controlled hemodynamic thresholds (noEGDT group). Therapeutic algorithms included blood gas analysis, conductance catheter method, thermodilution cardiac output and transesophageal echocardiography. Twenty-one animals achieved successful ROSC of which 13 pigs survived the whole experimental period and could be included into final analysis. cTnT and LDH concentrations were lower in the EGDT group without reaching statistical significance. Comparison of lactate concentrations between 1 and 8 h after ROSC exhibited a decrease to nearly baseline levels within the EGDT group (1 h vs 8 h: 7.9 vs. 1.7 mmol/l, P < 0.01), while in the noEGDT group lactate concentrations did not significantly decrease. The EGDT group revealed a higher initial need for fluids (P < 0.05) and less epinephrine administration (P < 0.05) post ROSC. Conductance method determined significant higher values for preload recruitable stroke work, ejection fraction and maximum rate of pressure change in the ventricle for the EGDT group. EGDT after cardiac arrest is associated with a significant decrease of lactate levels to nearly baseline and is able to improve systolic myocardial function. Although the results of our study suggest that implementation of an EGDT algorithm for post cardiac arrest care seems feasible, the impact and implementation of EGDT algorithms after cardiac arrest need to be further investigated.
Collapse
|
99
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Amoroso A, An Q, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng WS, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, de Boer RB, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao XL, Gao Y, Gao Y, Gao YG, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guo YP, Guskov A, Han S, Han TT, Han TZ, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Holtmann T, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang Z, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HB, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavezzi L, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li JL, Li JQ, Li K, Li LK, Li L, Li PL, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao LZ, Libby J, Lin CX, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu Q, Liu SB, Liu S, Liu T, Liu X, Liu YB, Liu ZA, Liu ZQ, Long YF, Lou XC, Lu FX, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Mo YJ, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Shan DC, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song QQ, Song WM, Song YX, Sosio S, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun YJ, Sun YK, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang Z, Wang ZY, Wang Z, Wang Z, Wei DH, Weidenkaff P, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao YJ, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xiong XA, Xu GF, Xu JJ, Xu QJ, Xu W, Xu XP, Yan L, Yan L, Yan WB, Yan WC, Yan X, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan W, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang G, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang L, Zhang L, Zhang S, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YXZ, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu ZA, Zou BS, Zou JH. Model-Independent Determination of the Spin of the Ω^{-} and Its Polarization Alignment in ψ(3686)→Ω^{-}Ω[over ¯]^{+}. PHYSICAL REVIEW LETTERS 2021; 126:092002. [PMID: 33750166 DOI: 10.1103/physrevlett.126.092002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/19/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
We present an analysis of the process ψ(3686)→Ω^{-}Ω[over ¯]^{+} (Ω^{-}→K^{-}Λ, Ω[over ¯]^{+}→K^{+}Λ[over ¯], Λ→pπ^{-}, Λ[over ¯]→p[over ¯]π^{+}) based on a dataset of 448×10^{6} ψ(3686) decays collected with the BESIII detector at the BEPCII electron-positron collider. The helicity amplitudes for the process ψ(3686)→Ω^{-}Ω[over ¯]^{+} and the decay parameters of the subsequent decay Ω^{-}→K^{-}Λ (Ω[over ¯]^{+}→K^{+}Λ[over ¯]) are measured for the first time by a fit to the angular distribution of the complete decay chain, and the spin of the Ω^{-} is determined to be 3/2 for the first time since its discovery more than 50 years ago.
Collapse
|
100
|
Berndt R, Albrecht M, Rusch R. Strategies to Overcome the Barrier of Ischemic Microenvironment in Cell Therapy of Cardiovascular Disease. Int J Mol Sci 2021; 22:ijms22052312. [PMID: 33669136 PMCID: PMC7956787 DOI: 10.3390/ijms22052312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
The transplantation of various immune cell types are promising approaches for the treatment of ischemic cardiovascular disease including myocardial infarction (MI) and peripheral arterial disease (PAD). Major limitation of these so-called Advanced Therapy Medicinal Products (ATMPs) is the ischemic microenvironment affecting cell homeostasis and limiting the demanded effect of the transplanted cell products. Accordingly, different clinical and experimental strategies have been evolved to overcome these obstacles. Here, we give a short review of the different experimental and clinical strategies to solve these issues due to ischemic cardiovascular disease.
Collapse
|