76
|
Laws TR, Davey MS, Green C, Cooper IAM, Titball RW, Lukaszewski RA. Yersinia pseudotuberculosis is resistant to killing by human neutrophils. Microbes Infect 2011; 13:607-11. [PMID: 21354325 DOI: 10.1016/j.micinf.2011.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/05/2011] [Accepted: 02/09/2011] [Indexed: 11/19/2022]
Abstract
The interaction between human neutrophils and the Gram negative gastrointestinal pathogen Yersinia pseudotuberculosis was investigated in vitro. Despite the wealth of data describing how Yersinia can affect the function of neutrophils, there are no published studies describing if neutrophil cells can affect the viability of Y. pseudotuberculosis. The wild-type IP32953 strain of Y. pseudotuberculosis was found to be resistant to killing by human neutrophils. Confocal examination and flow-cytometric analysis of this interaction revealed that bacteria were taken up.
Collapse
|
77
|
Suwannasaen D, Mahawantung J, Chaowagul W, Limmathurotsakul D, Felgner PL, Davies H, Bancroft GJ, Titball RW, Lertmemongkolchai G. Human immune responses to Burkholderia pseudomallei characterized by protein microarray analysis. J Infect Dis 2011; 203:1002-11. [PMID: 21300673 DOI: 10.1093/infdis/jiq142] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We aimed to determine the antibody and T cell responses to Burkholderia pseudomallei of humans to select candidate vaccine antigens. METHODS For antibody profiling, a protein microarray of 154 B. pseudomallei proteins was probed with plasma from 108 healthy individuals and 72 recovered patients. Blood from 20 of the healthy and 30 of the recovered individuals was also obtained for T cell assays. RESULTS Twenty-seven proteins distinctively reacted with human plasma following environmental exposure or clinical melioidosis. We compared the responses according to the patient's history of subsequent relapse, and antibody response to BPSL2765 was higher in plasma from individuals who had only 1 episode of disease than in those with recurrent melioidosis. A comparison of antibody and T cell responses to 5 B. pseudomallei proteins revealed that BimA and flagellin-induced responses were similar but that BPSS0530 could induce T cell responses in healthy controls more than in recovered patients. CONCLUSIONS By combining large-scale antibody microarrays and assays of T cell-mediated immunity, we identified a panel of novel B. pseudomallei proteins that show distinct patterns of reactivity in different stages of human melioidosis. These proteins may be useful candidates for development of subunit-based vaccines and in monitoring the risks of treatment failure and relapse.
Collapse
|
78
|
Wand ME, Müller CM, Titball RW, Michell SL. Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiol 2011; 11:11. [PMID: 21241461 PMCID: PMC3025829 DOI: 10.1186/1471-2180-11-11] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/17/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Burkholderia pseudomallei is the causative agent of melioidosis, a tropical disease of humans with a variable and often fatal outcome. In murine models of infection, different strains exhibit varying degrees of virulence. In contrast, two related species, B. thailandensis and B. oklahomensis, are highly attenuated in mice. Our aim was to determine whether virulence in mice is reflected in macrophage or wax moth larvae (Galleria mellonella) infection models. RESULTS B. pseudomallei strains 576 and K96243, which have low median lethal dose (MLD) values in mice, were able to replicate and induce cellular damage in macrophages and caused rapid death of G. mellonella. In contrast, B. pseudomallei strain 708a, which is attenuated in mice, showed reduced replication in macrophages, negligible cellular damage and was avirulent in G. mellonella larvae. B. thailandensis isolates were less virulent than B. pseudomallei in all of the models tested. However, we did record strain dependent differences. B. oklahomensis isolates were the least virulent isolates. They showed minimal ability to replicate in macrophages, were unable to evoke actin-based motility or to form multinucleated giant cells and were markedly attenuated in G. mellonella compared to B. thailandensis. CONCLUSIONS We have shown that the alternative infection models tested here, namely macrophages and Galleria mellonella, are able to distinguish between strains of B. pseudomallei, B. thailandensis and B. oklahomensis and that these differences reflect the observed virulence in murine infection models. Our results indicate that B. oklahomensis is the least pathogenic of the species investigated. They also show a correlation between isolates of B. thailandensis associated with human infection and virulence in macrophage and Galleria infection models.
Collapse
|
79
|
Senior NJ, Bagnall MC, Champion OL, Reynolds SE, La Ragione RM, Woodward MJ, Salguero FJ, Titball RW. Galleria mellonella as an infection model for Campylobacter jejuni virulence. J Med Microbiol 2011; 60:661-669. [PMID: 21233296 DOI: 10.1099/jmm.0.026658-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Larvae of Galleria mellonella (Greater Wax Moth) have been shown to be susceptible to Campylobacter jejuni infection and our study characterizes this infection model. Following infection with C. jejuni human isolates, bacteria were visible in the haemocoel and gut of challenged larvae, and there was extensive damage to the gut. Bacteria were found in the extracellular and cell-associated fraction in the haemocoel, and it was shown that C. jejuni can survive in insect cells. Finally, we have used the model to screen a further 67 C. jejuni isolates belonging to different MLST types. Isolates belonging to ST257 were the most virulent in the Galleria model, whereas those belonging to ST21 were the least virulent.
Collapse
|
80
|
Qazi O, Rani M, Gnanam AJ, Cullen TW, Stead CM, Kensing H, McCaul K, Ngugi S, Prior JL, Lipka A, Nagy JM, Whitlock GC, Judy BM, Harding SV, Titball RW, Sidhu SS, Trent MS, Kitto GB, Torres A, Estes DM, Iverson B, Georgiou G, Brown KA. Development of reagents and assays for the detection of pathogenic Burkholderia species. Faraday Discuss 2011; 149:23-36; discussion 63-77. [PMID: 21413172 PMCID: PMC3593192 DOI: 10.1039/c005422b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid detection of the category B biothreat agents Burkholderia pseudomallei and Burkholderia mallei in acute infections is critical to ensure that appropriate treatment is administered quickly to reduce an otherwise high probability of mortality (ca. 40% for B. pseudomallei). We are developing assays that can be used in clinical laboratories or security applications for the direct detection of surface-localized and secreted macromolecules produced by these organisms. We present our current medium-throughout approach for target selection and production of Burkholderia macromolecules and describe the generation of a Fab molecule targeted to the B. mallei BimA protein. We also present development of prototype assays for detecting Burkholderia species using anti-lipopolysaccharide antibodies.
Collapse
|
81
|
Tippayawat P, Pinsiri M, Rinchai D, Riyapa D, Romphruk A, Gan YH, Houghton RL, Felgner PL, Titball RW, Stevens MP, Galyov EE, Bancroft GJ, Lertmemongkolchai G. Burkholderia pseudomallei proteins presented by monocyte-derived dendritic cells stimulate human memory T cells in vitro. Infect Immun 2011; 79:305-13. [PMID: 21041491 PMCID: PMC3019888 DOI: 10.1128/iai.00803-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/25/2010] [Accepted: 10/22/2010] [Indexed: 11/20/2022] Open
Abstract
Melioidosis is a severe infectious disease caused by the saprophytic facultative intracellular pathogen Burkholderia pseudomallei. The disease is endemic in Southeast Asia and Northern Australia, and no effective vaccine exists. To describe human cell-mediated immune responses to B. pseudomallei and to identify candidate antigens for vaccine development, the ability of antigen-pulsed monocyte-derived dendritic cells (moDCs) to trigger autologous T-cell responses to B. pseudomallei and its products was tested. moDCs were prepared from healthy individuals exposed or not exposed to B. pseudomallei, based on serological evidence. These were pulsed with heat-killed B. pseudomallei or purified antigens, including ABC transporters (LolC, OppA, and PotF), Bsa type III secreted proteins (BipD and BopE), tandem repeat sequence-containing proteins (Rp1 and Rp2), flagellin, and heat shock proteins (Hsp60 and Hsp70), prior to being mixed with autologous T-cell populations. After pulsing of cells with either heat-killed B. pseudomallei, LolC, or Rp2, coculturing the antigen-pulsed moDCs with T cells elicited gamma interferon production from CD4(+) T cells from seropositive donors at levels greater than those for seronegative donors. These antigens also induced granzyme B (cytotoxic) responses from CD8(+) T cells. Activation of antigen-specific CD4(+) T cells required direct contact with moDCs and was therefore not dependent on soluble mediators. Rp peptide epitopes recognized by T cells in healthy individuals were identified. Our study provides valuable novel data on the induction of human cell-mediated immune responses to B. pseudomallei and its protein antigens that may be exploited in the rational development of vaccines to combat melioidosis.
Collapse
|
82
|
Champion OL, Karlyshev A, Cooper IAM, Ford DC, Wren BW, Duffield M, Oyston PCF, Titball RW. Yersinia pseudotuberculosis mntH functions in intracellular manganese accumulation, which is essential for virulence and survival in cells expressing functional Nramp1. MICROBIOLOGY-SGM 2010; 157:1115-1122. [PMID: 21183572 DOI: 10.1099/mic.0.045807-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Manganese has an important yet undefined role in the virulence of many bacterial pathogens. In this study we confirm that a null mutation in Yersinia pseudotuberculosis mntH reduces intracellular manganese accumulation. An mntH mutant was susceptible to killing by reactive oxygen species when grown under manganese-limited conditions. The mntH mutant was defective in survival and growth in macrophages expressing functional Nramp1, but in macrophages deficient in Nramp the bacteria were able to survive and replicate. In Galleria mellonella, the mntH mutant was attenuated. Taken together, these data suggest a role for manganese in Y. pseudotuberculosis during macrophage intracellular survival, protecting the bacteria from the antimicrobial products released during the respiratory burst.
Collapse
|
83
|
Ngugi SA, Ventura VV, Qazi O, Harding SV, Kitto GB, Estes DM, Dell A, Titball RW, Atkins TP, Brown KA, Hitchen PG, Prior JL. Lipopolysaccharide from Burkholderia thailandensis E264 provides protection in a murine model of melioidosis. Vaccine 2010; 28:7551-5. [PMID: 20837078 DOI: 10.1016/j.vaccine.2010.08.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 08/10/2010] [Accepted: 08/11/2010] [Indexed: 11/26/2022]
Abstract
Burkholderia thailandensis is a less virulent close relative of Burkholderia pseudomallei, a CDC category B biothreat agent. We have previously shown that lipopolysaccharide (LPS) extracted from B. pseudomallei can provide protection against a lethal challenge of B. pseudomallei in a mouse model of melioidosis. Sugar analysis on LPS from B. thailandensis strain E264 confirmed that this polysaccharide has a similar structure to LPS from B. pseudomallei. Mice were immunised with LPS from B. thailandensis or B. pseudomallei and challenged with a lethal dose of B. pseudomallei strain K96243. Similar protection levels were observed when either LPS was used as the immunogen. This data suggests that B. thailandensis LPS has the potential to be used as part of a subunit based vaccine against pathogenic B. pseudomallei.
Collapse
|
84
|
Sarkar-Tyson M, Titball RW. Progress toward development of vaccines against melioidosis: A review. Clin Ther 2010; 32:1437-45. [DOI: 10.1016/j.clinthera.2010.07.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
|
85
|
Michell SL, Dean RE, Eyles JE, Hartley MG, Waters E, Prior JL, Titball RW, Oyston PCF. Deletion of the Bacillus anthracis capB homologue in Francisella tularensis subspecies tularensis generates an attenuated strain that protects mice against virulent tularaemia. J Med Microbiol 2010; 59:1275-1284. [PMID: 20651039 DOI: 10.1099/jmm.0.018911-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
As there is currently no licensed vaccine against Francisella tularensis, the causative agent of tularaemia, the bacterium is an agent of concern as a potential bioweapon. Although F. tularensis has a low infectious dose and high associated mortality, it possesses few classical virulence factors. An analysis of the F. tularensis subspecies tularensis genome sequence has revealed the presence of a region containing genes with low sequence homology to part of the capBCADE operon of Bacillus anthracis. We have generated an isogenic capB mutant of F. tularensis subspecies tularensis SchuS4 and shown it to be attenuated. Furthermore, using BALB/c mice, we have demonstrated that this capB strain affords protection against significant homologous challenge with the wild-type strain. These data have important implications for the development of a defined and efficacious tularaemia vaccine.
Collapse
|
86
|
Mayers C, Duffield M, Rowe S, Miller J, Lingard B, Hayward S, Titball RW. Analysis of known bacterial protein vaccine antigens reveals biased physical properties and amino acid composition. Comp Funct Genomics 2010; 4:468-78. [PMID: 18629010 PMCID: PMC2447292 DOI: 10.1002/cfg.319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2003] [Revised: 07/24/2003] [Accepted: 07/28/2003] [Indexed: 11/09/2022] Open
Abstract
Many vaccines have been developed from live attenuated forms of bacterial pathogens or from killed bacterial cells. However, an increased awareness of the potential for transient side-effects following vaccination has prompted an increased emphasis on the use of sub-unit vaccines, rather than those based on whole bacterial cells. The identification of vaccine sub-units is often a lengthy process and bioinformatics approaches have recently been used to identify candidate protein vaccine antigens. Such methods ultimately offer the promise of a more rapid advance towards preclinical studies with vaccines. We have compared the properties of known bacterial vaccine antigens against randomly selected proteins and identified differences in the make-up of these two groups. A computer algorithm that exploits these differences allows the identification of potential vaccine antigen candidates from pathogenic bacteria on the basis of their amino acid composition, a property inherently associated with sub-cellular location.
Collapse
|
87
|
Champion OL, Karlyshev AV, Senior NJ, Woodward M, La Ragione R, Howard SL, Wren BW, Titball RW. Insect infection model for Campylobacter jejuni reveals that O-methyl phosphoramidate has insecticidal activity. J Infect Dis 2010; 201:776-82. [PMID: 20113177 DOI: 10.1086/650494] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Galleria mellonella (wax moth) larvae have elsewhere been shown to be susceptible to pathogens such as Francisella tularensis, Burkholderia mallei, and Pseudomonas aeruginosa. We report that the larvae are rapidly killed by Campylobacter jejuni at 37C. Three strains of C. jejuni tested, 11168H (human diarrheal isolate), G1 (human Guillain-Barré syndrome isolate), and 81-176 (human diarrheal isolate), were equally effective at killing G. mellonella larvae. A panel of defined mutants of C. jejuni 11168H, in known or putative virulence genes, showed different degrees of attenuation in G. mellonella larvae. A mutant lacking the O-methyl phosphoramidate (MeOPN) capsule side group was attenuated, clearly demonstrating that MeOPN has a role in virulence. This new model of C. jejuni infection should facilitate the identification of novel virulence genes.
Collapse
|
88
|
Laws TR, Davey MS, Titball RW, Lukaszewski R. Neutrophils are important in early control of lung infection by Yersinia pestis. Microbes Infect 2010; 12:331-5. [PMID: 20114086 DOI: 10.1016/j.micinf.2010.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 01/12/2010] [Accepted: 01/18/2010] [Indexed: 10/19/2022]
Abstract
In this paper we evaluate the role of neutrophils in pneumonic plague. Splenic neutrophils from naïve BALB/c mice were found to reduce numbers of culturable Yersinia pestis strain GB in suspension. A murine, BALB/c, intranasal model of pneumonic plague was used in conjunction with in vivo neutrophil ablation, using the GR-1 antibody. This treatment reduced neutrophil numbers without affecting other leukocyte numbers. Neutrophil ablated mice exhibited increased bacterial colonisation of the lung 24h post infection. Furthermore, exposure of Y. pestis to human neutrophils resulted in a 5-fold reduction in the number of viable bacterial cells, whereas, PBMCs had no effect.
Collapse
|
89
|
Oyston PCF, Mellado-Sanchez G, Pasetti MF, Nataro JP, Titball RW, Atkins HS. A Yersinia pestis guaBA mutant is attenuated in virulence and provides protection against plague in a mouse model of infection. Microb Pathog 2010; 48:191-5. [PMID: 20096773 DOI: 10.1016/j.micpath.2010.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/04/2010] [Accepted: 01/14/2010] [Indexed: 12/24/2022]
Abstract
There is a need to develop effective countermeasures for Yersinia pestis, the etiologic agent of plague and a potential bioterrorism agent. Salmonella and Shigella spp. deleted in the guaBA genes involved in guanine biosynthesis have been shown to be attenuated in vivo. In this study, we sought to determine whether deletion of the guaBA operon would render Y. pestis auxotrophic for guanine and avirulent; such a strain could serve as a live attenuated plague vaccine candidate. A Y. pestis guaBA mutant was generated by specific deletion of a segment of the guaBA operon, producing a guanine auxotroph that was highly attenuated in a mouse model of Y. pestis infection. Furthermore, mice vaccinated with a single dose of 7x10(4)CFU via the intravenous route were fully protected against subsequent lethal challenge with the Y. pestis parental strain. These findings identify guaBA as a target for deletion to generate a live attenuated plague vaccine.
Collapse
|
90
|
Gnanam AJ, Hall B, Shen X, Piasecki S, Vernados A, Galyov EE, Smither SJ, Kitto GB, Titball RW, Ellington AD, Brown KA. Development of aptamers specific for potential diagnostic targets in Burkholderia pseudomallei. Trans R Soc Trop Med Hyg 2009; 102 Suppl 1:S55-7. [PMID: 19121689 DOI: 10.1016/s0035-9203(08)70015-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Improved diagnostic reagents would be of considerable benefit in enhancing the specificity and sensitivity of rapid assays for Burkholderia pseudomallei, the causative agent of melioidosis. The purpose of this work is to develop aptamers, high affinity RNA-based molecular recognition molecules, which could be used as reagents for identification of the whole organism in assays of biological samples. Data are presented demonstrating the purification of recombinant B. pseudomallei secreted or surface-exposed macromolecules, which have been expressed in Escherichia coli, and the initial stages of aptamer generation using these recombinant proteins. Future studies will focus upon the expansion of this methodology to include other target macromolecules located on or near the outer membrane of this organism.
Collapse
|
91
|
Titball RW, Russell P, Cuccui J, Easton A, Haque A, Atkins T, Sarkar-Tyson M, Harley V, Wren B, Bancroft GJ. Burkholderia pseudomallei: animal models of infection. Trans R Soc Trop Med Hyg 2009; 102 Suppl 1:S111-6. [PMID: 19121670 DOI: 10.1016/s0035-9203(08)70026-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A range of animal models of Burkholderia pseudomallei infection have been reported, and the host species differ widely both in their susceptibility to infection and in the pathogenesis of disease. In mice, and depending on the route of infection, dose, and mouse strain, the disease can range from a chronic, and in some cases, an apparently latent infection to an acute fulminant disease. Alternative small animal models of infection include diabetic rats or hamsters. Larger animal models of disease have not yet been fully developed. It is not clear which of the small animal models of melioidosis most accurately reflect disease in humans. However, the findings that diabetic rats are susceptible to infection, that some strains of mice can develop persistent subclinical infections that can spontaneously reactivate, and that inhalation exposure generally results in more acute disease suggest that these different models mimic different aspects of human melioidosis.
Collapse
|
92
|
Titball RW. Clostridium perfringens vaccines. Vaccine 2009; 27 Suppl 4:D44-7. [DOI: 10.1016/j.vaccine.2009.07.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
|
93
|
Dean RE, Ireland PM, Jordan JE, Titball RW, Oyston PCF. RelA regulates virulence and intracellular survival of Francisella novicida. MICROBIOLOGY-SGM 2009; 155:4104-4113. [PMID: 19762448 DOI: 10.1099/mic.0.031021-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Analysis of the genome of Francisella tularensis has revealed few regulatory systems, and how the organism adapts to conditions in different niches is poorly understood. The stringent response is a global stress response mediated by (p)ppGpp. The enzyme RelA has been shown to be involved in generation of this signal molecule in a range of bacterial species. We investigated the effect of inactivation of the relA gene in Francisella by generating a mutant in Francisella novicida. Under amino acid starvation conditions, the relA mutant was defective for (p)ppGpp production. Characterization showed the mutant to grow similarly to the wild-type, except that it entered stationary phase later than wild-type cultures, resulting in higher cell yields. The relA mutant showed increased biofilm formation, which may be linked to the delay in entering stationary phase, which in turn would result in higher cell numbers present in the biofilm and reduced resistance to in vitro stress. The mutant was attenuated in the J774A macrophage cell line and was shown to be attenuated in the mouse model of tularaemia, but was able to induce a protective immune response. Therefore, (p)ppGpp appears to be an important intracellular signal, integral to the pathogenesis of F. novicida.
Collapse
|
94
|
Halling-Brown M, Shaban R, Frampton D, Sansom CE, Davies M, Flower D, Duffield M, Titball RW, Brusic V, Moss DS. Proteins accessible to immune surveillance show significant T-cell epitope depletion: Implications for vaccine design. Mol Immunol 2009; 46:2699-705. [DOI: 10.1016/j.molimm.2009.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
|
95
|
Thwaite JE, Humphrey S, Fox MA, Savage VL, Laws TR, Ulaeto DO, Titball RW, Atkins HS. The cationic peptide magainin II is antimicrobial for Burkholderia cepacia-complex strains. J Med Microbiol 2009; 58:923-929. [PMID: 19502364 DOI: 10.1099/jmm.0.008128-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study was undertaken to determine the antibacterial activity of eight cationic antimicrobial peptides towards strains of genomovars I-V of the Burkholderia cepacia complex (Bcc) in time-kill assays. All but one of the peptides failed to show activity against the panel of test strains. The exception was magainin II, a 23 aa peptide isolated from the epidermis of the African clawed frog, Xenopus laevis, which exhibited significant bactericidal activity for Bcc genomovars most frequently associated with lung infection of patients with cystic fibrosis. In vitro studies indicated that magainin II protected a human bronchial epithelial cell line (BEAS-2B) from killing by Bcc and suggest that this peptide may have therapeutic potential against these organisms.
Collapse
|
96
|
Champion OL, Cooper IAM, James SL, Ford D, Karlyshev A, Wren BW, Duffield M, Oyston PCF, Titball RW. Galleria mellonella as an alternative infection model for Yersinia pseudotuberculosis. MICROBIOLOGY-SGM 2009; 155:1516-1522. [PMID: 19383703 DOI: 10.1099/mic.0.026823-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report that larvae of the wax moth (Galleria mellonella) are susceptible to infection with the human enteropathogen Yersinia pseudotuberculosis at 37 degrees C. Confocal microscopy demonstrated that in the initial stages of infection the bacteria were taken up into haemocytes. To evaluate the utility of this model for screening Y. pseudotuberculosis mutants we constructed and tested a superoxide dismutase C (sodC) mutant. This mutant showed increased susceptibility to superoxide, a key mechanism of killing in insect haemocytes and mammalian phagocytes. It showed reduced virulence in the murine yersiniosis infection model and in contrast to the wild-type strain IP32953 was unable to kill G. mellonella. The complemented mutant regained all phenotypic properties associated with SodC, confirming the important role of this metalloenzyme in two Y. pseudotuberculosis infection models.
Collapse
|
97
|
Tippayawat P, Saenwongsa W, Mahawantung J, Suwannasaen D, Chetchotisakd P, Limmathurotsakul D, Peacock SJ, Felgner PL, Atkins HS, Titball RW, Bancroft GJ, Lertmemongkolchai G. Phenotypic and functional characterization of human memory T cell responses to Burkholderia pseudomallei. PLoS Negl Trop Dis 2009; 3:e407. [PMID: 19352426 PMCID: PMC2660609 DOI: 10.1371/journal.pntd.0000407] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 03/06/2009] [Indexed: 11/26/2022] Open
Abstract
Background Infection with the Gram-negative bacterium Burkholderia pseudomallei is an important cause of community-acquired lethal sepsis in endemic regions in southeast Asia and northern Australia and is increasingly reported in other tropical areas. In animal models, production of interferon-gamma (IFN-γ) is critical for resistance, but in humans the characteristics of IFN-γ production and the bacterial antigens that are recognized by the cell-mediated immune response have not been defined. Methods Peripheral blood from 133 healthy individuals who lived in the endemic area and had no history of melioidosis, 60 patients who had recovered from melioidosis, and 31 other patient control subjects were stimulated by whole bacteria or purified bacterial proteins in vitro, and IFN-γ responses were analyzed by ELISPOT and flow cytometry. Findings B. pseudomallei was a potent activator of human peripheral blood NK cells for innate production of IFN-γ. In addition, healthy individuals with serological evidence of exposure to B. pseudomallei and patients recovered from active melioidosis developed CD4+ (and CD8+) T cells that recognized whole bacteria and purified proteins LolC, OppA, and PotF, members of the B. pseudomallei ABC transporter family. This response was primarily mediated by terminally differentiated T cells of the effector–memory (TEMRA) phenotype and correlated with the titer of anti-B. pseudomallei antibodies in the serum. Conclusions Individuals living in a melioidosis-endemic region show clear evidence of T cell priming for the ability to make IFN-γ that correlates with their serological status. The ability to detect T cell responses to defined B. pseudomallei proteins in large numbers of individuals now provides the opportunity to screen candidate antigens for inclusion in protein or polysaccharide–conjugate subunit vaccines against this important but neglected disease. The Gram-negative bacterium, Burkholderia pseudomallei, is a public health problem in southeast Asia and northern Australia and a Centers for Disease Control and Prevention listed Category B potential bioterrorism agent. It is the causative agent of melioidosis, and clinical manifestations vary from acute sepsis to chronic localized and latent infection, which can reactivate decades later. B. pseudomallei is the major cause of community-acquired pneumonia and septicemia in northeast Thailand. In spite of the medical importance of B. pseudomallei, little is known about the mechanisms of pathogenicity and the immunological pathways of host defense. There is no available vaccine, and the mortality rate in acute cases can exceed 40% with 10–15% of survivors relapsing or being reinfected despite prolonged and complete treatments. In this article, we describe cell-mediated immune responses to B. pseudomallei in humans living in northeast Thailand and demonstrate clear evidence of T cell priming in healthy seropositive individuals and patients who recovered from melioidosis. This is the most detailed study yet performed on the cell types that produce interferon-gamma to B. pseudomallei in humans and the antigens that they recognize and the first to study large sample numbers in the primary endemic focus of melioidosis in the world.
Collapse
|
98
|
Hoang TH, Hong HA, Clark GC, Titball RW, Cutting SM. Recombinant Bacillus subtilis expressing the Clostridium perfringens alpha toxoid is a candidate orally delivered vaccine against necrotic enteritis. Infect Immun 2008; 76:5257-65. [PMID: 18779344 PMCID: PMC2573343 DOI: 10.1128/iai.00686-08] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 08/01/2008] [Accepted: 08/27/2008] [Indexed: 11/20/2022] Open
Abstract
Recombinant Bacillus subtilis endospores have been used to vaccinate against tetanus and anthrax. In this work, we have developed spores that could be used to vaccinate against Clostridium perfringens alpha toxin and that could be used to protect against gas gangrene in humans and necrotic enteritis in poultry. The primary active agent in both cases is alpha toxin. A carboxy-terminal segment of the alpha toxin gene (cpa) fused to the glutathione-S-transferase (GST) gene was cloned in B. subtilis such that the encoded GST-Cpa(247-370) polypeptide had been expressed in the following three different ways: expression in the vegetative cell, expression on the surface of the spore coat (fused to the CotB spore coat protein), and a combined approach of spore coat expression coupled with expression in the vegetative cell. Mice immunized orally or nasally with three doses of recombinant spores that carried GST-Cpa(247-370) on the spore surface showed the most striking responses. This included seroconversion with anti-Cpa(247-370)-specific immunoglobulin G (IgG) responses in their sera, a Th2 bias, and secretory IgA responses in saliva, feces, and lung samples. Neutralizing IgG antibodies to alpha toxin were detected using in vitro and in vivo assays, and a toxin challenge established protection. Mice immunized nasally or orally with recombinant spores were protected against a challenge with 12 median lethal doses of alpha toxin. Existing use of spores as competitive exclusion agents in animal feeds supports their use as a potentially economical and heat-stable vaccine for the poultry industry.
Collapse
|
99
|
Van Immerseel F, Rood JI, Moore RJ, Titball RW. Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol 2008; 17:32-6. [PMID: 18977143 DOI: 10.1016/j.tim.2008.09.005] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/05/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
Abstract
For decades, low doses of antibiotics have been used widely in animal production to promote growth. However, there is a trend to reduce this use of antibiotics in feedstuffs, and legislation is now in place in Europe to prohibit their use in this way. As a consequence, economically important diseases, such as necrotic enteritis (NE) of chickens, that are caused by Clostridium perfringens have become more prevalent. Recent research is creating a paradigm shift in our understanding of the pathogenesis of NE and is now providing information that will be necessary to monitor and control the incidence of NE in poultry.
Collapse
|
100
|
Stabler RA, Dawson LF, Oyston PCF, Titball RW, Wade J, Hinds J, Witney AA, Wren BW. Development and application of the active surveillance of pathogens microarray to monitor bacterial gene flux. BMC Microbiol 2008; 8:177. [PMID: 18844996 PMCID: PMC2607285 DOI: 10.1186/1471-2180-8-177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/09/2008] [Indexed: 11/23/2022] Open
Abstract
Background Human and animal health is constantly under threat by emerging pathogens that have recently acquired genetic determinants that enhance their survival, transmissibility and virulence. We describe the construction and development of an Active Surveillance of Pathogens (ASP) oligonucleotide microarray, designed to 'actively survey' the genome of a given bacterial pathogen for virulence-associated genes. Results The microarray consists of 4958 reporters from 151 bacterial species and include genes for the identification of individual bacterial species as well as mobile genetic elements (transposons, plasmid and phage), virulence genes and antibiotic resistance genes. The ASP microarray was validated with nineteen bacterial pathogens species, including Francisella tularensis, Clostridium difficile, Staphylococcus aureus, Enterococcus faecium and Stenotrophomonas maltophilia. The ASP microarray identified these bacteria, and provided information on potential antibiotic resistance (eg sufamethoxazole resistance and sulfonamide resistance) and virulence determinants including genes likely to be acquired by horizontal gene transfer (e.g. an alpha-haemolysin). Conclusion The ASP microarray has potential in the clinic as a diagnostic tool, as a research tool for both known and emerging pathogens, and as an early warning system for pathogenic bacteria that have been recently modified either naturally or deliberately.
Collapse
|