76
|
Lu Y, Wu Y, Feng X, Shen R, Wang JH, Fallahi M, Li W, Yang C, Hankey W, Zhao W, Ganju RK, Li MO, Cleveland JL, Zou X. CDK4 deficiency promotes genomic instability and enhances Myc-driven lymphomagenesis. J Clin Invest 2014; 124:1672-84. [PMID: 24614102 DOI: 10.1172/jci63139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 01/10/2014] [Indexed: 12/13/2022] Open
Abstract
The G1 kinase CDK4 is amplified or overexpressed in some human tumors and promotes tumorigenesis by inhibiting known tumor suppressors. Here, we report that CDK4 deficiency markedly accelerated lymphoma development in the Eμ-Myc transgenic mouse model of B lymphoma and that silencing or loss of CDK4 augmented the tumorigenic potential of Myc-driven mouse and human B cell lymphoma in transplant models. Accelerated disease in CDK4-deficient Eμ-Myc transgenic mice was associated with rampant genomic instability that was provoked by dysregulation of a FOXO1/RAG1/RAG2 pathway. Specifically, CDK4 phosphorylated and inactivated FOXO1, which prevented FOXO1-dependent induction of Rag1 and Rag2 transcription. CDK4-deficient Eμ-Myc B cells had high levels of the active form of FOXO1 and elevated RAG1 and RAG2. Furthermore, overexpression of RAG1 and RAG2 accelerated lymphoma development in a transplant model, with RAG1/2-expressing tumors exhibiting hallmarks of genomic instability. Evaluation of human tumor samples revealed that CDK4 expression was markedly suppressed, while FOXO1 expression was elevated, in several subtypes of human non-Hodgkin B cell lymphoma. Collectively, these findings establish a context-specific tumor suppressor function for CDK4 that prevents genomic instability, which contributes to B cell lymphoma. Furthermore, our data suggest that targeting CDK4 may increase the risk for the development and/or progression of lymphoma.
Collapse
|
77
|
Li MO, Flavell RA. TGF-β, T-cell tolerance and immunotherapy of autoimmune diseases and cancer. Expert Rev Clin Immunol 2014; 2:257-65. [DOI: 10.1586/1744666x.2.2.257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
78
|
Kim MV, Ouyang W, Liao W, Zhang MQ, Li MO. Murine in vivo CD8 + T Cell Killing Assay. Bio Protoc 2014; 4:e1172. [PMID: 29170744 DOI: 10.21769/bioprotoc.1172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Antigen-specific killing ability of effector CD8+ T cells is critical for protective immunity against infection. Here, we describe in vivo cytotoxic T cell assay to examine effector function of antigen-specific CD8+ T cells. Mice infected with Listeria monocytogenes (L. monocytogenes) expressing chicken ovalbumin as a model antigen mount ovalbumin-specific CD8+ T cell responses. Effector CD8+ T cell function in vivo is determined by mixed transfer of OVA peptide-pulsed target cells with control target cells into the previously immunized mice. Difference in CFSE expression levels clearly marks two distinct populations: Antigen-pulsed target cells-CFSElow vs. unpulsed target cells-CFSEhi. The frequencies between antigen-pulsed target cells and control target cells are used as readouts of antigen-specific killing.
Collapse
|
79
|
Abstract
A fundamental aspect of the adaptive immune system is the generation and maintenance of a diverse and self-tolerant T cell repertoire. Through its regulation of T cell development, homeostasis, tolerance, and differentiation, the highly evolutionarily conserved cytokine TGF-β critically supports a functional T cell pool. The pleiotropic nature of this regulation is likely due to the elaborate control of TGF-β production and activation in the immune system, and the intricacy of TGF-β signaling pathways. In this review we discuss the current understanding of TGF-β regulation of T cells.
Collapse
|
80
|
Luo CT, Li MO. Transcriptional control of regulatory T cell development and function. Trends Immunol 2013; 34:531-9. [PMID: 24016547 PMCID: PMC7106436 DOI: 10.1016/j.it.2013.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/11/2013] [Accepted: 08/12/2013] [Indexed: 12/24/2022]
Abstract
An intermediate amount of T cell stimulation induces Foxp3 transcription. Treg cell lineage factor Foxp3 cooperates with its partners to promote Treg cell function. Cell signaling-regulated Foxo1 is indispensable for Treg cell function.
Regulatory T (Treg) cells differentiate from thymocytes or peripheral T cells in response to host and environmental cues, culminating in induction of the transcription factor forkhead box P3 (Foxp3) and the Treg cell-specific epigenome. An intermediate amount of antigen stimulation is required to induce Foxp3 expression by engaging T cell receptor (TCR)-activated [e.g., nuclear factor (NF)-κB] and TCR-inhibited (e.g., Foxo) transcription factors. Furthermore, Treg cell differentiation is associated with attenuated Akt signaling, resulting in enhanced nuclear retention of Foxo1, which is indispensable for Treg cell function. These findings reveal that Treg cell lineage commitment is not only controlled by genetic and epigenetic imprinting, but also modulated by transcriptional programs responding to extracellular signals.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Humans
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/immunology
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Transcription, Genetic/genetics
- Transcription, Genetic/immunology
Collapse
|
81
|
Ouyang W, Oh SA, Ma Q, Bivona MR, Zhu J, Li MO. TGF-β cytokine signaling promotes CD8+ T cell development and low-affinity CD4+ T cell homeostasis by regulation of interleukin-7 receptor α expression. Immunity 2013; 39:335-46. [PMID: 23932572 DOI: 10.1016/j.immuni.2013.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/10/2013] [Indexed: 12/22/2022]
Abstract
Interleukin-7 receptor α chain (IL-7Rα) is induced upon T cell positive selection and controls thymic CD8-lineage specification and peripheral naive T cell homeostasis. How IL-7Rα expression is regulated in developing thymocytes is unclear. Here, we show that transforming growth factor β (TGF-β) signaling promoted IL-7Rα expression and CD8+ T cell differentiation. In addition, TGF-β signaling was required for high IL-7Rα expression in CD4+ T cells bearing low-affinity T cell receptors, and the abrogation of TGF-β receptor expression led to failed maintenance of peripheral CD4+ T cells. Compromised IL-7Rα expression in TGF-β-receptor-deficient T cells was associated with increased expression of the Il7ra transcriptional repressor, Gfi-1. IL-7Rα transgenesis or T-cell-specific ablation of Gfi-1 restored IL-7Rα expression and largely ameliorated the development and homeostasis defects of TGF-β-receptor-deficient T cells. These findings reveal functions for TGF-β signaling in controlling IL-7Rα expression and in promoting T cell repertoire diversification.
Collapse
|
82
|
Kim MV, Ouyang W, Liao W, Zhang MQ, Li MO. The transcription factor Foxo1 controls central-memory CD8+ T cell responses to infection. Immunity 2013; 39:286-97. [PMID: 23932570 DOI: 10.1016/j.immuni.2013.07.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 05/03/2013] [Indexed: 11/19/2022]
Abstract
Memory T cells protect hosts from pathogen reinfection, but how these cells emerge from a pool of antigen-experienced T cells is unclear. Here, we show that mice lacking the transcription factor Foxo1 in activated CD8+ T cells have defective secondary, but not primary, responses to Listeria monocytogenes infection. Compared to short-lived effector T cells, memory-precursor T cells expressed higher amounts of Foxo1, which promoted their generation and maintenance. Chromatin immunoprecipitation sequencing revealed the transcription factor Tcf7 and the chemokine receptor Ccr7 as Foxo1-bound target genes, which have critical functions in central-memory T cell differentiation and trafficking. These findings demonstrate that Foxo1 is selectively incorporated into the genetic program that regulates memory CD8+ T cell responses to infection.
Collapse
|
83
|
Kim JS, Sklarz T, Banks LB, Gohil M, Waickman AT, Skuli N, Krock BL, Luo CT, Hu W, Pollizzi KN, Li MO, Rathmell JC, Birnbaum MJ, Powell JD, Jordan MS, Koretzky GA. Natural and inducible TH17 cells are regulated differently by Akt and mTOR pathways. Nat Immunol 2013; 14:611-8. [PMID: 23644504 PMCID: PMC3711189 DOI: 10.1038/ni.2607] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/04/2013] [Indexed: 12/15/2022]
Abstract
Natural T helper 17 (nTH17) cells are a population of interleukin 17 (IL-17)-producing cells that acquire effector function in the thymus during development. Here we demonstrate that the serine/threonine kinase Akt has a critical role in regulating nTH17 cell development. Although Akt and the downstream mTORC1-ARNT-HIFα axis were required for generation of inducible TH17 (iTH17) cells, nTH17 cells developed independently of mTORC1. In contrast, mTORC2 and inhibition of Foxo proteins were critical for development of nTH17 cells. Moreover, distinct isoforms of Akt controlled the generation of TH17 cell subsets, as deletion of Akt2, but not of Akt1, led to defective generation of iTH17 cells. These findings define mechanisms regulating nTH17 cell development and reveal previously unknown roles of Akt and mTOR in shaping subsets of T cells.
Collapse
|
84
|
Kwan WH, van der Touw W, Paz-Artal E, Li MO, Heeger PS. Signaling through C5a receptor and C3a receptor diminishes function of murine natural regulatory T cells. ACTA ACUST UNITED AC 2013; 210:257-68. [PMID: 23382542 PMCID: PMC3570105 DOI: 10.1084/jem.20121525] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Blockade of C3aR/C5aR signaling in nT reg cells augments in vitro and in vivo suppression, abrogates autoimmune colitis, and prolongs allogeneic skin graft survival. Thymus-derived (natural) CD4+ FoxP3+ regulatory T cells (nT reg cells) are required for immune homeostasis and self-tolerance, but must be stringently controlled to permit expansion of protective immunity. Previous findings linking signals transmitted through T cell–expressed C5a receptor (C5aR) and C3a receptor (C3aR) to activation, differentiation, and expansion of conventional CD4+CD25− T cells (T conv cells), raised the possibility that C3aR/C5aR signaling on nT reg cells could physiologically modulate nT reg cell function and thereby further impact the induced strength of T cell immune responses. In this study, we demonstrate that nT reg cells express C3aR and C5aR, and that signaling through these receptors inhibits nT reg cell function. Genetic and pharmacological blockade of C3aR/C5aR signal transduction in nT reg cells augments in vitro and in vivo suppression, abrogates autoimmune colitis, and prolongs allogeneic skin graft survival. Mechanisms involve C3a/C5a-induced phosphorylation of AKT and, as a consequence, phosphorylation of the transcription factor Foxo1, which results in lowered nT reg cell Foxp3 expression. The documentation that C3a/C3aR and C5a/C5aR modulate nT reg cell function via controlling Foxp3 expression suggests targeting this pathway could be exploited to manipulate pathogenic or protective T cell responses.
Collapse
|
85
|
Samstein RM, Arvey A, Josefowicz SZ, Peng X, Reynolds A, Sandstrom R, Neph S, Sabo P, Kim JM, Liao W, Li MO, Leslie C, Stamatoyannopoulos JA, Rudensky AY. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 2012; 151:153-66. [PMID: 23021222 PMCID: PMC3493256 DOI: 10.1016/j.cell.2012.06.053] [Citation(s) in RCA: 373] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/06/2012] [Accepted: 06/29/2012] [Indexed: 12/13/2022]
Abstract
Regulatory T (Treg) cells, whose identity and function are defined by the transcription factor Foxp3, are indispensable for immune homeostasis. It is unclear whether Foxp3 exerts its Treg lineage specification function through active modification of the chromatin landscape and establishment of new enhancers or by exploiting a pre-existing enhancer landscape. Analysis of the chromatin accessibility of Foxp3-bound enhancers in Treg and Foxp3-negative T cells showed that Foxp3 was bound overwhelmingly to preaccessible enhancers occupied by its cofactors in precursor cells or a structurally related predecessor. Furthermore, the bulk of Foxp3-bound Treg cell enhancers lacking in Foxp3(-) CD4(+) cells became accessible upon T cell receptor activation prior to Foxp3 expression, and only a small subset associated with several functionally important genes were exclusively Treg cell specific. Thus, in a late cellular differentiation process, Foxp3 defines Treg cell functionality in an "opportunistic" manner by largely exploiting the preformed enhancer network instead of establishing a new enhancer landscape.
Collapse
|
86
|
Weiss JM, Bilate AM, Gobert M, Ding Y, Curotto de Lafaille MA, Parkhurst CN, Xiong H, Dolpady J, Frey AB, Ruocco MG, Yang Y, Floess S, Huehn J, Oh S, Li MO, Niec RE, Rudensky AY, Dustin ML, Littman DR, Lafaille JJ. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. ACTA ACUST UNITED AC 2012; 209:1723-42, S1. [PMID: 22966001 PMCID: PMC3457733 DOI: 10.1084/jem.20120914] [Citation(s) in RCA: 472] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuropilin-1 surface expression discriminates between nT reg cells with stable expression and Nrp1 low iT reg cells showing inducible expression under inflammatory conditions. Foxp3 activity is essential for the normal function of the immune system. Two types of regulatory T (T reg) cells express Foxp3, thymus-generated natural T reg (nT reg) cells, and peripherally generated adaptive T reg (iT reg) cells. These cell types have complementary functions. Until now, it has not been possible to distinguish iT reg from nT reg cells in vivo based solely on surface markers. We report here that Neuropilin 1 (Nrp1) is expressed at high levels by most nT reg cells; in contrast, mucosa-generated iT reg and other noninflammatory iT reg cells express low levels of Nrp1. We found that Nrp1 expression is under the control of TGF-β. By tracing nT reg and iT reg cells, we could establish that some tumors have a very large proportion of infiltrating iT reg cells. iT reg cells obtained from highly inflammatory environments, such as the spinal cords of mice with spontaneous autoimmune encephalomyelitis (EAE) and the lungs of mice with chronic asthma, express Nrp1. In the same animals, iT reg cells in secondary lymphoid organs remain Nrp1low. We also determined that, in spontaneous EAE, iT reg cells help to establish a chronic phase of the disease.
Collapse
|
87
|
Chen Y, Haines CJ, Gutcher I, Hochweller K, Blumenschein WM, McClanahan T, Hämmerling G, Li MO, Cua DJ, McGeachy MJ. Foxp3(+) regulatory T cells promote T helper 17 cell development in vivo through regulation of interleukin-2. Immunity 2011; 34:409-21. [PMID: 21435588 DOI: 10.1016/j.immuni.2011.02.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 12/22/2010] [Accepted: 02/08/2011] [Indexed: 12/17/2022]
Abstract
T helper 17 (Th17) cell development is driven by cytokines including transforming growth factor-β (TGF-β), interleukin-6 (IL-6), IL-1, and IL-23. Regulatory T (Treg) cells can provide the TGF-β in vitro, but their role in vivo remains unclear, particularly because Treg cells inhibit inflammation in many models of Th17 cell-associated autoimmunity. We used mice expressing Diphtheria toxin receptor under control of the Foxp3 promoter to deplete Foxp3(+) Treg cells in adult mice during in vivo Th17 cell priming. Treg cell depletion resulted in a reduced frequency of antigen-specific IL-17 producers in draining lymph nodes and blood, correlating with reduced inflammatory skin responses. In contrast, Treg cells did not promote IL-17 secretion after initial activation stages. Treg cell production of TGF-β was not required for Th17 cell promotion, and neither was suppression of Th1 cell-associated cytokines. Rather, regulation of IL-2 availability and resultant signaling through CD25 by Treg cells was found to play an important role.
Collapse
|
88
|
Shi C, Jia T, Mendez-Ferrer S, Hohl TM, Serbina NV, Lipuma L, Leiner I, Li MO, Frenette PS, Pamer EG. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity 2011; 34:590-601. [PMID: 21458307 DOI: 10.1016/j.immuni.2011.02.016] [Citation(s) in RCA: 394] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/14/2010] [Accepted: 02/17/2011] [Indexed: 12/14/2022]
Abstract
Inflammatory (Ly6C(hi) CCR2+) monocytes provide defense against infections but also contribute to autoimmune diseases and atherosclerosis. Monocytes originate from bone marrow and their entry into the bloodstream requires stimulation of CCR2 chemokine receptor by monocyte chemotactic protein-1 (MCP1). How monocyte emigration from bone marrow is triggered by remote infections remains unclear. We demonstrated that low concentrations of Toll-like receptor (TLR) ligands in the bloodstream drive CCR2-dependent emigration of monocytes from bone marrow. Bone marrow mesenchymal stem cells (MSCs) and their progeny, including CXC chemokine ligand (CXCL)12-abundant reticular (CAR) cells, rapidly expressed MCP1 in response to circulating TLR ligands or bacterial infection and induced monocyte trafficking into the bloodstream. Targeted deletion of MCP1 from MSCs impaired monocyte emigration from bone marrow. Our findings suggest that bone marrow MSCs and CAR cells respond to circulating microbial molecules and regulate bloodstream monocyte frequencies by secreting MCP1 in proximity to bone marrow vascular sinuses.
Collapse
|
89
|
Ouyang W, Li MO. Foxo: in command of T lymphocyte homeostasis and tolerance. Trends Immunol 2010; 32:26-33. [PMID: 21106439 DOI: 10.1016/j.it.2010.10.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 12/31/2022]
Abstract
The forkhead box O (Foxo) family of transcription factors consists of the mammalian orthologs of the Caenorhabditis elegans longevity protein Daf-16, and has an evolutionarily conserved function in the regulation of nutrient sensing and stress responses. Recent studies have shown that Foxo proteins control expression of immune system-specific genes such as Il7ra in naïve T cells and Foxp3 in regulatory T cells, which are crucial regulators of T cell homeostasis and tolerance. These findings reveal that the ancient Foxo pathway has been co-opted to regulate highly specialized T cell activities. The Foxo pathway probably enables a diverse and self-tolerant population of T cells in the steady state, which is an important prerequisite for the establishment of a functional adaptive immune system.
Collapse
|
90
|
Ouyang W, Beckett O, Ma Q, Li MO. Transforming growth factor-beta signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 2010; 32:642-53. [PMID: 20471291 DOI: 10.1016/j.immuni.2010.04.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/24/2010] [Accepted: 03/23/2010] [Indexed: 12/15/2022]
Abstract
Thymus-derived naturally occurring regulatory T (nTreg) cells are necessary for immunological self-tolerance. nTreg cell development is instructed by the T cell receptor and can be induced by agonist antigens that trigger T cell-negative selection. How T cell deletion is regulated so that nTreg cells are generated is unclear. Here we showed that transforming growth factor-beta (TGF-beta) signaling protected nTreg cells and antigen-stimulated conventional T cells from apoptosis. Enhanced apoptosis of TGF-beta receptor-deficient nTreg cells was associated with high expression of proapoptotic proteins Bim, Bax, and Bak and low expression of the antiapoptotic protein Bcl-2. Ablation of Bim in mice corrected the Treg cell development and homeostasis defects. Our results suggest that nTreg cell commitment is independent of TGF-beta signaling. Instead, TGF-beta promotes nTreg cell survival by antagonizing T cell negative selection. These findings reveal a critical function for TGF-beta in control of autoreactive T cell fates with important implications for understanding T cell self-tolerance mechanisms.
Collapse
|
91
|
Li MO, Flavell RA. Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10. Immunity 2008; 28:468-76. [PMID: 18400189 DOI: 10.1016/j.immuni.2008.03.003] [Citation(s) in RCA: 369] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-beta (TGF-beta) and interleukin-10 (IL-10) are regulatory cytokines with pleiotropic roles in the immune system. The prominent function of TGF-beta is to maintain T cell tolerance to self or innocuous environmental antigens via its direct effects on the differentiation and homeostasis of effector and regulatory T cells. A critical route for the regulation of T cells by TGF-beta is via activation of a T cell-produced latent form of TGF-beta1 by dendritic cell-expressed avbeta8 integrin. IL-10 operates primarily as a feedback inhibitor of exuberant T cell responses to microbial antigens. T cells are also the principal producers of IL-10, the expression of which is regulated by IL-27, IL-6, and TGF-beta. The collective activity of TGF-beta and IL-10 ensures a controlled inflammatory response specifically targeting pathogens without evoking excessive immunopathology to self-tissues.
Collapse
|
92
|
Kaplan DH, Li MO, Jenison MC, Shlomchik WD, Flavell RA, Shlomchik MJ. Autocrine/paracrine TGFb1 is required for the development of epidermal Langerhans cells. J Biophys Biochem Cytol 2007. [DOI: 10.1083/jcb1792oia4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
93
|
Kaplan DH, Li MO, Jenison MC, Shlomchik WD, Flavell RA, Shlomchik MJ. Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells. ACTA ACUST UNITED AC 2007; 204:2545-52. [PMID: 17938236 PMCID: PMC2118472 DOI: 10.1084/jem.20071401] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Langerhans cells (LCs) are bone marrow (BM)–derived epidermal dendritic cells (DCs) that develop from precursors found in the dermis. Epidermal LCs are absent in transforming growth factor (TGF) β1-deficient mice. It is not clear whether TGFβ1 acts directly on LC precursors to promote maturation or whether it acts on accessory cells, which in turn affect LC precursors. In addition, the physiologic source of TGFβ1 is uncertain because BM chimera experiments showed that neither hematopoietic nor nonhematopoietic-derived TGFβ1 is required for LC development. To address these issues, we created mice transgenic for a bacterial artificial chromosome (BAC) containing the gene for human Langerin into which Cre recombinase had been inserted by homologous recombination (Langerin-Cre). These mice express Cre selectively in LCs, and they were bred to floxed TGFβRII and TGFβ1 mice, thereby generating mice with LCs that either cannot respond to or generate TGFβ1, respectively. Langerin-Cre TGFβRII mice had substantially reduced numbers of epidermal LCs, demonstrating that TGFβ1 acts directly on LCs in vivo. Interestingly, Langerin-Cre TGFβ1 mice also had very few LCs both in the steady state and after BM transplantation. Thus, TGFβ1 derived from LCs acts directly on LCs through an autocrine/paracrine loop, and it is required for LC development and/or survival.
Collapse
|
94
|
Wang X, Hussain S, Wang EJ, Wang X, Li MO, García-Sastre A, Beg AA. Lack of essential role of NF-kappa B p50, RelA, and cRel subunits in virus-induced type 1 IFN expression. THE JOURNAL OF IMMUNOLOGY 2007; 178:6770-6. [PMID: 17513724 DOI: 10.4049/jimmunol.178.11.6770] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type 1 IFNs (IFN-alphabeta) play pivotal roles in the host antiviral response and in TLR-induced signaling. IFN regulatory factor (IRF) and NF-kappaB transcription factors are thought to be crucial for virus-induced mRNA expression of IFN-beta. Although recent studies have demonstrated essential roles for IRF3 and IRF7, the definitive role of NF-kappaB factors in IFN-beta (or IFN-alpha) expression remains unknown. Using mice deficient in distinct members of the NF-kappaB family, we investigated NF-kappaB function in regulating type 1 IFN expression in response to Sendai virus and Newcastle disease virus infection. Surprisingly, IFN-beta and IFN-alpha expression was strongly induced following virus infection of mouse embryonic fibroblasts (MEFs) from p50(-/-), RelA/p65(-/-), cRel(-/-), p50(-/-)cRel(-/-), and p50(-/-)RelA(-/-) mice. Compared with wild-type MEFs, only RelA(-/-) and p50(-/-)RelA(-/-) MEFs showed a modest reduction in IFN-beta expression. To overcome functional redundancy between different NF-kappaB subunits, we expressed a dominant-negative IkappaBalpha protein in p50(-/-)RelA(-/-) MEFs to inhibit activation of remaining NF-kappaB subunits. Although viral infection of these cells failed to induce detectable NF-kappaB activity, both Sendai virus and Newcastle disease virus infection led to robust IFN-beta expression. Virus infection of dendritic cells or TLR9-ligand CpG-D19 treatment of plasmacytoid dendritic cells from RelA(-/-) or p50(-/-)cRel(-/-) mice also induced robust type 1 IFN expression. Our findings therefore indicate that NF-kappaB subunits p50, RelA, and cRel play a relatively minor role in virus-induced type 1 IFN expression.
Collapse
|
95
|
Li MO, Wan YY, Flavell RA. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 2007; 26:579-91. [PMID: 17481928 DOI: 10.1016/j.immuni.2007.03.014] [Citation(s) in RCA: 543] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/05/2007] [Accepted: 03/19/2007] [Indexed: 12/21/2022]
Abstract
TGF-beta1 is a regulatory cytokine with a pleiotropic role in immune responses. TGF-beta1 is widely expressed in leukocytes and stromal cells. However, the functions of TGF-beta1 expressed by specific lineages of cells remain unknown in vivo. Here, we show that mice with a T cell-specific deletion of the Tgfb1 gene developed lethal immunopathology in multiple organs, and this development was associated with enhanced T cell proliferation, activation, and CD4+ T cell differentiation into T helper 1 (Th1) and Th2 cells. TGF-beta1 produced by Foxp3-expressing regulatory T cells was required to inhibit Th1-cell differentiation and inflammatory-bowel disease in a transfer model. In addition, T cell-produced TGF-beta1 promoted Th17-cell differentiation and was indispensable for the induction of experimental autoimmune encephalomyelitis. These findings reveal essential roles for T cell-produced TGF-beta1 in controlling differentiation of T helper cells and controlling inflammatory diseases.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Cells, Cultured
- Colitis/genetics
- Colitis/immunology
- Colitis/metabolism
- Colitis/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Forkhead Transcription Factors/metabolism
- Gene Deletion
- Gene Expression Regulation
- Homeostasis
- Immune Tolerance/immunology
- Lymphocyte Activation/immunology
- Mice
- Mice, Knockout
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transforming Growth Factor beta1/biosynthesis
- Transforming Growth Factor beta1/genetics
Collapse
|
96
|
Tao J, Gao Y, Li MO, He W, Chen L, Harvev B, Davis RJ, Flavell RA, Yin Z. JNK2 negatively regulates CD8+ T cell effector function and anti-tumor immune response. Eur J Immunol 2007; 37:818-29. [PMID: 17301952 DOI: 10.1002/eji.200636726] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
JNK1 and JNK2 have distinct effects on activation, differentiation and function of CD8+ T cells. Our early studies demonstrated that JNK1 is required for CD8+ T cell-mediated tumor immune surveillance. However, the role of JNK2 in CD8+ T cell response and effector functions, especially in anti-tumor immune response, is unknown. To define the role of JNK2 in antigen-specific immune response, we have investigated CD8+ T cells from OT-1 CD8+ transgenic mice in response to either high- or low-affinity peptides. JNK2-/- CD8+ T cells proliferated better in response to both peptides, with more cell division and less cell death. In addition, JNK2-/- CD8+ T cells produced higher levels of IFN-gamma, which is associated with increased expression of T-bet and Eomesodermin (Eomes). Moreover, JNK2-/- CD8+ T cells expresses high levels of granzyme B and show increased CTL activity. Finally, the enhanced expansion and effector function of JNK2-/- CD8+ T cells was further evidenced by their capacity to delay tumor growth in vivo. In summary, our results demonstrate that JNK2 negatively regulates antigen-specific CD8+ T cell expansion and effector function, and thus selectively blocking JNK2 in CD8+ T cells may potentially enhance anti-tumor immune response.
Collapse
|
97
|
Li MO, Sanjabi S, Flavell RA. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 2006; 25:455-71. [PMID: 16973386 DOI: 10.1016/j.immuni.2006.07.011] [Citation(s) in RCA: 624] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/22/2006] [Accepted: 07/12/2006] [Indexed: 10/24/2022]
Abstract
The role of transforming growth factor-beta (TGF-beta) in inhibiting T cell functions has been studied with dominant-negative TGF-beta receptor transgenic models; however, the full impact of TGF-beta signaling on T cells and the mechanisms by which TGF-beta signals remain poorly understood. Here we show that mice with T cell-specific deletion of TGF-beta receptor II developed lethal inflammation associated with T cell activation and differentiation. In addition, TGF-beta signaling positively regulated T cell development and homeostasis. Development of CD8+ T cells and NKT cells, maintenance of peripheral Foxp3-expressing regulatory T cells, and survival of CD4+ T cells all depended on TGF-beta signaling. Both T helper 1 (Th1) differentiation and survival of activated CD4+ T cells required T-bet, the TGF-beta-regulated transcription factor, which controlled CD122 expression and IL-15 signaling in Th1 cells. This study reveals pleiotropic functions of TGF-beta signaling in T cells that may ensure a diverse and self-tolerant T cell repertoire in vivo.
Collapse
|
98
|
Oertelt S, Lian ZX, Cheng CM, Chuang YH, Padgett KA, He XS, Ridgway WM, Ansari AA, Coppel RL, Li MO, Flavell RA, Kronenberg M, Mackay IR, Gershwin ME. Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice. THE JOURNAL OF IMMUNOLOGY 2006; 177:1655-60. [PMID: 16849474 DOI: 10.4049/jimmunol.177.3.1655] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Primary biliary cirrhosis (PBC) is an autoimmune disease of the liver, characterized by lymphocytic infiltrates in portal tracts, selective destruction of biliary epithelial cells, and anti-mitochondrial Abs (AMAs). The elucidation of early events in the induction of tissue inflammation and autoimmunity in PBC has been hampered by the cryptic onset of the disease, the practical limitations in accessing the target tissue, and the lack of a suitable animal model. We demonstrate in this study that a mouse transgenic for directed expression of a dominant-negative form of TGF-beta receptor type II (dnTGFbetaRII), under the direction of the CD4 promoter, mimics several key phenotypic features of human PBC, including spontaneous production of AMAs directed to the same mitochondrial autoantigens, namely PDC-E2, BCOADC-E2, and OGDC-E2. The murine AMAs also inhibit PDC-E2 activity. Moreover, there is lymphocytic liver infiltration with periportal inflammation analogous to the histological profile in human PBC. Additionally, the serum cytokine profile of affected mice mimics data in human PBC. The concomitant presence of these immunopathological features in the transgenic mice suggests that the TGF-betaRII pathway is implicated in the pathogenesis of PBC. Finally, these data point away from initiation of autoimmunity by mechanisms such as molecular mimicry and more toward activation of an intrinsically self-reactive T cell repertoire in which necessary regulatory T cell influences are lacking.
Collapse
|
99
|
Li MO, Wan YY, Sanjabi S, Robertson AKL, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006; 24:99-146. [PMID: 16551245 DOI: 10.1146/annurev.immunol.24.021605.090737] [Citation(s) in RCA: 1673] [Impact Index Per Article: 92.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is a potent regulatory cytokine with diverse effects on hemopoietic cells. The pivotal function of TGF-beta in the immune system is to maintain tolerance via the regulation of lymphocyte proliferation, differentiation, and survival. In addition, TGF-beta controls the initiation and resolution of inflammatory responses through the regulation of chemotaxis, activation, and survival of lymphocytes, natural killer cells, dendritic cells, macrophages, mast cells, and granulocytes. The regulatory activity of TGF-beta is modulated by the cell differentiation state and by the presence of inflammatory cytokines and costimulatory molecules. Collectively, TGF-beta inhibits the development of immunopathology to self or nonharmful antigens without compromising immune responses to pathogens. This review highlights the findings that have advanced our understanding of TGF-beta in the immune system and in disease.
Collapse
|
100
|
Du W, Wong FS, Li MO, Peng J, Qi H, Flavell RA, Sherwin R, Wen L. TGF-beta signaling is required for the function of insulin-reactive T regulatory cells. J Clin Invest 2006; 116:1360-70. [PMID: 16670772 PMCID: PMC1451206 DOI: 10.1172/jci27030] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 01/24/2006] [Indexed: 01/09/2023] Open
Abstract
We have previously isolated insulin-reactive Tregs from diabetic NOD mice designated 2H6, from which TCR transgenic mice were generated. The T cells from these 2H6 transgenic mice recognize insulin but have suppressive properties in vitro. They protect NOD mice in vivo from spontaneous development of diabetes and adoptive transfer of disease caused by polyclonal diabetogenic spleen cells as well as the highly diabetogenic monoclonal BDC2.5 TCR transgenic T cells that recognize an islet granule antigen. Using cells from both NOD and BDC2.5 mice that express a dominant-negative TGF-beta receptor type II (TGF-betaDNRII), we show that 2H6 T cells protected from disease by producing TGF-beta and that the ability of the target diabetogenic T cells to respond to TGF-beta was crucial. We further demonstrate that TGF-beta signaling in 2H6 cells was important for their protective properties, as 2H6 cells were unable to protect from adoptive transfer-induced diabetes if they were unable to respond to TGF-beta. Thus, our data demonstrate that insulin-specific regulatory cells protect from diabetes by virtue of their production of TGF-beta1 that acts in an autocrine manner to maintain their regulatory function and acts in a paracrine manner on the target cells.
Collapse
|