76
|
Ceyhan-Birsoy O, Selenica P, Chui MH, Jayakumaran G, Ptashkin R, Misyura M, Aypar U, Jairam S, Yang C, Li Y, Mehta N, Kemel Y, Salo-Mullen E, Maio A, Sheehan M, Zehir A, Carlo M, Latham A, Stadler Z, Robson M, Offit K, Ladanyi M, Walsh M, Reis-Filho JS, Mandelker D. Paired Tumor-Normal Sequencing Provides Insights Into the TP53-Related Cancer Spectrum in Patients With Li-Fraumeni Syndrome. J Natl Cancer Inst 2021; 113:1751-1760. [PMID: 34240179 PMCID: PMC9891110 DOI: 10.1093/jnci/djab117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/12/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Genetic testing for Li-Fraumeni syndrome (LFS) is performed by using blood specimens from patients selected based on phenotype-dependent guidelines. This approach is problematic for understanding the LFS clinical spectrum because patients with nonclassical presentations are missed, clonal hematopoiesis-related somatic blood alterations cannot be distinguished from germline variants, and unrelated tumors cannot be differentiated from those driven by germline TP53 defects. METHODS To provide insights into the LFS-related cancer spectrum, we analyzed paired tumor-blood DNA sequencing results in 17 922 patients with cancer and distinguished clonal hematopoiesis-related, mosaic, and germline TP53 variants. Loss of heterozygosity and TP53 mutational status were assessed in tumors, followed by immunohistochemistry for p53 expression on a subset to identify those lacking biallelic TP53 inactivation. RESULTS Pathogenic/likely pathogenic TP53 variants were identified in 50 patients, 12 (24.0%) of which were clonal hematopoiesis related and 4 (8.0%) of which were mosaic. Twelve (35.3%) of 34 patients with germline TP53 variants did not meet LFS testing criteria. Loss of heterozygosity of germline TP53 variant was observed in 96.0% (95% confidence interval [CI] = 79.7% to 99.9%) of core LFS spectrum-type tumors vs 45.5% (95% CI = 16.8% to 76.6%) of other tumors and 91.3% (95% CI = 72.0% to 98.9%) of tumors from patients who met LFS testing criteria vs 61.5% (95% CI = 31.6% to 86.1%) of tumors from patients who did not. Tumors retaining the wild-type TP53 allele exhibited wild-type p53 expression. CONCLUSIONS Our results indicate that some TP53 variants identified in blood-only sequencing are not germline and a substantial proportion of patients with LFS are missed based on current testing guidelines. Additionally, a subset of tumors from patients with LFS do not have biallelic TP53 inactivation and may represent cancers unrelated to their germline TP53 defect.
Collapse
|
77
|
Selenica P, Alemar B, Matrai C, Talia KL, Veras E, Hussein Y, Oliva E, Beets-Tan RGH, Mikami Y, McCluggage WG, Kiyokawa T, Weigelt B, Park KJ, Murali R. Massively parallel sequencing analysis of 68 gastric-type cervical adenocarcinomas reveals mutations in cell cycle-related genes and potentially targetable mutations. Mod Pathol 2021; 34:1213-1225. [PMID: 33318584 PMCID: PMC8154628 DOI: 10.1038/s41379-020-00726-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
Abstract
Gastric-type cervical adenocarcinoma (GCA) is an aggressive type of endocervical adenocarcinoma characterized by mucinous morphology, gastric-type mucin, lack of association with human papillomavirus (HPV) and resistance to chemo/radiotherapy. We characterized the landscape of genetic alterations in a large cohort of GCAs, and compared it with that of usual-type HPV-associated endocervical adenocarcinomas (UEAs), pancreatic adenocarcinomas (PAs) and intestinal-type gastric adenocarcinomas (IGAs). GCAs (n = 68) were subjected to massively parallel sequencing targeting 410-468 cancer-related genes. Somatic mutations and copy number alterations (CNAs) were determined using validated bioinformatics methods. Mutational data for UEAs (n = 21), PAs (n = 178), and IGAs (n = 148) from The Cancer Genome Atlas (TCGA) were obtained from cBioPortal. GCAs most frequently harbored somatic mutations in TP53 (41%), CDKN2A (18%), KRAS (18%), and STK11 (10%). Potentially targetable mutations were identified in ERBB3 (10%), ERBB2 (8%), and BRAF (4%). GCAs displayed low levels of CNAs with no recurrent amplifications or homozygous deletions. In contrast to UEAs, GCAs harbored more frequent mutations affecting cell cycle-related genes including TP53 (41% vs 5%, p < 0.01) and CDKN2A (18% vs 0%, p = 0.01), and fewer PIK3CA mutations (7% vs 33%, p = 0.01). TP53 mutations were less prevalent in GCAs compared to PAs (41% vs 56%, p < 0.05) and IGAs (41% vs 57%, p < 0.05). GCAs showed a higher frequency of STK11 mutations than PAs (10% vs 2%, p < 0.05) and IGAs (10% vs 1%, p < 0.05). GCAs harbored more frequent mutations in ERBB2 and ERBB3 (9% vs 1%, and 10% vs 0.5%, both p < 0.01) compared to PAs, and in CDKN2A (18% vs 1%, p < 0.05) and KRAS (18% vs 6%, p < 0.05) compared to IGAs. GCAs harbor recurrent somatic mutations in cell cycle-related genes and in potentially targetable genes, including ERBB2/3. Mutations in genes such as STK11 may be used as supportive evidence to help distinguish GCAs from other adenocarcinomas with similar morphology in metastatic sites.
Collapse
|
78
|
Huo Y, Selenica P, Mahdi AH, Pareja F, Kyker-Snowman K, Chen Y, Kumar R, Da Cruz Paula A, Basili T, Brown DN, Pei X, Riaz N, Tan Y, Huang YX, Li T, Barnard NJ, Reis-Filho JS, Weigelt B, Xia B. Genetic interactions among Brca1, Brca2, Palb2, and Trp53 in mammary tumor development. NPJ Breast Cancer 2021; 7:45. [PMID: 33893322 PMCID: PMC8065161 DOI: 10.1038/s41523-021-00253-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Inherited mutations in BRCA1, BRCA2, and PALB2 cause a high risk of breast cancer. Here, we conducted parallel conditional knockout (CKO) of Brca1, Palb2, and Brca2, individually and in combination, along with one copy of Trp53, in the mammary gland of nulliparous female mice. We observed a functional equivalence of the three genes in their basic tumor-suppressive activity, a linear epistasis of Palb2 and Brca2, but complementary roles of Brca1 and Palb2 in mammary tumor suppression, as combined ablation of either Palb2 or Brca2 with Brca1 led to delayed tumor formation. Whole-exome sequencing (WES) revealed both similarities and differences between Brca1 and Palb2 or Brca2 null tumors. Analyses of mouse mammary glands and cultured human cells showed that combined loss of BRCA1 and PALB2 led to high levels of reactive oxygen species (ROS) and increased apoptosis, implicating oxidative stress in the delayed tumor development in Brca1;Palb2 double CKO mice. The functional complementarity between BRCA1 and PALB2/BRCA2 and the role of ROS in tumorigenesis require further investigation.
Collapse
|
79
|
da Silva EM, Selenica P, Vahdatinia M, Pareja F, Da Cruz Paula A, Ferrando L, Gazzo AM, Dopeso H, Ross DS, Bakhteri A, Riaz N, Chandarlapaty S, Razavi P, Norton L, Wen HY, Brogi E, Weigelt B, Zhang H, Reis-Filho JS. TERT promoter hotspot mutations and gene amplification in metaplastic breast cancer. NPJ Breast Cancer 2021; 7:43. [PMID: 33863915 PMCID: PMC8052452 DOI: 10.1038/s41523-021-00250-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Metaplastic breast cancers (MBCs) are characterized by complex genomes, which seem to vary according to their histologic subtype. TERT promoter hotspot mutations and gene amplification are rare in common forms of breast cancer, but present in a subset of phyllodes tumors. Here, we sought to determine the frequency of genetic alterations affecting TERT in a cohort of 60 MBCs with distinct predominant metaplastic components (squamous, 23%; spindle, 27%; osseous, 8%; chondroid, 42%), and to compare the repertoire of genetic alterations of MBCs according to the presence of TERT promoter hotspot mutations or gene amplification. Forty-four MBCs were subjected to: whole-exome sequencing (WES; n = 27) or targeted sequencing of 341-468 cancer-related genes (n = 17); 16 MBCs were subjected to Sanger sequencing of the TERT promoter, TP53 and selected exons of PIK3CA, HRAS, and BRAF. TERT promoter hotspot mutations (n = 9) and TERT gene amplification (n = 1) were found in 10 of the 60 MBCs analyzed, respectively. These TERT alterations were less frequently found in MBCs with predominant chondroid differentiation than in other MBC subtypes (p = 0.01, Fisher's exact test) and were mutually exclusive with TP53 mutations (p < 0.001, CoMEt). In addition, a comparative analysis of the MBCs subjected to WES or targeted cancer gene sequencing (n = 44) revealed that MBCs harboring TERT promoter hotspot mutations or gene amplification (n = 6) more frequently harbored PIK3CA than TERT wild-type MBCs (n = 38; p = 0.001; Fisher's exact test). In conclusion, TERT somatic genetic alterations are found in a subset of TP53 wild-type MBCs with squamous/spindle differentiation, highlighting the genetic diversity of these cancers.
Collapse
|
80
|
Schultheis AM, de Bruijn I, Selenica P, Macedo GS, da Silva EM, Piscuoglio S, Jungbluth AA, Park KJ, Klimstra DS, Wardelmann E, Hartmann W, Gerharz CD, von Petersdorff M, Buettner R, Reis-Filho JS, Weigelt B. Genomic characterization of small cell carcinomas of the uterine cervix. Mol Oncol 2021; 16:833-845. [PMID: 33830625 PMCID: PMC8847983 DOI: 10.1002/1878-0261.12962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Small cell carcinoma (SCC) of the uterine cervix is a rare and aggressive form of neuroendocrine carcinoma, which resembles small cell lung cancer (SCLC) in its histology and poor survival rate. Here, we sought to define the genetic underpinning of SCCs of the uterine cervix and compare their mutational profiles with those of human papillomavirus (HPV)‐positive head and neck squamous cell carcinomas, HPV‐positive cervical carcinomas, and SCLCs using publicly available data. Using a combination of whole‐exome and targeted massively parallel sequencing, we found that the nine uterine cervix SCCs, which were HPV18‐positive (n = 8) or HPV16‐positive (n = 1), harbored a low mutation burden, few copy number alterations, and other than TP53 in two cases no recurrently mutated genes. The majority of mutations were likely passenger missense mutations, and only few affected previously described cancer‐related genes. Using RNA‐sequencing, we identified putative viral integration sites on 18q12.3 and on 8p22 in two SCCs of the uterine cervix. The overall nonsilent mutation rate of uterine cervix SCCs was significantly lower than that of SCLCs, HPV‐driven cervical adeno‐ and squamous cell carcinomas, or HPV‐positive head and neck squamous cell carcinomas. Unlike SCLCs, which are reported to harbor almost universal TP53 and RB1 mutations and a dominant tobacco smoke‐related signature 4, uterine cervix SCCs rarely harbored mutations affecting these genes (2/9, 22% TP53; 0% RB1) and displayed a dominant aging (67%) or APOBEC mutational signature (17%), akin to HPV‐driven cancers, including cervical adeno‐ and squamous cell carcinomas and head and neck squamous cell carcinomas. Taken together, in contrast to SCLCs, which are characterized by highly recurrent TP53 and RB1 alterations, uterine cervix SCCs were positive for HPV leading to inactivation of the suppressors p53 and RB, suggesting that these SCCs are convergent phenotypes.
Collapse
|
81
|
Pareja F, Toss MS, Geyer FC, da Silva EM, Vahdatinia M, Sebastiao APM, Selenica P, Szatrowski A, Edelweiss M, Wen HY, Mihai R, Varga Z, Foschini MP, Rubin BP, Ellis IO, Chandarlapaty S, Jungbluth AA, Brogi E, Weigelt B, Reis-Filho JS, Rakha EA. Immunohistochemical assessment of HRAS Q61R mutations in breast adenomyoepitheliomas. Histopathology 2021; 76:865-874. [PMID: 31887226 DOI: 10.1111/his.14057] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022]
Abstract
AIMS Breast adenomyoepitheliomas (AMEs) are uncommon tumours. Most oestrogen receptor (ER)-positive AMEs have mutations in phosphoinositide 3-kinase (PI3K) pathway genes, whereas ER-negative AMEs usually harbour concurrent mutations affecting the HRAS Q61 hotspot and PI3K pathway genes. Here, we sought to determine the sensitivity and specificity of RAS Q61R immunohistochemical (IHC) analysis for detection of HRAS Q61R mutations in AMEs. METHODS AND RESULTS Twenty-six AMEs (14 ER-positive; 12 ER-negative) previously subjected to massively parallel sequencing (n = 21) or Sanger sequencing (n = 5) of the HRAS Q61 hotspot locus were included in this study. All AMEs were subjected to IHC analysis with a monoclonal (SP174) RAS Q61R-specific antibody, in addition to detailed histopathological analysis. Nine ER-negative AMEs harboured HRAS mutations, including Q61R (n = 7) and Q61K (n = 2) mutations. Five of seven (71%) AMEs with HRAS Q61R mutations were immunohistochemically positive, whereas none of the AMEs lacking HRAS Q61R mutations (n = 17) were immunoreactive. RAS Q61R immunoreactivity was restricted to the myoepithelium in 80% (4/5) of cases, whereas one case showed immunoreactivity in both the epithelial component and the myoepithelial component. RAS Q61R immunohistochemically positive AMEs were associated with infiltrative borders (P < 0.001), necrosis (P < 0.01) and mitotic index in the epithelial (P < 0.05) and myoepithelial (P < 0.01) components. RAS Q61R IHC assessment did not reveal Q61K mutations (0/2). CONCLUSIONS IHC analysis of RAS Q61R shows high specificity (100%) and moderate sensitivity (71%) for detection of HRAS Q61R mutations in breast AMEs, and appears not to detect HRAS Q61K mutations. IHC analysis of RAS Q61R may constitute a useful technique in the diagnostic workup of ER-negative AMEs.
Collapse
|
82
|
Cai Y, Xu G, Wu F, Michelini F, Chan C, Qu X, Selenica P, Ladewig E, Castel P, Cheng Y, Zhao A, Jhaveri K, Toska E, Jimenez M, Jacquet A, Tran-Dien A, Andre F, Chandarlapaty S, Reis-Filho JS, Razavi P, Scaltriti M. Genomic Alterations in PIK3CA-Mutated Breast Cancer Result in mTORC1 Activation and Limit the Sensitivity to PI3Kα Inhibitors. Cancer Res 2021; 81:2470-2480. [PMID: 33685991 DOI: 10.1158/0008-5472.can-20-3232] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/02/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022]
Abstract
PI3Kα inhibitors have shown clinical activity in PIK3CA-mutated estrogen receptor-positive (ER+) patients with breast cancer. Using whole genome CRISPR/Cas9 sgRNA knockout screens, we identified and validated several negative regulators of mTORC1 whose loss confers resistance to PI3Kα inhibition. Among the top candidates were TSC1, TSC2, TBC1D7, AKT1S1, STK11, MARK2, PDE7A, DEPDC5, NPRL2, NPRL3, C12orf66, SZT2, and ITFG2. Loss of these genes invariably results in sustained mTOR signaling under pharmacologic inhibition of the PI3K-AKT pathway. Moreover, resistance could be prevented or overcome by mTOR inhibition, confirming the causative role of sustained mTOR activity in limiting the sensitivity to PI3Kα inhibition. Cumulatively, genomic alterations affecting these genes are identified in about 15% of PIK3CA-mutated breast tumors and appear to be mutually exclusive. This study improves our understanding of the role of mTOR signaling restoration in leading to resistance to PI3Kα inhibition and proposes therapeutic strategies to prevent or revert this resistance. SIGNIFICANCE: These findings show that genetic lesions of multiple negative regulators of mTORC1 could limit the efficacy of PI3Kα inhibitors in breast cancer, which may guide patient selection strategies for future clinical trials.
Collapse
|
83
|
Filippova OT, Selenica P, Pareja F, Vahdatinia M, Zhu Y, Pei X, Riaz N, Long Roche K, Chi DS, Abu-Rustum NR, Ellenson LH, Reis-Filho JS, Zamarin D, Weigelt B. Molecular characterization of high-grade serous ovarian cancers occurring in younger and older women. Gynecol Oncol 2021; 161:545-552. [PMID: 33674143 DOI: 10.1016/j.ygyno.2021.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/19/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To determine if the mutational landscapes and genomic features of homologous recombination DNA repair defects (HRD) vary between younger and older patients with high-grade serous ovarian cancer (HGSOC). METHODS Younger and older women were defined as bottom and top age quartiles, respectively. HGSOCs from 15 younger (median 49 years, range 35-53) and 15 older women (median 72 years, range 70-87) were subjected to whole-exome sequencing (WES). For validation, HGSOC WES data were obtained from The Cancer Genome Atlas (TCGA), including 38 younger (median 45 years, range 34-50) and 30 older women (median 74 years, range 68-84). Mutational profiles, BRCA1/2 status, genomic HRD features, and for TCGA cases RNA-sequencing-based HRD transcriptomic signatures were assessed. RESULTS In the institutional cohort, pathogenic germline BRCA1/2 mutations were more frequent in younger (5/15) than older women (0/15, p = 0.042). No somatic BRCA1/2 mutations were identified. HGSOCs from older patients preferentially displayed aging-related mutational signatures and, in contrast to younger patients, harbored CCNE1 amplifications (3/15, 20%). In the TCGA cohort, pathogenic germline BRCA1 (younger 8/38, older 0/30, p = 0.007) but not BRCA2 mutations (young 3/38, older 4/30, p = 0.691) were more frequent in younger patients. Again, no somatic BRCA1/2 mutations were identified. HGSOCs from younger women more frequently displayed genomic features of HRD (all, p < 0.05), a significant HRD gene-signature enrichment, but less frequently CCNE1 amplification (p = 0.05). Immunoreactive CLOVAR subtypes were more common in HGSOCs from younger women, and proliferative subtypes in HGSOCs from older women (p = 0.041). CONCLUSIONS HGSOC patients diagnosed at an older age less frequently harbor pathogenic BRCA1 germline mutations and genomic features of HRD than younger women. Individualized treatment options, particularly pertaining to use of PARP inhibitors, in older women may be warranted.
Collapse
|
84
|
Riaz N, Sherman E, Pei X, Schöder H, Grkovski M, Paudyal R, Katabi N, Selenica P, Yamaguchi TN, Ma D, Lee SK, Shah R, Kumar R, Kuo F, Ratnakumar A, Aleynick N, Brown D, Zhang Z, Hatzoglou V, Liu LY, Salcedo A, Tsai CJ, McBride S, Morris LGT, Boyle J, Singh B, Higginson DS, Damerla RR, Paula ADC, Price K, Moore EJ, Garcia JJ, Foote R, Ho A, Wong RJ, Chan TA, Powell SN, Boutros PC, Humm JL, Shukla-Dave A, Pfister D, Reis-Filho JS, Lee N. Precision Radiotherapy: Reduction in Radiation for Oropharyngeal Cancer in the 30 ROC Trial. J Natl Cancer Inst 2021; 113:742-751. [PMID: 33429428 DOI: 10.1093/jnci/djaa184] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Patients with human papillomavirus-related oropharyngeal cancers have excellent outcomes but experience clinically significant toxicities when treated with standard chemoradiotherapy (70 Gy). We hypothesized that functional imaging could identify patients who could be safely deescalated to 30 Gy of radiotherapy. METHODS In 19 patients, pre- and intratreatment dynamic fluorine-18-labeled fluoromisonidazole positron emission tomography (PET) was used to assess tumor hypoxia. Patients without hypoxia at baseline or intratreatment received 30 Gy; patients with persistent hypoxia received 70 Gy. Neck dissection was performed at 4 months in deescalated patients to assess pathologic response. Magnetic resonance imaging (weekly), circulating plasma cell-free DNA, RNA-sequencing, and whole-genome sequencing (WGS) were performed to identify potential molecular determinants of response. Samples from an independent prospective study were obtained to reproduce molecular findings. All statistical tests were 2-sided. RESULTS Fifteen of 19 patients had no hypoxia on baseline PET or resolution on intratreatment PET and were deescalated to 30 Gy. Of these 15 patients, 11 had a pathologic complete response. Two-year locoregional control and overall survival were 94.4% (95% confidence interval = 84.4% to 100%) and 94.7% (95% confidence interval = 85.2% to 100%), respectively. No acute grade 3 radiation-related toxicities were observed. Microenvironmental features on serial imaging correlated better with pathologic response than tumor burden metrics or circulating plasma cell-free DNA. A WGS-based DNA repair defect was associated with response (P = .02) and was reproduced in an independent cohort (P = .03). CONCLUSIONS Deescalation of radiotherapy to 30 Gy on the basis of intratreatment hypoxia imaging was feasible, safe, and associated with minimal toxicity. A DNA repair defect identified by WGS was predictive of response. Intratherapy personalization of chemoradiotherapy may facilitate marked deescalation of radiotherapy.
Collapse
|
85
|
Selenica P, Conlon N, Gonzalez C, Frosina D, Jungbluth AA, Beets-Tan RGH, Rao MK, Zhang Y, Benayed R, Ladanyi M, Solit DB, Chiang S, Hyman DM, Hensley ML, Soslow RA, Weigelt B, Murali R. Genomic Profiling Aids Classification of Diagnostically Challenging Uterine Mesenchymal Tumors With Myomelanocytic Differentiation. Am J Surg Pathol 2021; 45:77-92. [PMID: 32889887 PMCID: PMC8276853 DOI: 10.1097/pas.0000000000001572] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although diagnosis of high-grade uterine mesenchymal tumors (UMTs) exhibiting classic morphologic features is straightforward, diagnosis is more challenging in tumors in which prototypical features are poorly developed, focal, and/or coexist with features seen in other neoplasms. Here, we sought to define the repertoire of somatic genetic alterations in diagnostically challenging UMTs with myomelanocytic differentiation, including some reported as perivascular epithelioid cell tumors (PEComas). In 17 samples from 15 women, the tumors were histologically heterogenous. Immunohistochemical expression of at least 1 melanocytic marker (HMB45, Melan-A, or MiTF) was identified in all tumors, and of myogenic markers (desmin or smooth muscle actin) in most tumors. Targeted massively parallel sequencing revealed several genetic alterations, most commonly in TP53 (41% mutation, 12% deletion), TSC2 (29% mutation, 6% deletion), RB1 (18% deletion), ATRX (24% mutation), MED12 (12% mutation), BRCA2 (12% deletion), CDKN2A (6% deletion) as well as FGFR3, NTRK1, and ERBB3 amplification (each 6%). Gene rearrangements (JAZF1-SUZ12; DNAJB6-PLAG1; and SFPQ-TFE3) were identified in 3 tumors. Integrating histopathologic, immunohistochemical, and genetic findings, tumors from 4 patients were consistent with malignant PEComa (1 TFE3-rearranged); 6 were classified as leiomyosarcomas; 3 showed overlapping features of PEComa and other sarcoma types (leiomyosarcoma or low-grade endometrial stromal sarcoma); and 2 were classified as sarcoma, not otherwise specified. Our findings suggest that diagnostically challenging UMTs with myomelanocytic differentiation represent a heterogenous group of neoplasms which harbor a diverse repertoire of somatic genetic alterations; these genetic alterations can aid classification.
Collapse
|
86
|
Hoda RS, Brogi E, Dos Anjos CH, Grabenstetter A, Ventura K, Patil S, Selenica P, Weigelt B, Reis-Filho JS, Traina T, Robson M, Norton L, Wen HY. Clinical and pathologic features associated with PD-L1 (SP142) expression in stromal tumor-infiltrating immune cells of triple-negative breast carcinoma. Mod Pathol 2020; 33:2221-2232. [PMID: 32612248 PMCID: PMC8234788 DOI: 10.1038/s41379-020-0606-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022]
Abstract
The Ventana PD-L1 SP142 immunohistochemistry (IHC) assay is the FDA-approved companion diagnostic assay for atezolizumab therapy selection for patients with PD-L1-positive locally advanced or metastatic triple-negative breast carcinoma (TNBC). We aimed to elucidate clinical, pathologic, and molecular features associated with PD-L1 expression in TNBCs. Clinical, pathologic, and next-generation sequencing (NGS)-based molecular data for TNBCs tested with PD-L1 (SP142) IHC at our institution between 11/2018 and 12/2019 were retrieved and reviewed. PD-L1 positivity was defined as ≥1% IC staining. Patients with metastatic TNBC treated at first line with atezolizumab regimens were evaluated for treatment response and for time to treatment failure (TTF). Among 156 TNBCs, PD-L1 was positive in 47.4% of cases. Primary TNBCs were significantly more frequently PD-L1 positive, compared with recurrent/metastatic samples (p = 0.002). PD-L1-positive TNBCs had increased stromal IC, compared with PD-L1-negative samples (p < 0.001). The repertoire of somatic genetic alterations of PD-L1-positive and PD-L1-negative TNBCs was similar. Matched primary and recurrent/metastatic TNBC samples were available for eight patients, in whom four had discordant results. Thirty patients with metastatic TNBC were treated with atezolizumab regimens, with treatment failure occurring in 16 patients and a median TTF of 5.1 months in this early evaluation. The findings of this study show stromal ICs in primary TNBCs are more likely to show PD-L1 positivity than in recurrent or metastatic samples. This information should guide selection of samples suitable for testing. Further studies are needed to identify other features associated with PD-L1-positive breast carcinomas and clinical benefit of treatment.
Collapse
|
87
|
Arruabarrena-Aristorena A, Maag JLV, Kittane S, Cai Y, Karthaus WR, Ladewig E, Park J, Kannan S, Ferrando L, Cocco E, Ho SY, Tan DS, Sallaku M, Wu F, Acevedo B, Selenica P, Ross DS, Witkin M, Sawyers CL, Reis-Filho JS, Verma CS, Jauch R, Koche R, Baselga J, Razavi P, Toska E, Scaltriti M. FOXA1 Mutations Reveal Distinct Chromatin Profiles and Influence Therapeutic Response in Breast Cancer. Cancer Cell 2020; 38:534-550.e9. [PMID: 32888433 PMCID: PMC8311901 DOI: 10.1016/j.ccell.2020.08.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Mutations in the pioneer transcription factor FOXA1 are a hallmark of estrogen receptor-positive (ER+) breast cancers. Examining FOXA1 in ∼5,000 breast cancer patients identifies several hotspot mutations in the Wing2 region and a breast cancer-specific mutation SY242CS, located in the third β strand. Using a clinico-genomically curated cohort, together with breast cancer models, we find that FOXA1 mutations associate with a lower response to aromatase inhibitors. Mechanistically, Wing2 mutations display increased chromatin binding at ER loci upon estrogen stimulation, and an enhanced ER-mediated transcription without changes in chromatin accessibility. In contrast, SY242CS shows neomorphic properties that include the ability to open distinct chromatin regions and activate an alternative cistrome and transcriptome. Structural modeling predicts that SY242CS confers a conformational change that mediates stable binding to a non-canonical DNA motif. Taken together, our results provide insights into how FOXA1 mutations perturb its function to dictate cancer progression and therapeutic response.
Collapse
|
88
|
Ashley C, Brown D, Lakhman Y, Nincevic J, Stylianou A, Wu M, Selenica P, Patel J, Berger M, Leitao M, Sonoda Y, Jewell E, Reis-Filho J, Abu-Rustum N, Aghajanian C, Cadoo K, Weigelt B. Mutation detection in cell-free DNA using ultra-high depth sequencing in prospectively collected newly diagnosed endometrial cancer patients. Gynecol Oncol 2020. [DOI: 10.1016/j.ygyno.2020.06.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
89
|
Kim S, Paula A, Selenica P, Da Silva E, Stylianou A, Vahdatinia M, Abu-Rustum N, Soslow R, Reis-Filho J, Weigelt B. Genetic heterogeneity of sertoli-leydig and juvenile-type granulosa cell tumors. Gynecol Oncol 2020. [DOI: 10.1016/j.ygyno.2020.06.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
90
|
Dessources K, Holland A, Liu J, Lee S, Selenica P, Wu M, Stylianou A, Reis-Filho J, Hyman D, Hollmann T, Zamarin D, Weigelt B. Immune and genomic profiling of small cell carcinomas of the ovary hypercalcemic type. Gynecol Oncol 2020. [DOI: 10.1016/j.ygyno.2020.05.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
91
|
Smith E, Paula A, Lee S, Selenica P, Chi D, Abu-Rustum N, Weigelt B, Roche KL. Intrauterine lavage as a novel method of detecting somatic mutations present in high-grade serous cancer of the ovary, fallopian tube or peritoneum. Gynecol Oncol 2020. [DOI: 10.1016/j.ygyno.2020.05.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
92
|
Mahdi AH, Huo Y, Chen Y, Selenica P, Sharma A, Merritt E, Barnard N, Chan C, Ganesan S, Reis-Filho JS, Weigelt B, De S, Xia B. Loss of the BRCA1-PALB2 interaction accelerates p53-associated tumor development in mice. Genes Dis 2020; 9:807-813. [PMID: 35782971 PMCID: PMC9243321 DOI: 10.1016/j.gendis.2020.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/18/2022] Open
Abstract
The BRCA1-PALB2-BRCA2 axis, or the BRCA pathway, plays key roles in genome stability maintenance and suppression of breast and several other cancers. Due to frequent p53 mutations in human BRCA1 breast cancers and mouse mammary tumors from Brca1, Brca2 and Palb2 conditional knockout models, it is often thought that p53 inactivation accelerates BRCA1/2 and PALB2-associated tumorigenesis. Here, we studied tumor development in mice with a mutation in Palb2 that disengages the PALB2-BRCA1 interaction in different Trp53 backgrounds. Rather than mammary tumors, Palb2 and Trp53 compound mutant mice developed, with greatly reduced latencies, lymphomas and sarcomas that are typically associated with germline Trp53 inactivation. Whole exome sequencing failed to identify any significant differences in genomic features between the same tumor types of Trp53 single mutant and Palb2;Trp53 compound mutant mice. These results suggest that loss of the BRCA pathway accelerates p53-associated tumor development, possibly without altering the fundamental tumorigenic processes.
Collapse
|
93
|
Arruabarrena-Aristorena A, Maag JLV, Kittane S, Cai Y, Park J, Razavi P, Ferrando L, Selenica P, Karthaus WR, Kannan S, Cocco E, Ho SY, Tan DS, Sallaku M, Sawyers CL, Reis-Fihlo JS, Verma CS, Jauch R, Koche R, Baselga J, Toska E, Scaltriti M. Abstract 3439: FOXA1 mutations reveal distinct chromatin profiles and influence therapeutic response in breast cancer. Cancer Res 2020. [DOI: 10.1158/1538-7445.am2020-3439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
FOXA1 is an evolutionary conserved pioneer factor that binds to condensed chromatin allowing the recruitment of other transcription factors to the DNA. Although mutations in FOXA1 are a hallmark of estrogen receptor-positive (ER+) breast cancers, it is currently unknown whether and how these mutations affect breast cancer development and response to endocrine therapies. In this work, we studied how the genome-wide chromatin recruitment, accessibility and transcriptional outcomes of recurrent FOXA1 mutations can affect therapeutic response in ER+ breast cancer. By examining the landscape of FOXA1 mutations in a cohort of 4,952 breast cancer patients, we identified several hotspot mutations, some of them present also in other malignancies and some others specific to breast cancer. In particular, we characterized three mutations in the Wing2 region and a breast-cancer specific third β strand mutation, namely SY242CS. We also showed that FOXA1 mutations are enriched in metastatic tumors and mutually exclusive with ESR1 mutations, well-known drivers of resistance to endocrine therapy. Using a clinico-genomicaly curated cohort of patients, together with in vitro and in vivo breast models, we associated FOXA1 missense mutations with a lower response to endocrine therapy. Mechanistically, by means of ChIP-seq, ATAC-seq and RNA-seq analyses, we found that FOXA1 mutations in the Wing2 loop display increased chromatin binding affinity at ER loci upon estrogen stimulation, and an enhanced ER-mediated transcription without changes in chromatin accessibility, decoupling FOXA1 Wing2 mutant binding from their pioneering function. These data correlated with the highly organized 3D conformation conferred by FOXA1 Wing2 mutations we predicted by structural modeling. Thus. the enhanced chromatin binding affinity gained by FOXA1 Wing2 mutations might be a mechanism to sustain active estrogen response even in the presence of therapeutic pressure. In contrast, breast specific SY242CS mutant shows neomorphic properties including the ability to open novel chromatin regions, and activate an alternative cistrome and transcriptome. Using an engineered luciferase reporter system, we validated that a non-canonical motif, shared by both gained accessibility and binding sites, is SY242CS-specific. Structural modeling of the binding of WT or SY242CS FOXA1 to this new motif revealed that SY242CS undergoes conformational change that results in a tight interaction with the new DNA motif, not observed in WT FOXA1. Taken together, our findings provide mechanistic insights into how FOXA1 mutations modulate its function in breast cancer to dictate malignant progression and response to endocrine therapy. More broadly, these results position FOXA1 mutations as potential biomarkers of response and potential targets for the treatment of metastatic ER+ breast cancer.
Citation Format: Amaia Arruabarrena-Aristorena, Jesper LV Maag, Srushti Kittane, Yanyan Cai, Jane Park, Pedram Razavi, Lorenzo Ferrando, Pier Selenica, Wouter R. Karthaus, Srinivasaraghavan Kannan, Emiliano Cocco, Sik Y. Ho, Daisylyn Senna Tan, Mirna Sallaku, Charles L. Sawyers, Jorge S. Reis-Fihlo, Chandra S. Verma, Ralf Jauch, Richard Koche, José Baselga, Eneda Toska, Maurizio Scaltriti. FOXA1 mutations reveal distinct chromatin profiles and influence therapeutic response in breast cancer [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 3439.
Collapse
|
94
|
Huo Y, Mahdi A, Selenica P, Reis-Filho JSS, Weigelt B, Xia B. Abstract LB-335: Loss of function of the BRCA1-PALB2-BRCA2 axis accelerates p53-associated tumorigenesis. Cancer Res 2020. [DOI: 10.1158/1538-7445.am2020-lb-335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The BRCA1-PALB2-BRCA2 axis plays essential roles in the DNA damage response, thereby suppressing genome instability and cancer development. It is widely held that p53 loss promotes BRCA/PALB2-associated tumorigenesis. Here, through parallel conditional knockout of Brca1, Palb2 and Brca2 along with one allele of Trp53 in mice, and by studying mice with a mutation that disengages the PALB2-BRCA1 interaction in different Trp53 backgrounds, we present evidence that support an alternative view, that is, functional loss of the BRCA1-PALB2-BRCA2 axis accelerates p53-associated tumorigenesis. Our results also demonstrate a functional equivalence of BRCA1, PALB2 and BRCA2 in their basic tumor suppressive activity, an epistasis between PALB2 and BRCA2 in tumor suppression, and likely complementary roles of BRCA1 and the PALB2/BRCA2 complex in maintaining cell fitness. These findings may significantly advance the current understanding of the genetic mechanisms that underlie the development of BRCA/PALB2- and p53-associated cancers.
Citation Format: Yanying Huo, Amar Mahdi, Pier Selenica, Jorge S S. Reis-Filho, Britta Weigelt, Bing Xia. Loss of function of the BRCA1-PALB2-BRCA2 axis accelerates p53-associated tumorigenesis [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr LB-335.
Collapse
|
95
|
Comen EA, Bowman RL, Selenica P, Kleppe M, Farnoud NR, Pareja F, Weigelt B, Hill CE, Alon A, Geyer FC, Akturk G, Reis-Filho JS, Norton L, Levine RL. Evaluating Clonal Hematopoiesis in Tumor-Infiltrating Leukocytes in Breast Cancer and Secondary Hematologic Malignancies. J Natl Cancer Inst 2020; 112:107-110. [PMID: 31504684 DOI: 10.1093/jnci/djz157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/10/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy and radiation therapy are the foundations of adjuvant therapy for early-stage breast cancer. As a complication of cytotoxic regimens, breast cancer patients are at risk for therapy-related myeloid neoplasms (t-MNs). These t-MNs are commonly refractory to antileukemic therapies and result in poor patient outcomes. We previously demonstrated that somatic mutations in leukemia-related genes are present in the tumor-infiltrating leukocytes (TILeuks) of a subset of early breast cancers. Here, we performed genomic analysis of microdissected breast cancer tumor cells and TILeuks from seven breast cancer patients who subsequently developed leukemia. In four patients, mutations present in the leukemia were detected in breast cancer TILeuks. This finding suggests that TILeuks in the primary breast cancer may harbor the ancestor of the future leukemogenic clone. Additional research is warranted to ascertain whether infiltrating mutant TILeuks could constitute a biomarker for the development of t-MN and to determine the functional consequences of mutant TILeuks.
Collapse
|
96
|
Beca F, Sebastiao APM, Pareja F, Dessources K, Lozada JR, Geyer F, Selenica P, Zeizafoun N, Wen HY, Norton L, Brogi E, Weigelt B, Reis-Filho JS. Whole-exome analysis of metaplastic breast carcinomas with extensive osseous differentiation. Histopathology 2020; 77:321-326. [PMID: 32043609 PMCID: PMC7518240 DOI: 10.1111/his.14088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/08/2020] [Indexed: 01/08/2023]
Abstract
AIMS Metaplastic breast carcinoma (MBC) is a rare type of triple-negative breast cancer that shows vast histological and genetic heterogeneity. Osseous differentiation can be found in different subtypes of MBC. Whether MBCs with osseous differentiation are underpinned by specific genetic alterations has yet to be defined. The aim of this study was to investigate the repertoire of somatic mutations and copy number alterations (CNAs) in three MBCs with extensive osseous differentiation. METHODS AND RESULTS Tumour and normal DNA samples from three MBCs with extensive osseous differentiation were subjected to whole-exome sequencing. Somatic mutations, CNAs and mutational signatures were determined by use of a validated bioinformatics pipeline. Our analyses revealed clonal TP53 hotspot mutations associated with loss of heterozygosity of the wild-type allele coupled with mutations affecting genes related to the Wnt and/or the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathways in all cases analysed. All cases showed a dominant mutational signature 1, with two cases showing a secondary signature 3 in addition to other features of homologous recombination DNA repair defects. The oncostatin M receptor gene, which plays a role in mesenchymal differentiation and bone formation, was found to be mutated in two MBCs with extensive osseous differentiation and in none of 35 previously published 35 MBCs. CONCLUSION Our findings suggest that MBCs with osseous differentiation have somatic mutations similar to those of other forms of MBC.
Collapse
|
97
|
Da Cruz Paula A, da Silva EM, Segura SE, Pareja F, Bi R, Selenica P, Kim SH, Ferrando L, Vahdatinia M, Soslow RA, Vidal A, Gatius S, Przybycin CG, Abu-Rustum NR, Matias-Guiu X, Rubin BP, Reis-Filho JS, DeLair DF, Weigelt B. Genomic profiling of primary and recurrent adult granulosa cell tumors of the ovary. Mod Pathol 2020; 33:1606-1617. [PMID: 32203090 PMCID: PMC7390666 DOI: 10.1038/s41379-020-0514-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Adult-type granulosa cell tumor (aGCT) is a rare malignant ovarian sex cord-stromal tumor, harboring recurrent FOXL2 c.C402G/p.C134W hotspot mutations in 97% of cases. These tumors are considered to have a favorable prognosis, however aGCTs have a tendency for local spread and late recurrences, which are associated with poor survival rates. We sought to determine the genetic alterations associated with aGCT disease progression. We subjected primary non-recurrent aGCTs (n = 7), primary aGCTs that subsequently recurred (n = 9) and their matched recurrences (n = 9), and aGCT recurrences without matched primary tumors (n = 10) to targeted massively parallel sequencing of ≥410 cancer-related genes. In addition, three primary non-recurrent aGCTs and nine aGCT recurrences were subjected to FOXL2 and TERT promoter Sanger sequencing analysis. All aGCTs harbored the FOXL2 C134W hotspot mutation. TERT promoter mutations were found to be significantly more frequent in recurrent (18/28, 64%) than primary aGCTs (5/19, 26%, p = 0.017). In addition, mutations affecting TP53, MED12, and TET2 were restricted to aGCT recurrences. Pathway annotation of altered genes demonstrated that aGCT recurrences displayed an enrichment for genetic alterations affecting cell cycle pathway-related genes. Analysis of paired primary and recurrent aGCTs revealed that TERT promoter mutations were either present in both primary tumors and matched recurrences or were restricted to the recurrence and absent in the respective primary aGCT. Clonal composition analysis of these paired samples further revealed that aGCTs display intra-tumor genetic heterogeneity and harbor multiple clones at diagnosis and relapse. We observed that in a subset of cases, recurrences acquired additional genetic alterations not present in primary aGCTs, including TERT, MED12, and TP53 mutations and CDKN2A/B homozygous deletions. Albeit harboring relatively simple genomes, our data provide evidence to suggest that aGCTs are genetically heterogeneous tumors and that TERT promoter mutations and/or genetic alterations affecting other cell cycle-related genes may be associated with disease progression and recurrences.
Collapse
|
98
|
Pareja F, Lee JY, Brown DN, Piscuoglio S, Gularte-Mérida R, Selenica P, Da Cruz Paula A, Arunachalam S, Kumar R, Geyer FC, Silveira C, da Silva EM, Li A, Marchiò C, Ng CKY, Mariani O, Fuhrmann L, Wen HY, Norton L, Vincent-Salomon A, Brogi E, Reis-Filho JS, Weigelt B. The Genomic Landscape of Mucinous Breast Cancer. J Natl Cancer Inst 2020; 111:737-741. [PMID: 30649385 DOI: 10.1093/jnci/djy216] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/18/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Mucinous carcinoma of the breast (MCB) is a rare histologic form of estrogen receptor (ER)-positive/HER2-negative breast cancer (BC) characterized by tumor cells floating in lakes of mucin. We assessed the genomic landscape of 32 MCBs by whole-exome sequencing and/or RNA-sequencing. GATA3 (23.8%), KMT2C (19.0%), and MAP3K1 (14.3%) were the most frequently mutated genes in pure MCBs. In addition, two recurrent but not pathognomonic fusion genes, OAZ1-CSNK1G2 and RFC4-LPP, were detected in 3/31 (9.7%) and 2/31 (6.5%) samples, respectively. Compared with ER-positive/HER2-negative common forms of BC, MCBs displayed lower PIK3CA and TP53 mutation rates and fewer concurrent 1q gains and 16q losses. Clonal decomposition analysis of the mucinous and ductal components independently microdissected from five mixed MCBs revealed that they are clonally related and evolve following clonal selection or parallel evolution. Our findings indicate that MCB represents a genetically distinct ER-positive/HER2-negative form of BC.
Collapse
|
99
|
Park W, Chen J, Chou JF, Varghese AM, Yu KH, Wong W, Capanu M, Balachandran V, McIntyre CA, El Dika I, Khalil DN, Harding JJ, Ghalehsari N, McKinnell Z, Chalasani SB, Makarov V, Selenica P, Pei X, Lecomte N, Kelsen DP, Abou-Alfa GK, Robson ME, Zhang L, Berger MF, Schultz N, Chan TA, Powell SN, Reis-Filho JS, Iacobuzio-Donahue CA, Riaz N, O'Reilly EM. Genomic Methods Identify Homologous Recombination Deficiency in Pancreas Adenocarcinoma and Optimize Treatment Selection. Clin Cancer Res 2020; 26:3239-3247. [PMID: 32444418 PMCID: PMC7380542 DOI: 10.1158/1078-0432.ccr-20-0418] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/07/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Genomic methods can identify homologous recombination deficiency (HRD). Rigorous evaluation of their outcome association to DNA damage response-targeted therapies like platinum in pancreatic ductal adenocarcinoma (PDAC) is essential in maximizing therapeutic outcome. EXPERIMENTAL DESIGN We evaluated progression-free survival (PFS) and overall survival (OS) of patients with advanced-stage PDAC, who had both germline- and somatic-targeted gene sequencing. Homologous recombination gene mutations (HRm) were evaluated: BRCA1, BRCA2, PALB2, ATM, BAP1, BARD1, BLM, BRIP1, CHEK2, FAM175A, FANCA, FANCC, NBN, RAD50, RAD51, RAD51C, and RTEL1 HRm status was grouped as: (i) germline versus somatic; (ii) core (BRCAs and PALB2) versus non-core (other HRm); and (iii) monoallelic versus biallelic. Genomic instability was compared using large-scale state transition, signature 3, and tumor mutation burden. RESULTS Among 262 patients, 50 (19%) had HRD (15% germline and 4% somatic). Both groups were analyzed together due to lack of difference in their genomic instability and outcome. Median [95% confidence interval (CI)] follow-up was 21.9 (1.4-57.0) months. Median OS and PFS were 15.5 (14.6-19) and 7 (6.1-8.1) months, respectively. Patients with HRD had improved PFS compared with no HRD when treated with first-line (1L) platinum [HR, 0.44 (95% CI: 0.29-0.67); P < 0.01], but not with 1L-non-platinum. Multivariate analysis showed HRD patients had improved OS regardless of their first-line treatment, but most had platinum exposure during their course. Biallelic HRm (11%) and core HRm (12%) had higher genomic instability, which translated to improved PFS on first-line platinum (1L-platinum) versus 1L-non-platinum. CONCLUSIONS Pathogenic HRm identifies HRD in patients with PDAC with the best outcome when treated with 1L-platinum. Biallelic HRm and core HRm further enriched benefit from 1L-platinum from HRD.
Collapse
|
100
|
Liu YL, Selenica P, Zhou Q, Iasonos A, Callahan M, Feit NZ, Boland J, Vazquez-Garcia I, Mandelker D, Zehir A, Burger RA, Powell DJ, Friedman C, Cadoo K, Grisham R, Konner JA, O'Cearbhaill RE, Aghajanian C, Reis-Filho JS, Weigelt B, Zamarin D. BRCA Mutations, Homologous DNA Repair Deficiency, Tumor Mutational Burden, and Response to Immune Checkpoint Inhibition in Recurrent Ovarian Cancer. JCO Precis Oncol 2020; 4:2000069. [PMID: 32923884 DOI: 10.1200/po.20.00069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Homologous DNA repair-deficient (HRD) ovarian cancers (OCs), including those with BRCA1/2 mutations, have higher levels of genetic instability, potentially resulting in higher immunogenicity, and have been suggested to respond better to immune checkpoint inhibitors (ICIs) than homologous DNA repair-proficient OCs. However, clinical evidence is lacking. The study aimed to evaluate the associations between BRCA1/2 mutations, HRD, and other genomic parameters and response to ICIs and survival in OC. METHODS This is a single-institution retrospective analysis of women with recurrent OC treated with ICIs. BRCA1/2 mutation status and clinicopathologic variables were abstracted from the medical records. Targeted and whole-exome sequencing data available for a subset of patients were used to assess tumor mutational burden (TMB), HRD, and fraction of genome altered (FGA). ICI response was defined as lack of disease progression for ≥ 24 weeks. Associations of BRCA1/2 status and genomic alterations with progression-free survival (PFS) and overall survival (OS) were determined using Cox proportional hazards models. RESULTS Of the 143 women treated with ICIs, 134 had known BRCA1/2 mutation status. Deleterious germline or somatic BRCA1/2 mutations were present in 31 women (24%). There was no association between presence of BRCA1/2 mutations and response (P = .796) or survival. Genomic analysis in 73 women found no association between TMB (P = .344) or HRD (P = .222) and response, PFS, or OS. There were also no significant differences in somatic genetic alterations between responders and nonresponders. High FGA was associated with an improvement in PFS (P = .014) and OS (P = .01). CONCLUSION TMB, BRCA1/2 mutations, and HRD are not associated with response or survival, cautioning against their use as selection criteria for ICI in recurrent OC. FGA should be investigated further as a biomarker of response to immunotherapy in OC.
Collapse
|