76
|
Velasco PT, Heffern MC, Sebollela A, Popova IA, Lacor PN, Lee KB, Sun X, Tiano BN, Viola KL, Eckermann AL, Meade TJ, Klein WL. Synapse-binding subpopulations of Aβ oligomers sensitive to peptide assembly blockers and scFv antibodies. ACS Chem Neurosci 2012; 3:972-81. [PMID: 23173076 DOI: 10.1021/cn300122k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/12/2012] [Indexed: 01/04/2023] Open
Abstract
Amyloid β42 self-assembly is complex, with multiple pathways leading to large insoluble fibrils or soluble oligomers. Oligomers are now regarded as most germane to Alzheimer's pathogenesis. We have investigated the hypothesis that oligomer formation itself occurs through alternative pathways, with some leading to synapse-binding toxins. Immediately after adding synthetic peptide to buffer, solutions of Aβ42 were separated by a 50 kDa filter and fractions assessed by SDS-PAGE silver stain, Western blot, immunoprecipitation, and capacity for synaptic binding. Aβ42 rapidly assembled into aqueous-stable oligomers, with similar protein abundance in small (<50 kDa) and large (>50 kDa) oligomer fractions. Initially, both fractions were SDS-labile and resolved into tetramers, trimers, and monomers by SDS-PAGE. Upon continued incubation, the larger oligomers developed a small population of SDS-stable 10-16mers, and the smaller oligomers generated gel-impermeant complexes. The two fractions associated differently with neurons, with prominent synaptic binding limited to larger oligomers. Even within the family of larger oligomers, synaptic binding was associated with only a subset of these species, as a new scFv antibody (NUsc1) immunoprecipitated only a small portion of the oligomers while eliminating synaptic binding. Interestingly, low doses of the peptide KLVFFA blocked assembly of the 10-16mers, and this result was associated with loss of the smaller clusters of oligomers observed at synaptic sites. What distinguishes these smaller clusters from the unaffected larger clusters is not yet known. Results indicate that distinct species of Aβ oligomers are generated by alternative assembly pathways and that synapse-binding subpopulations of Aβ oligomers could be specifically targeted for Alzheimer's therapeutics.
Collapse
|
77
|
Manus LM, Strauch RC, Hung AH, Eckermann AL, Meade TJ. Analytical methods for characterizing magnetic resonance probes. Anal Chem 2012; 84:6278-87. [PMID: 22624599 PMCID: PMC3418482 DOI: 10.1021/ac300527z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The efficiency of Gd(III) contrast agents in magnetic resonance image enhancement is governed by a set of tunable structural parameters. Understanding and measuring these parameters requires specific analytical techniques. This Feature describes strategies to optimize each of the critical Gd(III) relaxation parameters for molecular imaging applications and the methods employed for their evaluation.
Collapse
|
78
|
Rose S, Eren M, Murphy S, Zhang H, Thaxton CS, Chowaniec J, Waters EA, Meade TJ, Vaughan DE, Perlman H. A novel mouse model that develops spontaneous arthritis and is predisposed towards atherosclerosis. Ann Rheum Dis 2012; 72:89-95. [PMID: 22736097 PMCID: PMC3551222 DOI: 10.1136/annrheumdis-2012-201431] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objectives Patients with rheumatoid arthritis (RA) have a reduced life expectancy due to increased cardiovascular disease. The lack of a suitable animal model resembling both RA and atherosclerosis has hindered studies demonstrating a direct link between systemic inflammation in RA and the development of atherosclerosis. Our objective was to overcome this barrier by generating an animal model (K/BxAg7) that spontaneously develops both RA-like disease and atherosclerosis. Methods Arthritis severity was evaluated using clinical indices and immunohistochemical staining of ankle joint specimens. Aortic atherosclerosis was delineated via Sudan IV staining and immunohistochemical analysis. Serum cholesterol and lipoprotein levels were measured using enzymatic assays. Serum levels of cytokines, chemokines and adipokines were determined by Luminex assays. Results K/BxAg7 mice developed a destructive arthropathy followed by prominent aortic atherosclerosis. These animals also displayed dyslipidaemia, characterised by reduced serum levels of total cholesterol and high-density lipoprotein, and increased low-density lipoprotein (LDL)/vLDL compared with control mice. Further, there were higher levels of circulating inflammatory mediators, such as interleukin-6, sRANKL and CCL5 in atherosclerotic K/BxAg7 mice compared with controls. Treatment with etanercept reduced arthritis and atherosclerosis development in K/BxAg7 mice. Conclusions K/BxAg7 mice recapitulate the same sequence of events occurring in patients with RA, namely an erosive, inflammatory arthritis followed by atherosclerosis. These data suggest that the K/BxAg7 mouse is a novel system for investigating the interplay between systemic inflammation occurring in RA and the development of atherosclerosis.
Collapse
|
79
|
Matosziuk LM, Harney AS, Macrenaris KW, Meade TJ. Synthesis, Characterization, and in vitro Testing of a Bacteria-Targeted MR Contrast Agent. Eur J Inorg Chem 2012; 2012:2099-2107. [PMID: 23626484 PMCID: PMC3634600 DOI: 10.1002/ejic.201101362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Indexed: 12/29/2022]
Abstract
A bacteria-targeted MR contrast agent, Zn-1, consisting of two Zn-dipicolylamine (Zn-dpa) groups conjugated to a GdIII chelate has been synthesized and characterized. In vitro studies with S. aureus and E. coli show that Zn-1 exhibits a significant improvement in bacteria labeling efficiency vs. control. Studies with a structural analogue, Zn-2, indicate that removal of one Zn-dpa moiety dramatically reduces the agent's affinity for bacteria. The ability of Zn-1 to significantly reduce the T1 of labeled vs. unlabeled bacteria, resulting in enhanced MR image contrast, demonstrates its potential for visualizing bacterial infections in vivo.
Collapse
|
80
|
|
81
|
Harney AS, Meade TJ, LaBonne C. Targeted inactivation of Snail family EMT regulatory factors by a Co(III)-Ebox conjugate. PLoS One 2012; 7:e32318. [PMID: 22393397 PMCID: PMC3290632 DOI: 10.1371/journal.pone.0032318] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/26/2012] [Indexed: 01/08/2023] Open
Abstract
Snail family proteins are core EMT (epithelial-mesenchymal transition) regulatory factors that play essential roles in both development and disease processes and have been associated with metastasis in carcinomas. Snail factors are required for the formation of neural crest stem cells in most vertebrate embryos, as well as for the migratory invasive behavior of these cells. Snail factors have recently been linked to the formation of cancer stem cells, and expression of Snail proteins may be associated with tumor recurrence and resistance to chemotherapy and radiotherapy. We report that Co(III)-Ebox is a potent inhibitor of Snail- mediated transcriptional repression in breast cancer cells and in the neural crest of Xenopus. We further show that the activity of Co(III)-Ebox can be modulated by temperature, increasing the utility of this conjugate as a Snail inhibitor in model organisms. We exploit this feature to further delineate the requirements for Snail function during neural crest development, showing that in addition to the roles that Snail factors play in neural crest precursor formation and neural crest EMT/migration, inhibition of Snail function after the onset of neural crest migration leads to a loss of neural crest derived melanocytes. Co(III)-Ebox-mediated inhibition therefore provides a powerful tool for analysing the function of these core EMT factors with unparalleled temporal resolution. Moreover, the potency of Co(III)-Ebox as a Snail inhibitor in breast cancer cells suggests its potential as a therapeutic inhibitor of tumor progression and metastasis.
Collapse
|
82
|
Hurtado RR, Harney AS, Heffern MC, Holbrook RJ, Holmgren RA, Meade TJ. Specific inhibition of the transcription factor Ci by a cobalt(III) Schiff base-DNA conjugate. Mol Pharm 2012; 9:325-33. [PMID: 22214326 DOI: 10.1021/mp2005577] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We describe the use of Co(III) Schiff base-DNA conjugates, a versatile class of research tools that target C2H2 transcription factors, to inhibit the Hedgehog (Hh) pathway. In developing mammalian embryos, Hh signaling is critical for the formation and development of many tissues and organs. Inappropriate activation of the Hedgehog (Hh) pathway has been implicated in a variety of cancers including medulloblastomas and basal cell carcinomas. It is well-known that Hh regulates the activity of the Gli family of C2H2 zinc finger transcription factors in mammals. In Drosophila the function of the Gli proteins is performed by a single transcription factor with an identical DNA binding consensus sequence, Cubitus Interruptus (Ci). We have demonstrated previously that conjugation of a specific 17 base-pair oligonucleotide to a Co(III) Schiff base complex results in a targeted inhibitor of the Snail family C2H2 zinc finger transcription factors. Modification of the oligonucleotide sequence in the Co(III) Schiff base-DNA conjugate to that of Ci's consensus sequence (Co(III)-Ci) generates an equally selective inhibitor of Ci. Co(III)-Ci irreversibly binds the Ci zinc finger domain and prevents it from binding DNA in vitro. In a Ci responsive tissue culture reporter gene assay, Co(III)-Ci reduces the transcriptional activity of Ci in a concentration dependent manner. In addition, injection of wild-type Drosophila embryos with Co(III)-Ci phenocopies a Ci loss of function phenotype, demonstrating effectiveness in vivo. This study provides evidence that Co(III) Schiff base-DNA conjugates are a versatile class of specific and potent tools for studying zinc finger domain proteins and have potential applications as customizable anticancer therapeutics.
Collapse
|
83
|
Feld DJ, Hsu HT, Eckermann AL, Meade TJ. Trinuclear ruthenium clusters as bivalent electrochemical probes for ligand-receptor binding interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:939-49. [PMID: 22053821 PMCID: PMC3254724 DOI: 10.1021/la202882k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Despite their popularity, electrochemical biosensors often suffer from low sensitivity. One possible approach to overcome low sensitivity in protein biosensors is to utilize multivalent ligand-receptor interactions. Controlling the spatial arrangement of ligands on surfaces is another crucial aspect of electrochemical biosensor design. We have synthesized and characterized five biotinylated trinuclear ruthenium clusters as potential new biosensor platforms: [Ru(3)O(OAc)(6)CO(4-BMP)(py)](0) (3), [Ru(3)O(OAc)(6)CO(4-BMP)(2)](0) (4), [Ru(3)O(OAc)(6)L(4-BMP)(py)](+) (8), [Ru(3)O(OAc)(6)L(4-BMP)(2)](+) (9), and [Ru(3)O(OAc)(6)L(py)(2)](+) (10) (OAc = acetate, 4-BMP = biotin aminomethylpyridine, py = pyridine, L = pyC16SH). HABA/avidin assays and isothermal titration calorimetry were used to evaluate the avidin binding properties of 3 and 4. The binding constants were found to range from (6.5-8.0) × 10(6) M(-1). Intermolecular protein binding of 4 in solution was determined by native gel electrophoresis. QM, MM, and MD calculations show the capability for the bivalent cluster, 4, to intramolecularly bind to avidin. Electrochemical measurements in solution of 3a and 4a show shifts in E(1/2) of -58 and -53 mV in the presence of avidin, respectively. Self-assembled monolayers formed with 8-10 were investigated as a model biosensor system. Diluent/cluster ratio and composition were found to have a significant effect on the ability of avidin to adequately bind to the cluster. Complexes 8 and 10 showed negligible changes in E(1/2), while complex 9 showed a shift in E(1/2) of -43 mV upon avidin addition. These results suggest that multivalent interactions can have a positive impact on the sensitivity of electrochemical protein biosensors.
Collapse
|
84
|
Sukerkar PA, MacRenaris KW, Townsend TR, Ahmed RA, Burdette JE, Meade TJ. Synthesis and biological evaluation of water-soluble progesterone-conjugated probes for magnetic resonance imaging of hormone related cancers. Bioconjug Chem 2011; 22:2304-16. [PMID: 21972997 DOI: 10.1021/bc2003555] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Progesterone receptor (PR) is strongly associated with disease prognosis and therapeutic efficacy in hormone-related diseases such as endometriosis and breast, ovarian, and uterine cancers. Receptor status is currently determined by immunohistochemistry assays. However, noninvasive PR imaging agents could improve disease detection and help elucidate pathological molecular pathways, leading to new therapies and animal disease models. A series of water-soluble PR-targeted magnetic resonance imaging (MRI) probes were synthesized using Cu(I)-catalyzed click chemistry and evaluated in vitro and in vivo. These agents demonstrated activation of PR in vitro and preferential accumulation in PR(+) compared to PR(-) human breast cancer cells with low toxicity. In xenograft tumor models, the agents demonstrated enhanced signal intensity in PR(+) tumors compared to PR(-) tumors. The results suggest that these agents may be promising MRI probes for PR(+) diseases.
Collapse
|
85
|
Strauch RC, Mastarone DJ, Sukerkar PA, Song Y, Ipsaro JJ, Meade TJ. Reporter protein-targeted probes for magnetic resonance imaging. J Am Chem Soc 2011; 133:16346-9. [PMID: 21942425 DOI: 10.1021/ja206134b] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Contrast agents for magnetic resonance imaging are frequently employed as experimental and clinical probes. Drawbacks include low signal sensitivity, fast clearance, and nonspecificity that limit efficacy in experimental imaging. In order to create a bioresponsive MR contrast agent, a series of four Gd(III) complexes targeted to the HaloTag reporter were designed and synthesized. HaloTag is unique among reporter proteins for its specificity, versatility, and the covalent interaction between substrate and protein. In similar systems, these properties produce prolonged in vivo lifetimes and extended imaging opportunities for contrast agents, longer rotational correlation times, and increases in relaxivity (r(1)) upon binding to the HaloTag protein. In this work we report a new MR contrast probe, 2CHTGd, which forms a covalent bond with its target protein and results in a dramatic increase in sensitivity. A 6-fold increase in r(1), from 3.8 to 22 mM(-1) s(-1), is observed upon 2CHTGd binding to the target protein. This probe was designed for use with the HaloTag protein system which allows for a variety of substrates (specific for MRI, florescence, or protein purification applications) to be used with the same reporter.
Collapse
|
86
|
Sweeney CM, Nehl CL, Hasan W, Liang T, Eckermann A, Meade TJ, Odom TW. A Three-Channel Spectrometer for Wide-Field Imaging of Anisotropic Plasmonic Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2011; 115:15933-15937. [PMID: 21927639 PMCID: PMC3171732 DOI: 10.1021/jp206157v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A three-channel spectrometer (3CS) based on a commercial digital camera was developed to distinguish among tens of large (>100 nm), anisotropic plasmonic particles with various shapes, orientations, and compositions on a surface simultaneously. Using band pass filters and polarizers, the contrast of 3CS images could be enhanced to identify specific orientation and composition characteristics of gold and gold-silver nanopyramids and as well as the direction of the longest arm of gold nanostars.
Collapse
|
87
|
Sukerkar PA, MacRenaris KW, Meade TJ, Burdette JE. A steroid-conjugated magnetic resonance probe enhances contrast in progesterone receptor expressing organs and tumors in vivo. Mol Pharm 2011; 8:1390-400. [PMID: 21736390 DOI: 10.1021/mp200219e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Progesterone receptor (PR) is a significant biomarker in diseases such as endometriosis and breast, ovarian, and uterine cancers that is associated with disease prognosis and therapeutic efficacy. While receptor status is currently determined by immunohistochemistry assays, the development of noninvasive PR imaging agents could improve molecular characterization, treatment decisions, and disease monitoring. ProGlo, a progesterone-conjugated magnetic resonance imaging (MRI) contrast agent, was evaluated in vivo to determine whether it targets and enhances signal intensity in organs and tumors that express high PR levels. A tissue distribution study indicated that ProGlo accumulates in the PR-rich uterus, which was confirmed by in vivo imaging studies. Ex vivo images of these organs revealed that ProGlo was distributed in the substructures that express high PR levels. In xenograft tumor models, ProGlo was taken up to a greater extent than the nonfunctionalized Gd-DO3A in tumors, particularly in PR(+) tumors. The ability to accumulate and enhance signal intensity in PR(+) organs and tumors suggests that ProGlo may be a promising MRI probe for PR(+) diseases.
Collapse
|
88
|
Schultz-Sikma EA, Joshi HM, Ma Q, MacRenaris KW, Eckermann AL, Dravid VP, Meade TJ. Probing the Chemical Stability of Mixed Ferrites: Implications for MR Contrast Agent Design. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2011; 23:2657-2664. [PMID: 21603070 PMCID: PMC3097046 DOI: 10.1021/cm200509g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanomaterials with mixed composition, in particular magnetic spinel ferrites, are emerging as efficient contrast agents for magnetic resonance imaging (MRI). Many factors, including size, composition, atomic structure, and surface properties are crucial in the design of such nanoparticle-based probes due to their influence on the magnetic properties. Silica-coated iron oxide (IO-SiO(2)) and cobalt ferrite (CoIO-SiO(2)) nanoparticles were synthesized using standard high temperature thermal decomposition and base-catalyzed water-in-oil microemulsion techniques. Under neutral aqueous conditions, it was found that 50-75% of the cobalt content in the CoIO-SiO(2) nanoparticles leached out of the core structure. Leaching caused a 7.2-fold increase in longitudinal relaxivity and an increase in the saturation magnetization from ~48 emu/g core to ~65 emu/g core. X-ray absorption fine structure studies confirmed that the atomic structure of the ferrite core was altered following leaching, while TEM and DLS confirmed that the morphology and size of the nanoparticle remained unchanged. The CoIO-SiO(2) nanoparticles converted from a partially inverted spinel cation arrangement (unleached state) to an inverse spinel arrangement (leached state). The control IO-SiO(2) nanoparticles remained stable with no change in structure and negligible changes in magnetic behavior. This detailed analysis highlights how important understanding the properties of nanomaterials is in the development of reliable agents for diagnostic and therapeutic applications.
Collapse
|
89
|
Lee SM, Song Y, Hong BJ, MacRenaris KW, Mastarone DJ, O'Halloran TV, Meade TJ, Nguyen ST. Modular polymer-caged nanobins as a theranostic platform with enhanced magnetic resonance relaxivity and pH-responsive drug release. Angew Chem Int Ed Engl 2011; 49:9960-4. [PMID: 21082634 DOI: 10.1002/anie.201004867] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
90
|
Karfeld-Sulzer LS, Waters EA, Kohlmeir EK, Kissler H, Zhang X, Kaufman DB, Barron AE, Meade TJ. Protein polymer MRI contrast agents: Longitudinal analysis of biomaterials in vivo. Magn Reson Med 2011; 65:220-8. [PMID: 20740653 DOI: 10.1002/mrm.22587] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite recent advances in tissue engineering to regenerate biological function by combining cells with material supports, development is hindered by inadequate techniques for characterizing biomaterials in vivo. Magnetic resonance imaging is a tomographic technique with high temporal and spatial resolution and represents an excellent imaging modality for longitudinal noninvasive assessment of biomaterials in vivo. To distinguish biomaterials from surrounding tissues for magnetic resonance imaging, protein polymer contrast agents were developed and incorporated into hydrogels. In vitro and in vivo images of protein polymer hydrogels, with and without covalently incorporated protein polymer contrast agents, were acquired by magnetic resonance imaging. T(1) values of the labeled gels were consistently lower when protein polymer contrast agents were included. As a result, the protein polymer contrast agent hydrogels facilitated fate tracking, quantification of degradation, and detection of immune response in vivo. For the duration of the in vivo study, the protein polymer contrast agent-containing hydrogels could be distinguished from adjacent tissues and from the foreign body response surrounding the gels. The hydrogels containing protein polymer contrast agent have a contrast-to-noise ratio 2-fold greater than hydrogels without protein polymer contrast agent. In the absence of the protein polymer contrast agent, hydrogels cannot be distinguished by the end of the gel lifetime.
Collapse
|
91
|
Mastarone DJ, Harrison VS, Eckermann AL, Parigi G, Luchinat C, Meade TJ. A modular system for the synthesis of multiplexed magnetic resonance probes. J Am Chem Soc 2011; 133:5329-37. [PMID: 21413801 PMCID: PMC3086647 DOI: 10.1021/ja1099616] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have developed a modular architecture for preparing high-relaxivity multiplexed probes utilizing click chemistry. Our system incorporates azide bearing Gd(III) chelates and a trialkyne scaffold with a functional group for subsequent modification. In optimizing the relaxivity of this new complex, we undertook a study of the linker length between a chelate and the scaffold to determine its effect on relaxivity. The results show a strong dependence on flexibility between the individual chelates and the scaffold with decreasing linker length leading to significant increases in relaxivity. Nuclear magnetic resonance dispersion (NMRD) spectra were obtained to confirm a 10-fold increase in the rotational correlation time from 0.049 to 0.60 ns at 310 K. We have additionally obtained a crystal structure demonstrating that modification with an azide does not impact the coordination of the lanthanide. The resulting multinuclear center has a 500% increase in per Gd (or ionic) relaxivity at 1.41 T versus small molecule contrast agents and a 170% increase in relaxivity at 9.4 T.
Collapse
|
92
|
Ahrens MJ, Bertin PA, Gaustad AG, Georganopoulou D, Wunder M, Blackburn GF, Gray HB, Meade TJ. Spectroscopic and redox properties of amine-functionalized K2[OsII(bpy)(CN)4] complexes. Dalton Trans 2011; 40:1732-6. [DOI: 10.1039/c0dt01478h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
93
|
Lee SM, Song Y, Hong BJ, MacRenaris KW, Mastarone DJ, O'Halloran TV, Meade TJ, Nguyen ST. Modular Polymer-Caged Nanobins as a Theranostic Platform with Enhanced Magnetic Resonance Relaxivity and pH-Responsive Drug Release. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201004867] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
94
|
Song Y, Zong H, Trivedi ER, Vesper BJ, Waters EA, Barrett AGM, Radosevich JA, Hoffman BM, Meade TJ. Synthesis and characterization of new porphyrazine-Gd(III) conjugates as multimodal MR contrast agents. Bioconjug Chem 2010; 21:2267-75. [PMID: 21062033 DOI: 10.1021/bc1002828] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Magnetic resonance imaging (MRI) has long been used clinically and experimentally as a diagnostic tool to obtain three-dimensional, high-resolution images of deep tissues. These images are enhanced by the administration of contrast agents such as paramagnetic Gd(III) complexes. Herein, we describe the preparation of a series of multimodal imaging agents in which paramagnetic Gd(III) complexes are conjugated to a fluorescent tetrapyrrole, namely, a porphyrazine (pz). Zinc metalated pzs conjugated to one, four, or eight paramagnetic Gd(III) complexes are reported. Among these conjugates, Zn-Pz-8Gd(III) exhibits an ionic relaxivity four times that of the monomeric Gd(III) agent, presumably because of increased molecular weight and a molecular relaxivity that is approximately thirty times larger, while retaining the intense electronic absorption and emission of the unmodified pz. Unlike current clinical MR agents, Zn-Pz-1Gd(III) is taken up by cells. This probe demonstrates intracellular fluorescence by confocal microscopy and provides significant contrast enhancement in MR images, as well as marked phototoxicity in assays of cellular viability. These results suggest that pz agents possess a new potential for use in cancer imaging by both MRI and near-infrared (NIR) fluorescence, while acting as a platform for photodynamic therapy.
Collapse
|
95
|
Karfeld-Sulzer LS, Waters EA, Davis NE, Meade TJ, Barron AE. Multivalent protein polymer MRI contrast agents: controlling relaxivity via modulation of amino acid sequence. Biomacromolecules 2010; 11:1429-36. [PMID: 20420441 DOI: 10.1021/bm901378a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Magnetic resonance imaging is a noninvasive imaging modality with high spatial and temporal resolution. Contrast agents (CAs) are frequently used to increase the contrast between tissues of interest. To increase the effectiveness of MR agents, small molecule CAs have been attached to macromolecules. We have created a family of biodegradable, macromolecular CAs based on protein polymers, allowing control over the CA properties. The protein polymers are monodisperse, random coil, and contain evenly spaced lysines that serve as reactive sites for Gd(III) chelates. The exact sequence and length of the protein can be specified, enabling controlled variation in lysine spacing and molecular weight. Relaxivity could be modulated by changing protein polymer length and lysine spacing. Relaxivities of up to approximately 14 mM(-1) s(-1) per Gd(III) and approximately 461 mM(-1) s(-1) per conjugate were observed. These CAs are biodegradable by incubation with plasmin, such that they can be easily excreted after use. They do not reduce cell viability, a prerequisite for future in vivo studies. The protein polymer CAs can be customized for different clinical diagnostic applications, including biomaterial tracking, as a balanced agent with high relaxivity and appropriate molar mass.
Collapse
|
96
|
Sukerkar PA, Rezvi UG, Macrenaris KW, Patel PC, Wood JC, Meade TJ. Polystyrene microsphere-ferritin conjugates: a robust phantom for correlation of relaxivity and size distribution. Magn Reson Med 2010; 65:522-30. [PMID: 21264938 DOI: 10.1002/mrm.22627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/08/2010] [Accepted: 08/10/2010] [Indexed: 01/28/2023]
Abstract
In vivo iron load must be monitored to prevent complications from iron overload diseases such as hemochromatosis or transfusion-dependent anemias. While liver biopsy is the gold standard for determining in vivo iron load, MRI offers a noninvasive approach. MR phantoms have been reported that estimate iron concentration in the liver and mimic relaxation characteristics of in vivo deposits of hemosiderin. None of these phantoms take into account the size distribution of hemosiderin, which varies from patient to patient based on iron load. We synthesized stable and reproducible microsphere-ferritin conjugates (ferribeads) of different sizes that are easily characterized for several parameters that are necessary for modeling such as iron content and bead fraction. T(1) s and T(2) s were measured on a 1.41-T low-resolution NMR spectrometer and followed a size-dependent trend. Ferribeads imaged at 4.7 and 14.1 T showed that signal intensities are dependent on the distribution of ferritin around the bead rather than the iron concentration alone. These particles can be used to study the effects of particle size, ferritin distribution, and bead fraction on proton relaxation and may be of use in mimicking hemosiderin in a phantom for estimating iron concentration.
Collapse
|
97
|
Hu F, Joshi HM, Dravid VP, Meade TJ. High-performance nanostructured MR contrast probes. NANOSCALE 2010; 2:1884-91. [PMID: 20694208 PMCID: PMC3110061 DOI: 10.1039/c0nr00173b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Magnetic resonance imaging (MRI) has become a powerful technique in biological molecular imaging and clinical diagnosis. With the rapid progress in nanoscale science and technology, nanostructure-based MR contrast agents are undergoing rapid development. This is in part due to the tuneable magnetic and cellular uptake properties, large surface area for conjugation and favourable biodistribution. In this review, we describe our recent progress in the development of high-performance nanostructured MR contrast agents. Specifically, we report on Gd-enriched nanostructured probes that exhibit T(1) MR contrast and superparamagnetic Fe(3)O(4) and CoFe(2)O(4) nanostructures that display T(2) MR contrast enhancement. The effects of nanostructure size, shape, assembly and surface modification on relaxivity are described. The potential of these contrast agents for in vitro and in vivo MR imaging with respect to colloidal stability under physiological conditions, biocompatibility, and surface functionality are also evaluated.
Collapse
|
98
|
Bertin PA, Ahrens MJ, Bhavsar K, Georganopoulou D, Wunder M, Blackburn GF, Meade TJ. Ferrocene and maleimide-functionalized disulfide scaffolds for self-assembled monolayers on gold. Org Lett 2010; 12:3372-5. [PMID: 20617812 DOI: 10.1021/ol101180r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A series of ferrocene-based electroactive molecules (EAMs) containing maleimide and disulfide groups in different asymmetric and branched architectures were designed and synthesized. Stable monolayers of each EAM on gold electrodes were confirmed by cyclic voltammetry. Importantly, these EAMs expand the repertoire of monolayer building blocks amenable to modular biofunctionalization for applications in electrochemical biosensor fabrication.
Collapse
|
99
|
Eckermann AL, Feld DJ, Shaw JA, Meade TJ. Electrochemistry of redox-active self-assembled monolayers. Coord Chem Rev 2010; 254:1769-1802. [PMID: 20563297 PMCID: PMC2885823 DOI: 10.1016/j.ccr.2009.12.023] [Citation(s) in RCA: 359] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Redox-active self-assembled monolayers (SAMs) provide an excellent platform for investigating electron transfer kinetics. Using a well-defined bridge, a redox center can be positioned at a fixed distance from the electrode and electron transfer kinetics probed using a variety of electrochemical techniques. Cyclic voltammetry, AC voltammetry, electrochemical impedance spectroscopy, and chronoamperometry are most commonly used to determine the rate of electron transfer of redox-activated SAMs. A variety of redox species have been attached to SAMs, and include transition metal complexes (e.g., ferrocene, ruthenium pentaammine, osmium bisbipyridine, metal clusters) and organic molecules (e.g., galvinol, C(60)). SAMs offer an ideal environment to study the outer-sphere interactions of redox species. The composition and integrity of the monolayer and the electrode material influence the electron transfer kinetics and can be investigated using electrochemical methods. Theoretical models have been developed for investigating SAM structure. This review discusses methods and monolayer compositions for electrochemical measurements of redox-active SAMs.
Collapse
|
100
|
Abstract
Molecular imaging provides spatial and temporal information on cellular changes that occur during development and in disease. MRI and optical imaging of reporter genes allows for the visualization of promoter activity, protein-protein interactions, protein stability and the tracking of individual proteins and cells. Reporter genes can be genetically encoded in transgenic animals or detected through the administration of an exogenous contrast agent. Advances in molecular imaging of reporter genes have led to the development of imaging probes that detect changes in endogenous cellular changes. The ability to use contrast agents coupled with functional information on cellular events will allow for sensitive assessment of individual patient therapies, leading to an accurately tailored treatment regimen.
Collapse
|