76
|
Binaeian E, Babaee Zadvarzi S, Yuan D. Anionic dye uptake via composite using chitosan- polyacrylamide hydrogel as matrix containing TiO 2 nanoparticles; comprehensive adsorption studies. Int J Biol Macromol 2020; 162:150-162. [PMID: 32565298 DOI: 10.1016/j.ijbiomac.2020.06.158] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 01/22/2023]
Abstract
In the present study, TiO2 nanoparticles dispersed in chitosan grafted polyacrylamide matrix (TiO2-PAM-CS) was synthesized using in situ technique, and applied for the uptake of Sirius yellow K-CF dye from aqueous solution. The synthesized nano-composite was characterized by FE-SEM, TEM, XRD and FT-IR analysis. The effect of significant parameters such as pH, dose, time and temperature in batch adsorption experiments were investigated. The adsorption process was pH dependent and the optimum value of pH was obtained 2 with 96.81% dye removal at 40 °C. The equilibrium data were compatible well with the Langmuir isotherm having qm value of 1000 mg/g. The Dubinin-Radushkevich (D-R) isotherm and thermodynamic studies prove that the adsorption is physical, endothermic and spontaneous. Kinetic study also verifies that pseudo second order kinetic model is the predominant model. The interactions between amin groups of polyacrylamide-chitosan (PAM-CS) composite in from of NH3+ and molecules of anionic dye via hydrogen bond formation (Dye-NH3+), also electrostatic interactions between Ti+4 available in PAM-CS composite and anionic dye (free energy of 1.66 kJ/mol calculated from D-R model) govern the adsorption mechanism. The reusability test showe that TiO2-PAM-CS composite can be renewed easily with HCl solution as an efficient adsorbent for practical wastewater treatment.
Collapse
|
77
|
Kumar A, Bhardwaj NK, Singh SP. Polyacrylamide stabilized alkenyl succinic anhydride emulsion as sizing agent for various cellulosic pulps and fillers. Carbohydr Polym 2020; 236:116069. [PMID: 32172884 DOI: 10.1016/j.carbpol.2020.116069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 11/29/2022]
Abstract
Cellulosic fiber is hydrophilic in nature and making it hydrophobic represents a process called sizing in papermaking. Alkenyl succinic anhydride (ASA) sizing is dominating over other sizing processes due to its high reactivity and economy. The shelf life of conventionally used cationic starch (CS) stabilized ASA emulsion is 20-25 min. In our previous study, the ASA emulsion was found to be stable up to 4 h using anionic polyacrylamide (APAM) as stabilizer. Present communication was aimed to utilize, the APAM stabilized ASA emulsion with most commonly utilized cellulosic pulps (mixed hardwood, bagasse and recycled) and fillers to assist its commercial utilization in papermaking. APAM stabilized ASA emulsion facilitated back water utilization with improved sizing degree unlike CS based ASA emulsion. Lower amount of ASA sizing was required in bagasse pulp compared to other pulps which might be attributed to low crystallinity ratios and hydrogen bond energy.
Collapse
|
78
|
Li D, Gao H, Li M, Chen G, Guan L, He M, Tian J, Cao R. Nanochitin/metal ion dual reinforcement in synthetic polyacrylamide network-based nanocomposite hydrogels. Carbohydr Polym 2020; 236:116061. [PMID: 32172876 DOI: 10.1016/j.carbpol.2020.116061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Nanocomposite hydrogels consisting of a synthetic matrix reinforced by nanosized crystalline polysaccharides offer significant potential in various fields. Different from nanocellulose, the combination of nanochitin with synthetic polymers to obtain nanocomposite hydrogels has not been extensively and systematically studied. Herein, a physically and chemically dual crosslinked nanocomposite hydrogel was successfully synthesized, where chitin nanowhiskers (ChNWs) and Zn2+ were incorporated within polyacrylamide (PAAm) matrix. Nanochitin/metal ion dual reinforcement imparts increased elasticity, enhanced mechanical properties, and improved recovery performance to PAAm network. The PAAm/ChNWs/Zn2+ hydrogel could be stretched to over 13 times its original length with tensile strength of 321.9 ± 8.2 kPa, and restore its original shape rapidly even when compressed at a strain of 95% with a corresponding compressive strength of 6.95 ± 0.20 MPa. The multiple crosslinks and interactions among ChNWs, Zn2+ and synthetic polymeric network were investigated. Moreover, the hydrogel was applied in drug release and soft bioelectronics.
Collapse
|
79
|
Zheng M, Huang Z, Ji H, Qiu F, Zhao D, Bredar ARC, Farnum BH. Simultaneous control of soil erosion and arsenic leaching at disturbed land using polyacrylamide modified magnetite nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134997. [PMID: 31726340 DOI: 10.1016/j.scitotenv.2019.134997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Rapid urbanization and human disturbance of land often results in serious soil erosion and releases of fine sediments and soil-bound toxic metals/metalloids. Yet, technologies for simultaneously controlling soil erosion and metals/metalloids leaching have been lacking. This study developed a new class of polyacrylamide-dispersed magnetite (PAM-MAG) nanoparticles and tested the effectiveness for simultaneous control of soil erosion and arsenic leaching from a model soil. Two parallel box test setups (L × W × H: 91.4 × 30.5 × 7.6 cm) were constructed to test the releases of sediments and soluble pollutants from the surface soil under simulated rainfall conditions (intensity = 11.15 cm/hr). A sandy loam soil from a local quarry mining site was used as the model soil, and arsenate As(V) as a prototype leachable metalloid. A stable dispersion of PAM-MAG was prepared with 0.3 wt% of PAM and 0.1 g/L as Fe of magnetite. The results indicated that treating the soil with 5.985 g/m2 of PAM-MAG was able to decrease cumulative soil mass loss in the runoff by 90.8% (from 254.50 ± 0.10 g to 23.35 ± 3.19 g), or turbidity of the runoff by 79.9% (from 244.5 ± 27.5 NTU to 49.2 ± 22.5 NTU). Compared to PAM only, the PAM-MAG suspension showed a 30% reduction of viscosity, allowing for easier application and transport of the nanoparticles in soil. Concurrently, the PAM-MAG treatment also immobilized 82.5% of water-leachable arsenate compared to untreated controls. Fourier-transform infrared (FTIR) spectroscopy analyses revealed that arsenate was immobilized by magnetite nanoparticles through inner sphere surface complexation (Fe-O-As). Overall, the PAM-MAG based technology holds the promise for simultaneously controlling soil erosion and metal/metalloid releases from disturbed land.
Collapse
|
80
|
Abstract
Microbial whole cells are efficient, ecological, and low-cost catalysts that have been successfully applied in the pharmaceutical, environmental, and alimentary industries, among others.Microorganism immobilization is a good way to carry out the bioprocess under preparative conditions. The main advantages of this methodology lie in their high operational stability, easy upstream separation, and bioprocess scale-up feasibility.Cell entrapment is the most widely used technique for whole cell immobilization. This technique-in which the cells are included within a rigid network-is porous enough to allow the diffusion of substrates and products, protects the selected microorganism from the reaction medium, and has high immobilization efficiency (100% in most cases).
Collapse
|
81
|
Chen W, Rong X, Peng J, Tang Q, Luo H, Fan L, Feng K, Zheng H. Assessment of a novel nanostructured flocculant with elevated flocculation and antimicrobial activity. CHEMOSPHERE 2020; 239:124736. [PMID: 31494326 DOI: 10.1016/j.chemosphere.2019.124736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
In this work, a novel process involving the preparation of nanochitosan-grafted flocculants (CPAM-g-NCS) to treat low turbid and salmonella suspensions simultaneously was introduced. Nanotechnology was employed to enhance the adsorption-adhesion and sterilization abilities of dual-functional flocculants. The monomers of chitosan, acrylamide, methacryloyl ethyl trimethyl ammonium chloride, and sodium tripolyphosphate were utilized for flocculants copolymerization. Then, using fourier-transform infrared spectroscopy, nuclear magnetic resonance hydrogen spectrum, and thermogravimetric and differential scanning calorimetry analysis, the successful synthesis of CPAM-g-NCS was verified. Scanning electron microscopy and size analysis suggested that nanostructured flocculants with irregular morphology and nanocolloids of 60.44 nm were formed. CPAM-g-NCS was applied to treat a series of simulated low turbid and salmonella suspensions. The simulation results showed that the minimum residual turbidity of 1.97 NTU and optical density of 0.16 (initial 0.89) can be achieved at dosages of 2.5 and 8.75 mg L-1, respectively, which were superior to conventional organics flocculants. Mechanistic studies suggested that the excellent adsorption property, and large numbers of quaternary ammonium and amino groups of nanoflocculants contributed to the superior flocculation and antibacterial performance of CPAM-g-NCS.
Collapse
|
82
|
Simultaneous thermal analysis of cationic, nonionic and anionic polyacrylamide. Heliyon 2020; 5:e02973. [PMID: 31890948 PMCID: PMC6926190 DOI: 10.1016/j.heliyon.2019.e02973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 11/24/2022] Open
Abstract
Polyacrylamide (PAM) and its derivatives are the most commercially available water-soluble polymers and are frequently used for the production of clay-polymer composites. The characterization of their thermal behavior and decomposition was carried out mainly under reduced conditions by using N2, He or Ar gas flow. The object of this study was to investigate the thermal decomposition of cationic (PAMS,τ40Cl), nonionic (PAM°S), and anionic (NaPAMS,τ40) polyacrylamide under synthetic air (SynA) in detail using a thermogravimetry/differential scanning calorimetry (TG/DSC) system connected to a quadrupole mass spectrometer (MS). MS data indicated the release of NH3, CH4 and NO together with H2O, CO2 and NO2 during decomposition. The gas release differed between the three polymers. Stoichiometric calculations showed that PAMS,τ40Cl and PAM°S decomposed completely, while NaPAMS,τ40 decomposed only partially and the Na present for charge balancing remained in the form of Na2O. The thermal decomposition of PAMS,τ40Cl, PAM°S and NaPAMS,τ40 under SynA occurred via pyrolysis and oxidation reactions.
Collapse
|
83
|
Yu X, Huang X, Bai C, Xiong X. Modification of microcrystalline cellulose with acrylamide under microwave irradiation and its application as flocculant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32859-32865. [PMID: 31502053 DOI: 10.1007/s11356-019-06317-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/26/2019] [Indexed: 05/14/2023]
Abstract
Grafting polyacrylamide (PAM) chains onto microparticles may combine the advantages of the flocculation property of the former and the fast sedimentation of the later to realize better flocculation performance. In this work, inexpensive microcrystalline cellulose (MCC) microparticles, and monomer of acrylamide (AM) were mixed, and then irradiated under microwave. The obtained material was characterized by Fourier transform infrared spectroscopy and X-ray diffraction, and the results demonstrated successful modification of MCC with AM on the particle surface. The modification procedure has been carefully investigated to obtain an optimum preparation condition. Kaolin suspension was selected as a model to evaluate the flocculation properties of the obtained AM-MCC. Our results indicate that the AM-MCC with the highest grafting ratio of 95.5% exhibits the best flocculation performance, which is even better than that of PAM, and the turbidity can be decreased to 1.4% of the naked kaolin suspension within 2.5 min. Therefore, this work provides a low cost strategy to prepare biodegradable AM-MCC, which may have promising potential application in the water treatment and other fields.
Collapse
|
84
|
Shahbazi-Alavi H, Khojasteh-Khosro S, Safaei-Ghomi J, Tavazo M. Crosslinked sulfonated polyacrylamide (Cross-PAA-SO 3H) tethered to nano-Fe 3O 4 as a superior catalyst for the synthesis of 1,3-thiazoles. BMC Chem 2019; 13:120. [PMID: 31633116 PMCID: PMC6790011 DOI: 10.1186/s13065-019-0637-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/28/2019] [Indexed: 11/18/2022] Open
Abstract
Crosslinked sulfonated polyacrylamide (Cross-PAA-SO3H) attached to nano-Fe3O4 as a superior catalyst has been used for the synthesis of 3-alkyl-4-phenyl-1,3-thiazole-2(3H)-thione derivatives through a three-component reactions of phenacyl bromide or 4-methoxyphenacyl bromide, carbon disulfide and primary amine under reflux condition in ethanol. A proper, atom-economical, straightforward one-pot multicomponent synthetic route for the synthesis of 1,3-thiazoles in good yields has been devised using crosslinked sulfonated polyacrylamide (Cross-PAA-SO3H) tethered to nano-Fe3O4. The catalyst has been characterized by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA) and vibrating-sample magnetometer (VSM).
Collapse
|
85
|
Liu X, Xu Q, Wang D, Wu Y, Fu Q, Li Y, Yang Q, Liu Y, Ni BJ, Wang Q, Yang G, Li H, Li X. Microwave pretreatment of polyacrylamide flocculated waste activated sludge: Effect on anaerobic digestion and polyacrylamide degradation. BIORESOURCE TECHNOLOGY 2019; 290:121776. [PMID: 31302462 DOI: 10.1016/j.biortech.2019.121776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Deterioration of anaerobic digestion can occur with the presence of polyacrylamide (PAM) in waste activated sludge, but the information on alleviating this deterioration is still limited. In this study, the simultaneous alleviation of negative effect of PAM and improvement of methane production during anaerobic digestion was accomplished by microwave pretreatment. Experimental results showed that with the microwave pretreatment times increased from 0 to 12 min, the biochemical methane potential of PAM-flocculated sludge (12 g PAM/kg total solids) asymptotically increased from 123.1 to 242.5 mL/g volatile solids, hydrolysis rate increased from 0.06 to 0.13 d-1. Mechanism analysis indicated that the microwave pretreatment accelerated the release and hydrolysis of organic substrates from PAM-flocculated sludge, facilitated the breaking of large firm "PAM-sludge" floccules, and benefited the degradation of PAM, which alleviated the PAM inhibitory impacts on digestion and meanwhile provided better contact between the released organic substrates and anaerobic bacteria for methane production.
Collapse
|
86
|
Mohammadi M, Khorrami MK, Ghasemzadeh H. ATR-FTIR spectroscopy and chemometric techniques for determination of polymer solution viscosity in the presence of SiO 2 nanoparticle and salinity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 220:117049. [PMID: 31141782 DOI: 10.1016/j.saa.2019.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
An analytical method was proposed for quantitative determination of rheological properties of polyacrylamide (PAM) solution in the presence of SiO2 nanoparticle and NaCl. The viscosity of PAM-SiO2 nanohybrid solution was predicted using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy in the wavenumber range of 800-3000 cm-1 and chemometrics methods. Support vector machine regression (SVM-R) as a non-linear multivariate calibration procedure and partial least squares regression (PLS-R) as a linear procedure were applied for calibration. Preprocessing methods such as baseline correction and standard normal variate (SNV) were also utilized. Root mean square error of prediction (RMSEP) in SNV-SVM and SNV-PLS methods were 3.231 and 6.302, respectively. Considering the complexity of the samples, the SVM-R model was found to be reliable. The proposed method is rapid and simple without any sample preparation step for measurement of the viscosity of polymer solutions in chemical enhanced oil recovery (CEOR).
Collapse
|
87
|
Liu F, Che Y, Chai Q, Zhao M, Lv Y, Sun H, Wang Y, Sun J, Zhao C. Construction of rGO wrapping Cu 2O/ZnO heterostructure photocatalyst for PNP and PAM degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25286-25300. [PMID: 31256404 DOI: 10.1007/s11356-019-05814-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/20/2019] [Indexed: 05/27/2023]
Abstract
Copper and zinc composite oxides (Cu2O/ZnO) were synthesized by an impregnation-reduction-air oxidation method. A series of Cu2O/ZnO/rGO ternary composites were prepared by coupling with graphene oxide (GO) with different mass fractions in a solvothermal reaction system. The microscopic morphology, crystal structure, and optical characteristics of the photocatalysts were characterized. The degradation of p-Nitrophenol (PNP) and polyacrylamide (PAM) by photocatalytic materials under simulated solar irradiation were studied, and the degradation kinetics were also investigated. The results showed that cubic Cu2O was modified by ZnO nanorods and distributed on rGO nanosheets. The ternary Cu2O/ZnO/rGO nanocomposites have stronger simulated solar absorption ability and higher photodegradation efficiency than pure ZnO and binary Cu2O/ZnO nanocomposites. When the amount of Cu2O/ZnO/rGO-10 was 0.3 g L-1, the degradation rate of 10 mg L-1 PNP reached 98% at 90 min and 99.6% of 100 mg L-1 PAM at 30 min. The photocatalytic degradation processes of PNP and PAM all followed the pseudo-first-order kinetic model. Free radical trapping experiments showed that superoxide radicals were the main active substances to improve photocatalytic efficiency. In addition, after four recycles, the catalytic efficiency of Cu2O/ZnO/rGO-10 was still over 90%. It showed that Cu2O/ZnO/rGO-10 was a promising catalyst for wastewater treatment because of its good photostability and reusability.
Collapse
|
88
|
Tan S, Jiang S, Lai Y, Yuan Q. Formation potential of nine nitrosamines from polyacrylamide during chloramination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:1103-1110. [PMID: 31018426 DOI: 10.1016/j.scitotenv.2019.03.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Cationic polymers, which are commonly used as flocculants and coagulant aids in water and wastewater treatment, have been recently reported to promote the formation of nitrosamines. Most of the findings to date are based on poly (epichlorohydrin dimethylamine) and poly (diallyldimethylammonium chloride), while few studies have considered nitrosamines formation of polyacrylamides. In this work, the nitrosamines formation from non-ionic, anionic and cationic polyacrylamides was evaluated. Moreover, the effects of chemical structures of cationic polyacrylamides (including molecular weight, charge density, and monomers) on nitrosamines formation were investigated. The results revealed that the highest amount of nitrosamines formation was formed from cationic polyacrylamide, followed by non-ionic polyacrylamide and anionic polyacrylamide. Molecular weight and various cationic monomers showed no significant effects on nitrosamines formation, but monomers generated significantly higher amount of nitrosamines formation than cationic polyacrylamides. Nitrosamines formation increased with the increasing charge density of cationic polyacrylamides, and FTIR analysis results showed that the quaternary amine groups preferentially reacted with chloramines than with amide groups. This work shed new light on the nitrosamines formation from water and wastewater treatment polymers.
Collapse
|
89
|
Ren X, Hu X, Xue D, Li Y, Shao Z, Dong H, Cheng W, Zhao Y, Xin L, Lu W. Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:643-654. [PMID: 30889461 DOI: 10.1016/j.jhazmat.2019.03.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Novel gel materials are proposed for fire prevention and extinction in coal mines, where spontaneous combustion of coal continues to pose a significant risk. Cationic polyacrylamide (CPAM), anionic polyacrylamide (HPAM), and carboxymethyl cellulose (CMC) were each introduced separately into a sodium silicate (WG) gel, to obtain three gels labeled as CPAM/WG, HPAM/WG, and CMC/WG. A crosslinking agent, aluminum citrate, was subsequently added to the HPAM/WG and CMC/WG gels to afford two novel interpenetrating network hydrogels, HPAM-Al3+/WG and CMC-Al3+/WG, respectively. Among the various gels, the HPAM-Al3+/WG hydrogel exhibits the best seepage capacity, water retention capacity, compressive strength, and inhibition characteristics, which effectively resolve the post-water-loss cracking and pulverization problems commonly associated with inorganic consolidated silica gels. The microstructures of all the gels were investigated by scanning electron microscopy and their inhibitory effects on the oxidation of hydroxyl and methylene groups in coal at high temperatures were analyzed by Fourier transform infrared spectroscopy. Elemental mapping by energy dispersive X-ray spectroscopy indicated that the inorganic silica gel blends uniformly with the polymeric gel. Fire extinction experiments indicated that the HPAM-Al3+/WG gel reduces the fire-source temperature, heat radiation, and CO generation. Thus, the HPAM-Al3+/WG gel is an ideal fire prevention and extinction material.
Collapse
|
90
|
Narayanan KB, Choi SM, Han SS. Biofabrication of Lysinibacillus sphaericus-reduced graphene oxide in three-dimensional polyacrylamide/carbon nanocomposite hydrogels for skin tissue engineering. Colloids Surf B Biointerfaces 2019; 181:539-548. [PMID: 31185446 DOI: 10.1016/j.colsurfb.2019.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023]
Abstract
The biological synthesis of reduced graphene oxide (rGO) from graphene oxide (GO) is an emerging phenomenon for developing biocompatible nanomaterials for its potential applications in nanomedicine. In this study, we demonstrated a simple, green, and non-toxic method for graphene synthesis using the live biomass of Lysinibacillus sphaericus as the reducing and stabilizing agent under ambient conditions. Ultraviolet-visible spectroscopic analysis confirmed the formation of graphene from GO suspension. X-ray diffraction studies showed the disappearance of the GO peak and the appearance of characteristic graphene broad peak at 2θ = 22.8°. Infrared analysis showed the decrease/disappearance of peaks corresponding to the oxygen-containing functionalities, and appearance of a peak at 1620 cm-1 from unoxidized graphitic domains. Scanning electron microscopic images showed that L. sphaericus-reduced graphene oxide (L-rGO) contains aggregated graphene nanoflakes. Evaluation of the in vitro cytotoxicity of L-rGO nanosheets on human skin fibroblasts using the WST-1 assay did not show any significant effects after 24 h of exposure, which is indicative of biocompatibility. Polyacrylamide hydrogels with L-rGO were synthesized and used as scaffolds to support the growth and proliferation of skin fibroblasts. Cell viability assays and DAPI staining showed proliferation of fibroblasts and exhibited 83% of cell viability even after 28 days. Biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus was enhanced in nanocomposite hydrogels in the presence of 0.25 mg/mL GO and L-rGO in 48 h. Overall, this study showed that microbially-synthesized L-rGO can be used as a dopant in polymeric scaffolds for tissue engineering and highlighted their role in biofilm formation.
Collapse
|
91
|
Liu X, Xu Q, Wang D, Yang Q, Wu Y, Li Y, Fu Q, Yang F, Liu Y, Ni BJ, Wang Q, Li X. Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: Process optimization and effects on anaerobic digestion and polyacrylamide degradation. BIORESOURCE TECHNOLOGY 2019; 281:158-167. [PMID: 30818267 DOI: 10.1016/j.biortech.2019.02.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Deterioration of anaerobic digestion can occur with the presence of polyacrylamide (PAM) in waste activated sludge, and little information on mitigating this deterioration is currently available. In this study, simultaneous mitigation of PAM negative effects and improvement of methane production was accomplished by thermal-alkaline pretreatment. Under the optimized pretreatment conditions (i.e., 75 °C, pH 11.0 for 17.5 h), the biochemical methane potential of PAM-flocculated sludge increased from 100.5 to 210.8 mL/g VS and the hydrolysis rate increased from 0.122 to 0.187 d-1. Mechanism investigations revealed that the pretreatment not only broke the large firm floccules, improved the degradation of PAM, but also facilitated the release of biodegradable organics from sludge, which thereby provided better growth environment and enough nutrients to anaerobic microbes for methane production. The activities of key enzymes responsible for methane production and PAM degradation were greatly improved in pretreated reactor, with the accumulation of acrylamide being avoided.
Collapse
|
92
|
Gao C, Wang X, Zhai S, An Q. Enhanced catalytic activity of nanosilver with lignin/ polyacrylamide hydrogel for reducing p-nitrophenol. Int J Biol Macromol 2019; 134:202-209. [PMID: 31075332 DOI: 10.1016/j.ijbiomac.2019.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 01/11/2023]
Abstract
Lignin, as the second largest natural polymer in nature, has great practical application value. Three-dimensional silver/lignin/PAM hydrogels have been successfully prepared via a rapid and convenient assembly process, showing good catalytic hydrogenation ability and stability in batch and dynamic catalytic processes of p-nitrophenol. It can be seen from the characterization results that abundant amino groups in the catalyst carrier can disperse silver ions homogeneously and limit the growth of silver nanoparticles in the reduction process with sodium borohydride. At room temperature, the catalytic process can be completed in about 5 min by using this catalyst and can maintain about 100 min of efficient catalysis in the dynamic catalytic experiment, the conversion rate can reach about 80%. After 10 times use, the catalyst still maintained good catalytic performance and the conversion rate could be kept at 97%.
Collapse
|
93
|
High temperature utilization of PAM and HPAM by microbial communities enriched from oilfield produced water and activated sludge. AMB Express 2019; 9:46. [PMID: 30968201 PMCID: PMC6456633 DOI: 10.1186/s13568-019-0766-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 03/23/2019] [Indexed: 11/25/2022] Open
Abstract
Non-hydrolyzed polyacrylamide (PAM) and partially hydrolyzed polyacrylamide (HPAM) are commonly used polymers in various industrial applications, including in oil and gas production operations. Understanding the microbial utilization of such polymers can contribute to improved recovery processes and help to develop technologies for polymer remediation. Microbial communities enriched from oilfield produced water (PW) and activated sludge from Alberta, Canada were assessed for their ability to utilize PAM and HPAM as nitrogen and carbon sources at 50 °C. Microbial growth was determined by measuring CO2 production, and viscosity changes and amide concentrations were used to determine microbial utilization of the polymers. The highest CO2 production was observed in incubations wherein HPAM was added as a nitrogen source for sludge-derived enrichments. Our results showed that partial deamination of PAM and HPAM occurred in both PW and sludge microbial cultures after 34 days of incubation. Whereas viscosity changes were not observed in cultures when HPAM or PAM was provided as the only carbon source, sludge enrichment cultures amended with HPAM and glucose showed significant decreases in viscosity. 16S rRNA gene sequencing analysis indicated that microbial members from the family Xanthomonadaceae were enriched in both PW and sludge cultures amended with HPAM or PAM as a nitrogen source, suggesting the importance of this microbial taxon in the bio-utilization of these polymers. Overall, our results demonstrate that PAM and HPAM can serve as nitrogen sources for microbial communities under the thermophilic conditions commonly found in environments such as oil and gas reservoirs.
Collapse
|
94
|
Li N, Lowe CR, Stevenson AC. One-step polymeric phononic crystal manufacture. ULTRASONICS 2019; 94:376-381. [PMID: 30007577 DOI: 10.1016/j.ultras.2018.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
A versatile system to construct bulk polymeric phononic crystals by using acoustic waves is described. In order to fabricate this material, a customised cavity device fitted with a ∼2 MHz acoustic transducer and an acoustic reflector is employed for the acoustic standing wave creation in the device chamber. The polymer crystal is formed when the standing waves are created during the polymerisation process. The resulting crystals are reproduced into the shape of the tunable device cavity with a unique periodic feature. The separation is related to the applied acoustic wave frequency during the fabrication process and each unit cell composition was found to be made up to two material phases. To assess the acoustic properties of the polymer crystals their average acoustic velocity is measured relative to monomer solutions of different concentrations. It is demonstrated that one of the signature characteristics of phononic crystal, the slow wave effect, was expressed by this polymer. Furthermore the thickness of a unit cell is analysed from images obtained with microscope. By knowing the thickness the average acoustic velocity is calculated to be 1538 m/s when the monomer/cross-linker concentration is 1.5 M. This numerical calculation closely agrees with the predicted value for this monomer/cross-linker concentration of 1536 m/s. This work provides a methodology for rapid accessing a new type of adaptable phononic crystal based on flexible polymers.
Collapse
|
95
|
Yousefi SA, Nasser MS, Hussein IA, Judd S. Influence of polyelectrolyte architecture on the electrokinetics and dewaterability of industrial membrane bioreactor activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:410-416. [PMID: 30590270 DOI: 10.1016/j.jenvman.2018.12.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/10/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Improvement of sludge dewaterability is greatly hindered by the presence of large amounts of interstitial water molecules trapped in the sludge as a result of strong hydrophilic characteristics. This study has investigated the influence of six different polyacrylamide (PAM) flocculants with different molecular architecture (linear, slightly and highly branched), charge density (CD) and molecular weight (MW) on the electro-kinetics and dewatering of highly stable industrial membrane bioreactor (MBR) sludge. The impact of PAM on flocculation is manifested in the supernatant turbidity, particle zeta potential, sludge capillary suction time (CST), floc size and settleability. Turbidity removal and reduction in zeta potential are used to identify the optimum polymer dose. An optimum dose of 70 mg.L-1 has been determined for linear PAM of 40% CD. However, a highly-branched PAM, with the same CD, has shown an optimum value of 30 mg.L-1. In all cases, a turbidity removal of more than 99% and CST reduction of 51-64% is attained; the linear PAMs have resulted in the highest CST reduction. Higher PAM doses have resulted in larger flocs and the maximum particle size is observed at the saturation point. The reduction in sludge volume relates with the floc size and PAM dose. For sludge conditioning and dewaterability, highly branched PAM with low MW has shown superior performance over linear high MW PAM. Enhancement of flocculation and dewatering is correlated with the surface charge neutralization and bridging mechanisms.
Collapse
|
96
|
Use of a 2.5% Cross-Linked Polyacrylamide Hydrogel in the Management of Joint Lameness in a Population of Flat Racing Thoroughbreds: A Pilot Study. J Equine Vet Sci 2019; 77:57-62. [PMID: 31133317 DOI: 10.1016/j.jevs.2019.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 11/22/2022]
Abstract
Osteoarthritis is one of the most common disease processes effecting equine athletes, causing up to 60% of all lameness. This prospective longitudinal study reports on the effect of treatment of carpal and metacarpophalangeal joint lameness with 2.5% cross-linked polyacrylamide hydrogel (PAAG). A total of 49 flat-racing Thoroughbreds at a single training facility were included in the study. The results show a significant improvement in lameness grades at weeks 1 (P < .01), 4 (P < .001), 12 (P < .001), and 24 (P < .001) when compared to baseline lameness at week 0. This pilot study suggests that 2.5% cross-linked PAAG is a safe and effective joint treatment for managing joint lameness in Thoroughbred racehorses and warrants further blinded and controlled studies to fully evaluate the efficacy of the 2.5% cross-linked PAAG and its mode of action.
Collapse
|
97
|
Hydrogels with enhanced protein conjugation efficiency reveal stiffness-induced YAP localization in stem cells depends on biochemical cues. Biomaterials 2019; 202:26-34. [PMID: 30826537 DOI: 10.1016/j.biomaterials.2019.02.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/24/2019] [Accepted: 02/21/2019] [Indexed: 11/20/2022]
Abstract
Polyacrylamide hydrogels have been widely used in stem cell mechanotransduction studies. Conventional conjugation methods of biochemical cues to polyacrylamide hydrogels suffer from low conjugation efficiency, which leads to poor attachment of human pluripotent stem cells (hPSCs) on soft substrates. In addition, while it is well-established that stiffness-dependent regulation of stem cell fate requires cytoskeletal tension, and is mediated through nuclear translocation of transcription regulator, Yes-associated protein (YAP), the role of biochemical cues in stiffness-dependent YAP regulation remains largely unknown. Here we report a method that enhances the conjugation efficiency of biochemical cues on polyacrylamide hydrogels compared to conventional methods. This modified method enables robust hPSC attachment, proliferation and maintenance of pluripotency across varying substrate stiffness (3 kPa-38 kPa). Using this hydrogel platform, we demonstrate that varying the types of biochemical cues (Matrigel, laminin, GAG-peptide) or density of Matrigel can alter stiffness-dependent YAP localization in hPSCs. In particular, we show that stiffness-dependent YAP localization is overridden at low or high density of Matrigel. Furthermore, human mesenchymal stem cells display stiffness-dependent YAP localization only at intermediate fibronectin density. The hydrogel platform with enhanced conjugation efficiency of biochemical cues provides a powerful tool for uncovering the role of biochemical cues in regulating mechanotransduction of various stem cell types.
Collapse
|
98
|
Hansen BH, Malzahn A, Hagemann A, Farkas J, Skancke J, Altin D, Nordtug T. Acute and sub-lethal effects of an anionic polyacrylamide on sensitive early life stages of Atlantic cod (Gadus morhua). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1062-1070. [PMID: 30586793 DOI: 10.1016/j.scitotenv.2018.10.310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
Despite the possible increase in use of anionic polyacrylamide (APAM) in enhanced oil recovery operations, very little relevant information regarding ecotoxicity exists. The current study assessed acute and sub-lethal toxicity in sensitive early life stages (ELS) of Atlantic cod (Gadus morhua) exposed to 200 kDa APAM under controlled laboratory conditions. Two experiments (screening and long-term study) were conducted covering ecologically relevant endpoints (survival, hatching, growth, deformations, respiration and heart rate) in fish developing through embryogenesis, hatching, yolk-sac larvae stage and the first feeding period. The screening experiment was an 8-day exposure of embryos, whereas in the long-term experiments embryos and developing larvae were exposed continuously for 23 days. In the screening experiment, a significant reduction in embryonic heart rate was observed during exposure to 150 and 1500 mg APAM/L. However, we observed no effects on fitness-related endpoints (survival, hatching and growth) at concentrations up to 1500 mg L-1 APAM. Also, for the long-term exposure from late embryo to first feeding larvae stage, we observed reduced heart rate at 125 mg L-1. No consistent responses on survival, growth or respiration were observed except for the highest concentration tested (6000 mg L-1). Dispersion modelling based on expected and relevant discharged polymer concentrations and durations showed that predicted environmental concentrations were orders of magnitude lower than the concentrations tested in our experiments, indicating that 200 kDa APAM will have a limited probability of causing fitness-related effects on Atlantic cod ELS.
Collapse
|
99
|
Abstract
Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (tricine-SDS-PAGE) is an efficient way of separating low molecular mass proteins. However, the standard system is quite complicated and specifically may not be useful when the separated proteins are to be recovered from the gel for quantitative analysis. Here, we describe a simplified system whereby these smaller proteins can be resolved in comparatively low percentage gels which have high compatibility with modern detectors such as UV and inductively coupled plasma-mass spectrometry (ICP-MS).
Collapse
|
100
|
Cacopardo L, Guazzelli N, Nossa R, Mattei G, Ahluwalia A. Engineering hydrogel viscoelasticity. J Mech Behav Biomed Mater 2018; 89:162-167. [PMID: 30286375 DOI: 10.1016/j.jmbbm.2018.09.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 11/28/2022]
Abstract
The aim of this study was to identify a method for modifying the time-dependent viscoelastic properties of gels without altering the elastic component. To this end, two hydrogels commonly used in biomedical applications, agarose and acrylamide, were prepared in aqueous solutions of dextran with increasing concentrations (0%, 2% and 5% w/v) and hence increasing viscosities. Commercial polyurethane sponges soaked in the same solutions were used as controls, since, unlike in hydrogels, the liquid in these sponge systems is poorly bound to the polymer network. Sample viscoelastic properties were characterised using the epsilon-dot method, based on compression tests at different constant strain-rates. Experimental data were fitted to a standard linear solid model. While increasing the liquid viscosity in the controls resulted in a significant increase of the characteristic relaxation time (τ), both the instantaneous (Einst) and the equilibrium (Eeq) elastic moduli remained almost constant. However, in the hydrogels a significant reduction of both Einst and τ was observed. On the other hand, as expected, Eeq - an indicator of the equilibrium elastic behaviour after the occurrence of viscoelastic relaxation dynamics - was found to be independent of the liquid phase viscosity. Therefore, although the elastic and viscous components of hydrogels cannot be completely decoupled due to the interaction of the liquid and solid phases, we show that their viscoelastic behaviour can be modulated by varying the viscosity of the aqueous phase. This simple-yet-effective strategy could be useful in the field of mechanobiology, particularly for studying cell response to substrate viscoelasticity while keeping the elastic cue (i.e. equilibrium modulus, or quasi-static stiffness) constant.
Collapse
|