76
|
Ganesh RS, Durgadevi E, Navaneethan M, Sharma SK, Binitha H, Ponnusamy S, Muthamizhchelvan C, Hayakawa Y. Visible light induced photocatalytic degradation of methylene blue and rhodamine B from the catalyst of CdS nanowire. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.06.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
77
|
Nakashima T, Kubota T, Kawaguchi T, Nawa T, Hayakawa Y, Watanabe T, Tanaka T, Takasugi N, Iwasa M, Yamada Y, Kanamori H, Ushikoshi H, Kawasaki M, Nishigaki K, Minatoguchi S. P6140Impact of the pulmonary vein orifice area assessed by intracardiac echocardiography on the outcome of pulmonary vein isolation for atrial fibrillation. Eur Heart J 2017. [DOI: 10.1093/eurheartj/ehx493.p6140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
78
|
Kamiyama M, Shirai T, Tamura S, Suzuki-Inoue K, Ehata S, Takahashi K, Miyazono K, Hayakawa Y, Sato T, Takeda K, Naguro I, Ichijo H. ASK1 facilitates tumor metastasis through phosphorylation of an ADP receptor P2Y 12 in platelets. Cell Death Differ 2017; 24:2066-2076. [PMID: 28753204 DOI: 10.1038/cdd.2017.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/29/2017] [Accepted: 06/08/2017] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is the major cause of deaths in cancer patients and is modulated by intertwined stress-responsive signaling cascades. Here we demonstrate that deletion of stress-responsive apoptosis signal-regulating kinase 1 (Ask1) in platelets results in unstable hemostasis and drastic attenuation of tumor lung metastasis, both of which are attributable to platelet dysfunction. Platelet-specific deletion of Ask1 in mice leads to defects in ADP-dependent platelet aggregation, unstable hemostasis and subsequent attenuation of tumor metastasis. We also revealed that activating phosphorylation of Akt is attenuated in Ask1-deficient platelets, contrary to the previous reports suggesting that Akt is negatively regulated by ASK1. Mechanistically, ASK1-JNK/p38 axis phosphorylates an ADP receptor P2Y12 at Thr345, which is required for the ADP-dependent sustained Akt activity that is vital to normal platelet functions. Our findings offer insight into positive regulation of Akt signaling through P2Y12 phosphorylation as well as MAPK signaling in platelets by ASK1 and suggest that ASK1-JNK/p38 axis provides a new therapeutic opportunity for tumor metastasis.
Collapse
|
79
|
Xu X, Yokoyama S, Hayakawa Y, Saiki I. Coptidis Rhizoma induces intrinsic apoptosis through BAX and BAK activation in human melanoma. Oncol Rep 2017; 38:538-544. [PMID: 28560413 DOI: 10.3892/or.2017.5672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/15/2017] [Indexed: 11/06/2022] Open
Abstract
Malignant melanoma has exhibited a rising incidence in recent years worldwide. Although various molecular targeted drugs are being researched and developed for melanoma patients, their efficacy appears to be unsatisfactory. Over the past few years, several reports have demonstrated that Coptidis Rhizoma water extracts (CR) or its major active chemical component, berberine, has anticancer activities in various types of cancer, including melanoma. However, their underlying mechanisms have not been well understood. In the present study, we determined that CR suppressed melanoma cell viability, which was mainly mediated through apoptosis. In addition, the expression levels of anti-apoptotic proteins, BCL2A1, MCL1 and BCL-w, were strongly suppressed by CR treatment. Furthermore, multi-domain pro-apoptotic proteins BAX and BAK were activated by CR treatment and were also required for the CR-induced apoptosis. Collectively, CR or some formulations containing CR, may be effective safe treatment strategies for human melanoma.
Collapse
|
80
|
Hayakawa Y, Oonuma T, Kobayashi H, Takahashi A, Chiba S, Fujiki NM. Feature Extraction of Video Using Artificial Neural Network. INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE 2017. [DOI: 10.4018/ijcini.2017040102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In deep neural networks, which have been gaining attention in recent years, the features of input images are expressed in a middle layer. Using the information on this feature layer, high performance can be demonstrated in the image recognition field. In the present study, we achieve image recognition, without using convolutional neural networks or sparse coding, through an image feature extraction function obtained when identity mapping learning is applied to sandglass-style feed-forward neural networks. In sports form analysis, for example, a state trajectory is mapped in a low-dimensional feature space based on a consecutive series of actions. Here, we discuss ideas related to image analysis by applying the above method.
Collapse
|
81
|
Takeda K, Nakayama M, Hayakawa Y, Kojima Y, Ikeda H, Imai N, Ogasawara K, Okumura K, Thomas DM, Smyth MJ. IFN-γ is required for cytotoxic T cell-dependent cancer genome immunoediting. Nat Commun 2017; 8:14607. [PMID: 28233863 PMCID: PMC5333095 DOI: 10.1038/ncomms14607] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/16/2017] [Indexed: 12/18/2022] Open
Abstract
Genetic evolution that occurs during cancer progression enables tumour heterogeneity, thereby fostering tumour adaptation, therapeutic resistance and metastatic potential. Immune responses are known to select (immunoedit) tumour cells displaying immunoevasive properties. Here we address the role of IFN-γ in mediating the immunoediting process. We observe that, in several mouse tumour models such as HA-expressing 4T1 mammary carcinoma cells, OVA-expressing EG7 lymphoma cells and CMS5 MCA-induced fibrosarcoma cells naturally expressing mutated extracellular signal-regulated kinase (ERK) antigen, the action of antigen-specific cytotoxic T cell (CTL) in vivo results in the emergence of resistant cancer cell clones only in the presence of IFN-γ within the tumour microenvironment. Moreover, we show that exposure of tumours to IFN-γ-producing antigen-specific CTLs in vivo results in copy-number alterations (CNAs) associated with DNA damage response and modulation of DNA editing/repair gene expression. These results suggest that enhanced genetic instability might be one of the mechanisms by which CTLs and IFN-γ immunoedits tumours, altering their immune resistance as a result of genetic evolution. T cell mediated anti-tumour immune responses result in the emergence of an immune-resistant population in a process called immunoediting. Here, the authors show that immunoediting is associated with an increase in genomic rearrangements of tumour cells that requires both cytotoxic T cells and IFNγ exposure.
Collapse
|
82
|
Ma H, Yokoyama S, Saiki I, Hayakawa Y. Chemosensitizing Effect of Saikosaponin B on B16F10 Melanoma Cells. Nutr Cancer 2017; 69:505-511. [PMID: 28287317 DOI: 10.1080/01635581.2017.1285407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cancer cell resistance to chemotherapy is one of the obstacles for better cancer treatment, and inflammatory signaling pathways, such as NF-κB signaling pathway, have been recognized to be involved in such chemoresistance. In this study, we aim to identify a new approach for overcoming cancer chemoresistance by using natural compounds. As a result of screening by using Murine B16F10 melanoma cell line constitutively expressing NF-κB luciferase reporter gene, we identified Saikosaponin B2 as an effective inhibitor for etoposide-induced NF-κB activation in B16F10NFkB cells. Saikosaponin B2 sensitized etoposide-induced cell death in B16F10 melanoma cells through the induction of apoptosis. Along with apoptosis induction, we observed an induction of γ-H2AX expression, which is a molecular signature for DNA damage, upon the combination treatment of etoposide and Saikosaponin B2. Among Saikosaponin family compounds, we found that Saikosaponin B1, but not Saikosaponin A, sensitized etoposide-induced cytotoxicity implicating the structural requirement of Saikosaponin B for such chemosensitization. By testing the combination of Saikosaponin B1 and B2 with 9 clinical anticancer drugs, Saikosaponin B showed a certain preference in the combination with those tested anticancer drugs. Collectively, we conclude Saikosaponin B can be an attractive adjuvant for enhancing the clinical effect of cancer chemotherapy.
Collapse
|
83
|
Harish S, Sabarinathan M, Kristy AP, Archana J, Navaneethan M, Ikeda H, Hayakawa Y. ZnS quantum dots impregnated-mesoporous TiO2 nanospheres for enhanced visible light induced photocatalytic application. RSC Adv 2017. [DOI: 10.1039/c7ra03061d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ZnS quantum dots were impregnated on the surface of TiO2 mesospheres by a soft template-assisted solvothermal approach.
Collapse
|
84
|
Sabarinathan M, Harish S, Archana J, Navaneethan M, Ikeda H, Hayakawa Y. Highly efficient visible-light photocatalytic activity of MoS2–TiO2 mixtures hybrid photocatalyst and functional properties. RSC Adv 2017. [DOI: 10.1039/c7ra03633g] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2D-layered molybdenum disulfide (MoS2) and MoS2/TiO2 nanocomposite were synthesized by a hydrothermal method.
Collapse
|
85
|
Saiki I, Yokoyama S, Hayakawa Y. Effect of Juzentaihoto/Shi-Quan-Da-Bu-Tang on malignant progression and metastasis of tumor cells. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2017. [DOI: 10.4103/wjtcm.wjtcm_3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
86
|
Rameshbabu R, Vinoth R, Navaneethan M, Hayakawa Y, Neppolian B. Fabrication of Cu2MoS4 hollow nanotubes with rGO sheets for enhanced visible light photocatalytic performance. CrystEngComm 2017. [DOI: 10.1039/c6ce02337a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
87
|
Harish S, Archana J, Navaneethan M, Ponnusamy S, Singh A, Gupta V, Aswal DK, Ikeda H, Hayakawa Y. Synergetic effect of CuS@ZnS nanostructures on photocatalytic degradation of organic pollutant under visible light irradiation. RSC Adv 2017. [DOI: 10.1039/c7ra04250g] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ultrafast visible light active CuS/ZnS nanostructured photocatalysts were synthesized by a hydrothermal method.
Collapse
|
88
|
Kimura Y, Nagai N, Tsunekawa N, Sato-Matsushita M, Yoshimoto T, Cua DJ, Iwakura Y, Yagita H, Okada F, Tahara H, Saiki I, Irimura T, Hayakawa Y. IL-17A-producing CD30(+) Vδ1 T cells drive inflammation-induced cancer progression. Cancer Sci 2016; 107:1206-14. [PMID: 27384869 PMCID: PMC5021032 DOI: 10.1111/cas.13005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 12/26/2022] Open
Abstract
Although it has been suspected that inflammation is associated with increased tumor metastasis, the exact type of immune response required to initiate cancer progression and metastasis remains unknown. In this study, by using an in vivo tumor progression model in which low tumorigenic cancer cells acquire malignant metastatic phenotype after exposure to inflammation, we found that IL‐17A is a critical cue for escalating cancer cell malignancy. We further demonstrated that the length of exposure to an inflammatory microenvironment could be associated with acquiring greater tumorigenicity and that IL‐17A was critical for amplifying such local inflammation, as observed in the production of IL‐1β and neutrophil infiltration following the cross‐talk between cancer and host stromal cells. We further determined that γδT cells expressing Vδ1 semi‐invariant TCR initiate cancer‐promoting inflammation by producing IL‐17A in an MyD88/IL‐23‐dependent manner. Finally, we identified CD30 as a key molecule in the inflammatory function of Vδ1T cells and the blockade of this pathway targeted this cancer immune‐escalation process. Collectively, these results reveal the importance of IL‐17A‐producing CD30+ Vδ1T cells in triggering inflammation and orchestrating a microenvironment leading to cancer progression.
Collapse
|
89
|
Kato S, Yokoyama S, Hayakawa Y, Li L, Iwakami Y, Sakurai H, Saiki I. P38 pathway as a key downstream signal of connective tissue growth factor to regulate metastatic potential in non-small-cell lung cancer. Cancer Sci 2016; 107:1416-1421. [PMID: 27403934 PMCID: PMC5084657 DOI: 10.1111/cas.13009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/22/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022] Open
Abstract
Although the secretory matricellular protein connective tissue growth factor (CTGF) has been reported to be related to lung cancer metastasis, the precise mechanism by which CTGF regulates lung cancer metastasis has not been elucidated. In the present study, we show the molecular link between CTGF secretion and the p38 pathway in the invasive and metastatic potential of non‐small‐cell lung cancer (NSCLC). Among three different human NSCLC cell lines (PC‐14, A549, and PC‐9), their in vitro invasiveness was inversely correlated with the level of CTGF secretion. By supplementing or reducing CTGF secretion in NSCLC culture, dysregulation of the invasive and metastatic potential of NSCLC cell lines was largely compensated. By focusing on the protein kinases that are known to be regulated by CTGF, we found that the p38 pathway is a key downstream signal of CTGF to regulate the metastatic potential of NSCLC. Importantly, a negative correlation between CTGF and phosphorylation status of p38 was identified in The Cancer Genome Atlas lung adenocarcinoma dataset. In the context of the clinical importance of our findings, we showed that p38 inhibitor, SB203580, reduced the metastatic potential of NSCLC secreting low levels of CTGF. Collectively, our present findings indicate that the CTGF/p38 axis is a novel therapeutic target of NSCLC metastasis, particularly NSCLC secreting low levels of CTGF.
Collapse
|
90
|
Abdelhamed S, Ogura K, Yokoyama S, Saiki I, Hayakawa Y. AKT-STAT3 Pathway as a Downstream Target of EGFR Signaling to Regulate PD-L1 Expression on NSCLC cells. J Cancer 2016; 7:1579-1586. [PMID: 27698894 PMCID: PMC5039378 DOI: 10.7150/jca.14713] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/10/2016] [Indexed: 12/31/2022] Open
Abstract
While cancer development and progression can be controlled by cytotoxic T cells, it is also known that tumor-specific CD8+T cells become functionally impaired by acquiring a group of inhibitory receptors known as immune checkpoints. Amongst those, programmed death-1 (PD-1) is one of the most recognized negative regulators of T cell function. In non-small lung cancers (NSCLCs), the aberrant activation of epidermal growth factor receptor (EGFR) is known to induce PD-L1 expression and further the treatment with gefitinib, a tyrosine kinase inhibitor (TKI) for EGFR, decrease the expression of PD-L1 on NSCLC. Given the acquired resistance to gefitinib treatment frequently observed by developing secondary-site mutations limiting its efficacy, it is important to understand the downstream mechanism of activated-EGFR signaling for regulating PD-L1 in NSCLC. In this study, we demonstrated that AKT-STAT3 pathway could be a potential target for regulating the surface expression of PD-L1 on NSCLCs with aberrant EGFR activity and, further, the inhibition of AKT or STAT3 activity could down-regulate the expression of PD-L1 even in gefitinib-resistant NSCLCs. These results highlight an importance of AKT-STAT3 pathway as a promising target for potentiating anti-tumor immune responses by regulating PD-L1 expression on cancer cells with aberrant EGFR activity.
Collapse
|
91
|
Lou C, Yokoyama S, Abdelhamed S, Saiki I, Hayakawa Y. Targeting the ataxia telangiectasia mutated pathway for effective therapy against hirsutine-resistant breast cancer cells. Oncol Lett 2016; 12:295-300. [PMID: 27347141 DOI: 10.3892/ol.2016.4554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/15/2016] [Indexed: 12/18/2022] Open
Abstract
The present authors have recently demonstrated that hirsutine, one of the major alkaloids in Uncaria species, promotes cell apoptosis by inducing DNA damage and suppresses metastasis of breast cancer cells. Despite its potent anti-cancer activity, certain types of human breast cancer cells exhibit resistance to hirsutine. To maximize the clinical utility of hirsutine therapy against breast cancer, it is critical to explore the underlying mechanism that protects hirsutine-resistant breast cancer cell lines. To identify potential targets for overcoming hirsutine-resistance, the present study investigated a library of kinase inhibitors in combination with hirsutine treatment in the hirsutine-resistant human breast carcinoma MCF-7 cell line. Amongst the 96 compounds tested, inhibitors of the ataxia telangiectasia mutated (ATM) pathway sensitized MCF-7 cells to hirsutine-induced cell death along with a sustained DNA damage response. This sensitization of MCF-7 cells to the hirsutine-induced DNA damage response by interfering with the ATM pathway did not require p53. Instead, radical oxygen species generation was significantly increased in hirsute and ATM inhibitor-treated MCF-7 cells. In conclusion, the present findings suggest the importance of the ATM pathway for optimizing the anti-cancer effect of hirsutine in breast cancer cells.
Collapse
|
92
|
Kanchana P, Radhakrishnan S, Navaneethan M, Arivanandhan M, Hayakawa Y, Sekar C. Electrochemical Sensor Based on Fe Doped Hydroxyapatite-Carbon Nanotubes Composite for L-Dopa Detection in the Presence of Uric Acid. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2016; 16:6185-6192. [PMID: 27427688 DOI: 10.1166/jnn.2016.11645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel amperometric sensor based on iron doped hydroxyapatite (Fe-HA) and multiwalled carbon nanotubes (CNT) composite immobilized on a glassy carbon electrode (GCE) has been fabricated. The hybrid composite made of Fe-HA nanoparticles and CNT promotes electron transfer kinetics between the analyte levodopa (L-dopa) and the modified GC electrode. Under optimum conditions, the fabricated sensor gave a linear response range of 1.0 x 10(-7)-1.1 x 10(-6) M with the detection limit as low as 62 nM. The Fe-HA/CNT modified electrode showed good selectivity towards the determination of L-dopa in the presence of ascorbic acid (AA), uric acid (UA) and other common interferents. The sensor displays a high sensitivity, good reproducibility and long-term stability and it was successfully applied for the detection of L-dopa in pharmaceutical and medicinal plant samples.
Collapse
|
93
|
Sasaki S, Baba T, Nishimura T, Hayakawa Y, Hashimoto SI, Gotoh N, Mukaida N. Essential roles of the interaction between cancer cell-derived chemokine, CCL4, and intra-bone CCR5-expressing fibroblasts in breast cancer bone metastasis. Cancer Lett 2016; 378:23-32. [PMID: 27177471 DOI: 10.1016/j.canlet.2016.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/16/2022]
Abstract
From a murine breast cancer cell line, 4T1, we established a subclone, 4T1.3, which consistently metastasizes to bone upon its injection into the mammary fat pad. 4T1.3 clone exhibited similar proliferation rate and migration capacity as the parental clone. However, the intra-bone injection of 4T1.3 clone caused larger tumors than that of the parental cells, accompanied with increases in fibroblast, but not osteoclast or osteoblast numbers. 4T1.3 clone displayed an enhanced expression of a chemokine, CCL4, but not its specific receptor, CCR5. CCL4 shRNA-transfection of 4T1.3 clone had few effects on its in vitro properties, but reduced the tumorigenicity arising from the intra-bone injection. Moreover, intra-bone injection of 4T1.3 clone caused smaller tumors in mice deficient in CCR5 or those receiving CCR5 antagonist than in wild-type mice. The reduced tumor formation was associated with attenuated accumulation of CCR5-positive fibroblasts expressing connective tissue growth factor (CTGF)/CCN2. Tumor cell-derived CCL4 could induce fibroblasts to express CTGF/CCN2, which could support 4T1.3 clone proliferation under hypoxic culture conditions. Thus, the CCL4-CCR5 axis can contribute to breast cancer metastasis to bone by mediating the interaction between cancer cells and fibroblasts in bone cavity.
Collapse
|
94
|
Hayakawa Y, Kawada M, Nishikawa H, Ochiya T, Saya H, Seimiya H, Yao R, Hayashi M, Kai C, Matsuda A, Naoe T, Ohtsu A, Okazaki T, Saji H, Sata M, Sugimura H, Sugiyama Y, Toi M, Irimura T. Report on the use of non-clinical studies in the regulatory evaluation of oncology drugs. Cancer Sci 2016; 107:189-202. [PMID: 26919617 PMCID: PMC4768389 DOI: 10.1111/cas.12857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 01/04/2023] Open
Abstract
Non‐clinical studies are necessary at each stage of the development of oncology drugs. Many experimental cancer models have been developed to investigate carcinogenesis, cancer progression, metastasis, and other aspects in cancer biology and these models turned out to be useful in the efficacy evaluation and the safety prediction of oncology drugs. While the diversity and the degree of engagement in genetic changes in the initiation of cancer cell growth and progression are widely accepted, it has become increasingly clear that the roles of host cells, tissue microenvironment, and the immune system also play important roles in cancer. Therefore, the methods used to develop oncology drugs should continuously be revised based on the advances in our understanding of cancer. In this review, we extensively summarize the effective use of those models, their advantages and disadvantages, ranges to be evaluated and limitations of the models currently used for the development and for the evaluation of oncology drugs. This review summarizes the effective use of animal models, their advantages and disadvantages, ranges to be evaluated and limitations of the models currently used for the development and for the evaluation of oncology drugs.
Collapse
|
95
|
Archana J, Harish S, Sabarinathan M, Navaneethan M, Ponnusamy S, Muthamizhchelvan C, Shimomura M, Ikeda H, Aswal DK, Hayakawa Y. Highly efficient dye-sensitized solar cell performance from template derived high surface area mesoporous TiO2 nanospheres. RSC Adv 2016. [DOI: 10.1039/c6ra14976f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
High surface area mesoporous anatase TiO2 spheres are synthesized using ethylene glycol as a template by a solvothermal method.
Collapse
|
96
|
Harish S, Archana J, Navaneethan M, Silambarasan A, Nisha KD, Ponnusamy S, Muthamizhchelvan C, Ikeda H, Aswal DK, Hayakawa Y. Enhanced visible light induced photocatalytic activity on the degradation of organic pollutants by SnO nanoparticle decorated hierarchical ZnO nanostructures. RSC Adv 2016. [DOI: 10.1039/c6ra19824d] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
One (1D) and two-dimensional (2D) nanostructures of zinc oxide and tin oxide (ZnO/SnO) nanocomposites were synthesized by a hydrothermal method using ethylenediamine (EDA) as a capping ligand.
Collapse
|
97
|
Sabarinathan M, Harish S, Archana J, Navaneethan M, Ikeda H, Hayakawa Y. Controlled exfoliation of monodispersed MoS2 layered nanostructures by a ligand-assisted hydrothermal approach for the realization of ultrafast degradation of an organic pollutant. RSC Adv 2016. [DOI: 10.1039/c6ra24355j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Molybdenum disulfide (MoS2) layered nanosheets were synthesized by the hydrothermal method.
Collapse
|
98
|
Thangappan R, Kalaiselvam S, Elayaperumal A, Jayavel R, Arivanandhan M, Karthikeyan R, Hayakawa Y. Graphene decorated with MoS2 nanosheets: a synergetic energy storage composite electrode for supercapacitor applications. Dalton Trans 2016; 45:2637-46. [DOI: 10.1039/c5dt04832j] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synergistic effect of MoS2 and graphene with a specific capacitance of 270 F g−1 for the use of a higher performance energy storage composite electrode for supercapacitors is reported.
Collapse
|
99
|
Sato-Matsushita M, Hayakawa Y, Asami A, Nakayama S, Tahara H. Induction of systemic and therapeutic antitumor immunity using intratumoral injection of bone-marrow derived dendritic cells genetically modified to express interleukin 12 combined with anti-CTLA-4 antibody. J Immunother Cancer 2015. [PMCID: PMC4649301 DOI: 10.1186/2051-1426-3-s2-p243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
100
|
Kumar A, Samanta S, Singh A, Roy M, Singh S, Basu S, Chehimi MM, Roy K, Ramgir N, Navaneethan M, Hayakawa Y, Debnath AK, Aswal DK, Gupta SK. Fast Response and High Sensitivity of ZnO Nanowires-Cobalt Phthalocyanine Heterojunction Based H2S Sensor. ACS APPLIED MATERIALS & INTERFACES 2015; 7:17713-17724. [PMID: 26225901 DOI: 10.1021/acsami.5b03652] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The room temperature chemiresistive response of n-type ZnO nanowire (ZnO NWs) films modified with different thicknesses of p-type cobalt phthalocyanine (CoPc) has been studied. With increasing thickness of CoPc (>15 nm), heterojunction films exhibit a transition from n- to p-type conduction due to uniform coating of CoPc on ZnO. The heterojunction films prepared with a 25 nm thick CoPc layer exhibit the highest response (268% at 10 ppm of H2S) and the fastest response (26 s) among all samples. The X-ray photoelectron spectroscopy and work function measurements reveal that electron transfer takes place from ZnO to CoPc, resulting in formation of a p-n junction with a barrier height of 0.4 eV and a depletion layer width of ∼8.9 nm. The detailed XPS analysis suggests that these heterojunction films with 25 nm thick CoPc exhibit the least content of chemisorbed oxygen, enabling the direct interaction of H2S with the CoPc molecule, and therefore exhibit the fastest response. The improved response is attributed to the high susceptibility of the p-n junctions to the H2S gas, which manipulates the depletion layer width and controls the charge transport.
Collapse
|