76
|
Esposito Abate R, Cheetham MH, Fairley JA, Pasquale R, Sacco A, Nicola W, Deans ZC, Patton SJ, Normanno N. External quality assessment (EQA) for tumor mutational burden: results of an international IQN path feasibility pilot scheme. Virchows Arch 2023; 482:347-355. [PMID: 36355212 PMCID: PMC9931778 DOI: 10.1007/s00428-022-03444-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Tumor mutational burden (TMB) has recently been approved as an agnostic biomarker for immune checkpoint inhibitors. However, methods for TMB testing have not yet been standardized. The International Quality Network for Pathology (IQNPath) organized a pilot external quality assessment (EQA) scheme for TMB testing. The aim of this program was the validation of the materials and the procedures for the EQA of this complex biomarker. Five formalin-fixed paraffin-embedded (FFPE) cell lines were selected to mimic the various TMB values observed in clinical practice. The FFPE samples were tested with the FoundationOne CDx (F1CDx) assay as the reference test and three commercially available targeted sequencing panels. Following this internal validation, the five cell lines were sent to 29 laboratories selected on the basis of a previous survey. Nineteen of the 23 laboratories that submitted results (82.6%) used targeted sequencing for TMB estimation. Only two laboratories performed whole exome sequencing (WES) and two assessed TMB by clinical exome. A high variability in the reported TMB values was observed. The variability was higher for samples with the highest TMB value according to the F1CDx test. However, good reproducibility of the TMB score was shown by laboratories using the same panel. The majority of laboratories did not indicate a TMB cut-off value for clinical interpretation. In conclusion, this pilot EQA scheme suggests that it is feasible to run such an EQA program for TMB assessment. However, the results of our pilot highlight the numerous challenges for the standardization of this test.
Collapse
|
research-article |
2 |
4 |
77
|
Martin M, Sabari JK, Turashvili G, Halpenny DF, Rizvi H, Shapnik N, Makker V. Next-generation sequencing based detection of germline and somatic alterations in a patient with four metachronous primary tumors. Gynecol Oncol Rep 2018; 24:94-98. [PMID: 29915805 PMCID: PMC6003430 DOI: 10.1016/j.gore.2018.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Multiple primary tumors (MPTs) are defined as two or more separate synchronous or metachronous neoplasms occurring in different sites in the same individual. These tumors differ in histology, as well as primary sites from which they arise. Risk factors associated with the occurrence of MPTs include germline alterations, exposure to prior cancer therapies, occupational hazards, and lifestyle and behavioral influences. CASE REPORT We present a case of a patient who was diagnosed with four metachronous primary tumors. In 2013, she was diagnosed with serous proliferations associated with psammomatous bodies of primary peritoneal origin (pT3NxM0). This was followed by invasive ductal carcinoma of the breast (stage pT2N0Mx, histological grade III/III) in 2014, melanoma (stage pT2bNxMx) in 2016 that further advanced to the lung and brain in 2017, and a low-grade lung carcinoid in 2017. To better understand the biology of this patient's MPTs, we performed next-generation sequencing (NGS) to assess for both somatic and germline alterations. The treatment course for this patient aims to target the tumor with the strongest prognostic value, namely her malignant melanoma, and has contributed favorably to the overall survival of this patient. CONCLUSION We report the clinical and genomic landscape of a patient with MPTs who had no identifiable unique somatic or germline mutations to explain her predilection to cancer. The treatment course and overall prognosis for this patient is important for understanding future cases with unrelated, metachronous MPTs, the occurrence of which cannot always be explained by underlying genetic mechanisms.
Collapse
|
Case Reports |
7 |
4 |
78
|
Repetto M, Conforti F, Pirola S, Calvello M, Pala L, Bonanni B, Catania C, Curigliano G, De Pas T. Thymic carcinoma with Lynch syndrome or microsatellite instability, a rare entity responsive to immunotherapy. Eur J Cancer 2021; 153:162-167. [PMID: 34161910 DOI: 10.1016/j.ejca.2021.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
IMPORTANCE Thymic carcinoma (TC) is a rare aggressive tumour occurring in adults characterised by one of the lowest tumor mutational burdens (TMB). Microsatellite instability (MSI) is a mutational signature, caused by defects in the DNA MisMatch Repair (MMR) system, that predicts benefit from immunotherapy and causes high TMB. Fragmentary and unstructured evidence of these conditions co-occurring are reported in literature. OBJECTIVE Review available data on the co-occurrence of these two conditions and determine its frequency in our institute case series. DESIGN We performed a systematic analysis of literature and a retrospective evaluation of all the cases of TET treated at our institution from 2000 to 2020, selecting patients with a medical history of multiple tumours to enhance a priori probability of identifying cases with underlying predisposition. RESULTS Literature yielded 3 cases of patients with MSI TC, for which MMR gene alteration was reported. None of them received immunotherapy. Of 366 patients with TETs treated in our institute, 32 had a medical history of multiple tumours and 25 of 32 (19 thymomas and 6 TCs) had available tissue for MMR analysis. One patient with TC showed a high TMB, and MSI due to MLH1 mutation and was treated in a phase II study with avelumab and axitinib combination obtaining a long-lasting partial response. MLH1 alterations are shared across MSI TC cases. CONCLUSIONS AND RELEVANCE This analysis highlights the usefulness of MSI testing in patients with TC. The observation of cases of TC occurring in patients with Lynch syndrome and the unexpected homogeneity of gene alterations support further investigation.
Collapse
|
Journal Article |
4 |
4 |
79
|
Pinto JA, Araujo JM, Gómez HL. Sex, immunity, and cancer. Biochim Biophys Acta Rev Cancer 2021; 1877:188647. [PMID: 34767966 DOI: 10.1016/j.bbcan.2021.188647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023]
Abstract
The composition of the tumor microenvironment is the complex result of the interaction between tumoral and host factors. Since there are several differences in the regulation of gene circuits between sexes, mainly influenced by sex hormones, the tumor-host interaction presents some differences, leading tumors to evolve under different conditions. Nowadays, it is well known the existence of sexual dimorphism in the regulation of the immune system, where women present an improved immunity to various infectious agents and, on the other hand, a higher incidence of autoimmune diseases than men. In oncology, differences in cancer susceptibility, response to treatment, and clinical outcomes between men and women patients are well known. Recently, sex-specific differences have also been reported in mutations in driver genes and the prognostic value of several biomarkers. Sex has been a widely forgotten biomarker in cancer therapy, but it has recently acquired great relevance due to the different results seen in immunotherapy treatment.
Collapse
|
Review |
4 |
4 |
80
|
Song J, Yan Y, Chen C, Li J, Ding N, Xu N, Bao H, Zhang X, Hong Q, Zhou J, Shao YW, Song Y, Tong L, Hu J. Tumor mutational burden and efficacy of chemotherapy in lung cancer. Clin Transl Oncol 2023; 25:173-184. [PMID: 35995891 DOI: 10.1007/s12094-022-02924-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE TMB is one of the potent biomarkers of response to immune checkpoint blockade. The association between TMB and efficacy of chemotherapy in advanced lung cancer has not been comprehensively explored. METHODS Ninety lung cancer patients receiving first-line chemotherapy with large panel next-generation sequencing data of pre-treatment tumor tissue were identified. The effect of TMB on PFS of chemotherapy were evaluated in univariate and multivariate analyses. RESULTS The median TMB level of lung cancer patients enrolled in this study was 9.4 mutations/Mb, with TMB levels in smokers significantly higher than those in non-smokers. All patients were divided into high TMB and low TMB groups with the cutoff of the median TMB. The patients with low TMB had longer PFS of first-line chemotherapy (median PFS 9.77 vs 6.33 months, HR = 0.523, 95% CI 0.32-0.852, log-rank P = 0.009). Subgroup analysis showed that PFS of chemotherapy favored low TMB than high TMB among subgroups of male, age < 60, NSCLC, adenocarcinoma, stage IV, ECOG PS 0, driver mutation positive, TP53 wild type and patients not receiving bevacizumab. In multivariate analysis, PFS of chemotherapy remained significantly longer in low TMB group (HR = 0.554, p = 0.036). In those patients received immunotherapy upon unsatisfactory chemotherapy, PFS of immunotherapy was much longer in high TMB group (median PFS 32.88 vs 6.62 months, HR = 0.2426, 95% CI 0.06-0.977, log-rank P = 0.04). CONCLUSIONS TMB level of tumor tissue is a potent biomarker for efficacy of chemotherapy and immunotherapy in lung cancer. It may provide some clues for the decision of treatment strategy.
Collapse
|
|
2 |
3 |
81
|
Zhou Z, Li P, Zhang X, Xu J, Xu J, Yu S, Wang D, Dong W, Cao X, Yan H, Sun M, Ding X, Xing J, Zhang P, Zhai L, Fan T, Tian S, Yang X, Hu M. Mutational landscape of nasopharyngeal carcinoma based on targeted next-generation sequencing: implications for predicting clinical outcomes. Mol Med 2022; 28:55. [PMID: 35562651 PMCID: PMC9107145 DOI: 10.1186/s10020-022-00479-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 04/18/2022] [Indexed: 12/20/2022] Open
Abstract
Background The aim of this study was to draw a comprehensive mutational landscape of nasopharyngeal carcinoma (NPC) tumors and identify the prognostic factors for distant metastasis-free survival (DMFS). Methods A total of forty primary nonkeratinizing NPC patients underwent targeted next-generation sequencing of 450 cancer-relevant genes. Analysis of these sequencing and clinical data was performed comprehensively. Univariate Cox regression analysis and multivariate Lasso-Cox regression analyses were performed to identify factors that predict distant metastasis and construct a risk score model, and seventy percent of patients were randomly selected from among the samples as a validation cohort. A receiver operating characteristic (ROC) curve and Harrell’s concordance index (C-index) were used to investigate whether the risk score was superior to the TNM stage in predicting the survival of patients. The survival of patients was determined by Kaplan–Meier curves and log-rank tests. Results The twenty most frequently mutated genes were identified, such as KMT2D, CYLD, and TP53 et al. Their mutation frequencies of them were compared with those of the COSMIC database and cBioPortal database. N stage, tumor mutational burden (TMB), PIK3CA, and SF3B1 were identified as predictors to build the risk score model. The risk score model showed a higher AUC and C-index than the TNM stage model, regardless of the training cohort or validation cohort. Moreover, this study found that patients with tumors harboring PI3K/AKT or RAS pathway mutations have worse DMFS than their wild-type counterparts. Conclusions In this study, we drew a mutational landscape of NPC tumors and established a novel four predictor-based prognostic model, which had much better predictive capacity than TNM stage. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00479-4.
Collapse
|
|
3 |
3 |
82
|
Zhao DY, Sun XZ, Yao SK. Mining The Cancer Genome Atlas database for tumor mutation burden and its clinical implications in gastric cancer. World J Gastrointest Oncol 2021; 13:37-57. [PMID: 33510848 PMCID: PMC7805270 DOI: 10.4251/wjgo.v13.i1.37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/08/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tumor mutational burden (TMB) is an important independent biomarker for the response to immunotherapy in multiple cancers. However, the clinical implications of TMB in gastric cancer (GC) have not been fully elucidated.
AIM To explore the landscape of mutation profiles and determine the correlation between TMB and microRNA (miRNA) expression in GC.
METHODS Genomic, transcriptomic, and clinical data from The Cancer Genome Atlas were used to obtain mutational profiles and investigate the statistical correlation between mutational burden and the overall survival of GC patients. The difference in immune infiltration between high- and low-TMB subgroups was evaluated by Wilcoxon rank-sum test. Furthermore, miRNAs differentially expressed between the high- and low-TMB subgroups were identified and the least absolute shrinkage and selection operator method was employed to construct a miRNA-based signature for TMB prediction. The biological functions of the predictive miRNAs were identified with DIANA-miRPath v3.0.
RESULTS C>T single nucleotide mutations exhibited the highest mutation incidence, and the top three mutated genes were TTN, TP53, and MUC16 in GC. High TMB values (top 20%) were markedly correlated with better survival outcome, and multivariable regression analysis indicated that TMB remained prognostic independent of TNM stage, histological grade, age, and gender. Different TMB levels exhibited different immune infiltration patterns. Significant differences between the high- and low-TMB subgroups were observed in the infiltration of CD8+ T cells, M1 macrophages, regulatory T cells, and CD4+ T cells. In addition, we developed a miRNA-based signature using 23 differentially expressed miRNAs to predict TMB values of GC patients. The predictive performance of the signature was confirmed in the testing and the whole set. Receiver operating characteristic curve analysis demonstrated the optimal performance of the signature. Finally, enrichment analysis demonstrated that the set of miRNAs was significantly enriched in many key cancer and immune-related pathways.
CONCLUSION TMB
Collapse
|
Observational Study |
4 |
3 |
83
|
Rassy E, Boussios S, Chebly A, Farra C, Kattan J, Pavlidis N. Comparative genomic characterization of melanoma of known and unknown primary. Clin Transl Oncol 2021; 23:2302-2308. [PMID: 33934271 DOI: 10.1007/s12094-021-02629-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND This study aims to genomically characterize melanoma of unknown primary (MUP) in comparison to melanomas of cutaneous primary (MCP). METHODS Eligible cases were collected from the MSK-IMPACT™ Clinical Sequencing Cohort published in the cBioPortal database. Genomic analysis was performed using a hybridization-capture-based next-generation sequencing assay designed to detect mutations, small insertions and deletions, copy number alterations, and genomic rearrangements. RESULTS Among 462 patients of whom 18.4% had MUP, brain metastasis was more common among patients with MUP (23% vs 7.1%). The differences in genomic profiling between MCP and MUP did not reach statistical significance. The 187 MCP and 44 MUP patients treated with immune checkpoint inhibitors had a median overall survival of 49 and 44 months, respectively (p = 0.705). CONCLUSIONS The differences in somatic mutation patterns and survival outcomes were not statistically significant. These findings may allude to similar carcinogenic processes but should be considered exploratory and interpreted with caution.
Collapse
|
Journal Article |
4 |
3 |
84
|
Extensive molecular reclassification: new perspectives in small bowel adenocarcinoma? Med Oncol 2021; 38:17. [PMID: 33528694 DOI: 10.1007/s12032-021-01468-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
SBA classification is still based on the location of the primary tumor, without genetic information. in the current study, an extensive genetic profile of SBA, was performed in order to identify and quantify targetable alterations for a future precision medicine in SBA. Clinical-pathological information for 24 patients affected by SBA were retrospectively reviewed. Whole genome analysis of the primary tumors was performed by the FOUNDATION Cdx technology. We carried out a functional enrichment analysis of the mutated genes with BioPlanet. Integrative clustering analysis revealed three distinct subtypes characterized by different genomic alterations. Cluster 1exhibited significant correlations with MSI status, high TMB, celiac disease and Jejunual site.We defined cluster 1 as "immunological subtype" (29.2% of patients). Driver mutations in this subtype suggest that 100% of patients may benefit from immunotherapy. Enrichment analysis of cluster 2 highlighted that the main affected pathway was that of homologous DNA pairing and strand exchange (16.7% of patients). We defined this cluster as "DNA Damage Repair (DDR) like". On the basis of these driver molecular alterations, 100% of patients could benefit from PARPi. Finally, Cluster 3 had no significant correlations with clinical-pathological characteristics (54.1% of patients). Enrichment analysis revealed that this cluster has remarkable similarities with CRA genomic profile, so we defined it as "Colon-like". SBA is a genetically distinct tumor entity and deep mutation heterogeneity indicates that different driver genes play a role in the biology of these tumors. The identification of clusters based on genetic profile suggest the possibility to go beyond chemotherapy in several patients.
Collapse
|
Journal Article |
4 |
3 |
85
|
Fan ZC, Zhang L, Yang GQ, Li S, Guo JT, Bai JJ, Wang B, Li Y, Wang L, Wang XC. MRI radiomics for predicting poor disease-free survival in muscle invasive bladder cancer: the results of the retrospective cohort study. Abdom Radiol (NY) 2024; 49:151-162. [PMID: 37804424 DOI: 10.1007/s00261-023-04028-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVES To develop an MRI radiomic nomogram capable of identifying muscle invasive bladder cancer (MIBC) patients with high-risk molecular characteristics related to poor 2-year disease-free survival (DFS). METHODS We performed a retrospective analysis of DNA sequencing data, prognostic information, and radiomics features from 91 MIBC patients at stages T2-T4aN0M0 without history of immunotherapy. To identify risk stratification, we employed Cox regression based on TP53 mutation status and tumor mutational burden (TMB) level. Radiomics signatures were selected using the least absolute shrinkage and selection operator (LASSO) to construct a nomogram based on logistic regression for predicting the stratification in the training cohort. The predictive performance of the nomogram was assessed in the testing cohort using receiver operator curve (ROC), Hosmer-Lemeshow (HL) test, clinical impact curve (CIC), and decision curve analysis (DCA). RESULTS Among 91 participants, the mean TMB value was 3.3 mut/Mb, with 60 participants having TP53 mutations. Patients with TP53 mutations and a below-average TMB value were identified as high risk and had a significantly poor 2-year DFS (hazard ratio = 4.36, 95% CI 1.82-10.44, P < 0.001). LASSO identified five radiomics signatures that correlated with the risk stratification. In the testing cohort, the nomogram achieved an area under the ROC curve of 0.909 (95% CI 0.789-0.991) and an accuracy of 0.889 (95% CI 0.708-0.977). CONCLUSION The molecular risk stratification based on TP53 mutation status combined with TMB level is strongly associated with DFS in MIBC. Radiomics signatures can effectively predict this stratification and provide valuable information to clinical decision-making.
Collapse
|
|
1 |
3 |
86
|
Wang L, Zeng X, Yang G, Liu G, Pan Y. Pan-cancer analyses of Jab1/COPS5 reveal oncogenic role and clinical outcome in human cancer. Heliyon 2022; 8:e12553. [PMID: 36643321 PMCID: PMC9834752 DOI: 10.1016/j.heliyon.2022.e12553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Jab1/COPS5 is associated with the progression of some cancers, however, its role in most cancers is still unclear.This study systematically explored the action and clinical application value of Jab1/COPS5 in different tumors based on large clinical data. We first identified by differential and survival analysis that Jab1/COPS5 was highly expressed as a high-risk gene in most cancers and was closely related to prognostic survival of patients based on the TCGA, GEO and CPTAC databases. Mutation analysis suggested that missense mutations were the main mutation type of Jab1. TMB and MSI were positively correlated with Jab1/COPS5 in most tumors, and patients with Jab1/COPS5 mutations had a poorer prognosis in prostate adenocarcinoma. By immune infiltration analysis, Jab1/COPS5 expression was positively correlated with the infiltration of CD8+ T cells in thymoma and uveal melanoma, and Jab1/COPS5 expression in testicular germ cell tumors was negatively correlated with the infiltration of cancer-associated fibroblasts. Correlation and enrichment analysis suggested that ARMC1, TCEB1 and UBE2V2 were positively correlated with Jab1/COPS5 expression and involved in multiple biological effects. In summary, this study systematically investigated the role of Jab1/COPS5 in different tumors, providing a theoretical basis for Jab1/COPS5 as a new biomarker in unresearched cancers and paving the way for targeted therapy and drug development.
Collapse
|
research-article |
3 |
2 |
87
|
Nikanjam M, Riviere P, Goodman A, Barkauskas DA, Frampton G, Kurzrock R. Tumor mutational burden is not predictive of cytotoxic chemotherapy response. Oncoimmunology 2020; 9:1781997. [PMID: 32923144 PMCID: PMC7458654 DOI: 10.1080/2162402x.2020.1781997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background High tumor mutational burden (TMB) predicts checkpoint blockade responsiveness, although the association with outcomes may be nuanced in certain tissue contexts. The correlation between TMB and cytotoxic chemotherapy sensitivity is unknown. This study evaluated the relationship between TMB and outcome in patients with solid tumors receiving cytotoxic chemotherapy. Methods University of California San Diego patients who received cytotoxic chemotherapy within one year after biopsy for TMB evaluation were included in a retrospective analysis. Physician notes and imaging reports in the electronic medical record were reviewed to determine clinical benefit and progression-free survival (PFS). Results Among 1526 patients with TMB availability, there were 294 eligible patients who received chemotherapy. There were no significant differences in TMB between those with stable disease ≥6 months/partial response/complete response versus others (t-test, p = .22). There were no significant differences in PFS for patients with TMB <10 vs. TMB ≥10 mutations/Mb (log-rank test, median and 95% CI: 6.0 (4.8–7.4) vs. 5.4 (4.3–6.6) months; p = .21). Nor were there significant differences in PFS for patients with a TMB <10 vs. TMB ≥10 mutations/mb for breast (p = .07), lung (p = .47), or gastrointestinal cancer (p = .53). Conclusions In summary, TMB was not predictive of stable disease ≥6 months/partial response/complete response or PFS in patients receiving cytotoxic chemotherapy. Trials Registration NCT02478931
Collapse
|
Research Support, N.I.H., Extramural |
5 |
2 |
88
|
Kang K, Xie F, Wu Y, Wang Z, Wang L, Long J, Lian X, Zhang F. Comprehensive exploration of tumor mutational burden and immune infiltration in diffuse glioma. Int Immunopharmacol 2021; 96:107610. [PMID: 33848908 DOI: 10.1016/j.intimp.2021.107610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have been used as a novel treatment for diffuse gliomas, but the efficacy varies with patients, which may be associated with the tumor mutational burden (TMB) and immune infiltration. We aimed to explore the relationship between the two and their impacts on the prognosis. METHODS The data of the training set were downloaded from The Cancer Genome Atlas (TCGA). "DESeq2" R package was used for differential analysis and identification of differentially expressed genes (DEGs). A gene risk score model was constructed based on DEGs, and a nomogram was developed combined with clinical features. With the CIBERSORT algorithm, the relationship between TMB and immune infiltration was analyzed, and an immune risk score model was constructed. Two models were verification in the validation set downloaded from the Chinese Glioma Genome Atlas (CGGA). RESULTS Higher TMB was related to worse prognosis, older age, higher grade, and higher immune checkpoint expression. The gene risk score model was constructed based on BIRC5, SAA1, and TNFRSF11B, and their expressions were all negatively correlated with prognosis. The nomogram was developed combined with age and grade. The immune risk score model was constructed based on M0 macrophages, neutrophils, naïve CD4+ T cells, and activated mast cells. The proportions of the first two were higher in the high-TMB group and correlated with worse prognosis, while the latter two were precisely opposite. CONCLUSIONS In diffuse gliomas, TMB was negatively correlated with prognosis. The association of immune infiltration with TMB and prognosis varied with the type of immune cells. The nomogram and risk score models can accurately predict prognosis. The results can help identify patients suitable for ICIs and potential therapeutic targets, thus improve the treatment of diffuse gliomas.
Collapse
|
Journal Article |
4 |
2 |
89
|
Hu X, Guo J, Shi J, Li D, Li X, Zhao W. A 20-gene mutation signature predicts the efficacy of immune checkpoint inhibitor therapy in advanced non-small cell lung cancer patients. BMC Pulm Med 2023; 23:223. [PMID: 37349743 DOI: 10.1186/s12890-023-02512-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND There is an unmet need to identify novel predictive biomarkers that enable more accurate identification of individuals who can benefit from immune checkpoint inhibitor (ICI) therapy. The US FDA recently approved tumor mutational burden (TMB) score of ≥ 10 mut/Mb as a threshold for pembrolizumab treatment of solid tumors. Our study aimed to test the hypothesis that specific gene mutation signature may predict the efficacy of ICI therapy more precisely than high TMB (≥ 10). METHODS We selected 20 candidate genes that may predict for the efficacy of ICI therapy by the analysis of data from a published cohort of 350 advanced non-small cell lung cancer (NSCLC) patients. Then, we compared the influences of various gene mutation signatures on the efficacy of ICI treatment. They were also compared with PD-L1 and TMB. The Kaplan-Meier method was utilized to evaluate the prognosis univariates, while selected univariates were adopted to develop a systematic nomogram. RESULTS A high mutation signature, where three or more of the 20 selected genes were mutated, was associated with the significant benefits of ICI therapy. Specifically, patients with high mutation signature were confirmed to have better prognosis for ICI treatment, compared with those with wild type (the median PFS: 7.17 vs. 2.90 months, p = 0.0004, HR = 0.47 (95% [CI]:0.32-0.68); the median OS: unreached vs. 9 months, p = 1.8E-8, HR = 0.17 (95% [CI]:0.11-0.25)). Moreover, those patients with the high mutation signature achieved significant ICI treatment benefits, while there was no difference of OS and PFS between patients without the signature but TMB-H (≥ 10) and those without the signature and low TMB(< 10). Finally, we constructed a novel nomogram to evaluate the efficacy of ICI therapy. CONCLUSION A high mutational signature with 3 or more of the 20-gene panel could provide more accurate predictions for the outcomes of ICI therapy than TMB ≥ 10 in NSCLC patients.
Collapse
|
|
2 |
2 |
90
|
Haghighat Jahromi A, Barkauskas DA, Zabel M, Goodman AM, Frampton G, Nikanjam M, Hoh CK, Kurzrock R. Relationship between tumor mutational burden and maximum standardized uptake value in 2-[ 18F]FDG PET (positron emission tomography) scan in cancer patients. EJNMMI Res 2020; 10:150. [PMID: 33296034 PMCID: PMC7726049 DOI: 10.1186/s13550-020-00732-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/21/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose Deriving links between imaging and genomic markers is an evolving field. 2-[18F]FDG PET/CT (18F-fluorodeoxyglucose positron emission tomography–computed tomography) is commonly used for cancer imaging, with maximum standardized uptake value (SUVmax) as the main quantitative parameter. Tumor mutational burden (TMB), the quantitative variable obtained using next-generation sequencing on a tissue biopsy sample, is a putative immunotherapy response predictor. We report the relationship between TMB and SUVmax, linking these two important parameters. Methods In this pilot study, we analyzed 1923 patients with diverse cancers and available TMB values. Overall, 273 patients met our eligibility criteria in that they had no systemic treatment prior to imaging/biopsy, and also had 2-[18F]FDG PET/CT within 6 months prior to the tissue biopsy, to ensure acceptable temporal correlation between imaging and genomic evaluation. Results We found a linear correlation between TMB and SUVmax (p < 0.001). In the multivariate analysis, only TMB independently correlated with SUVmax, whereas age, gender, and tumor organ did not. Conclusion Our observations link SUVmax in readily available, routinely used, and noninvasive 2-[18F]FDG PET/CT imaging to the TMB, which requires a tissue biopsy and time to process. Since higher TMB has been implicated as a prognostic biomarker for better outcomes after immunotherapy, further investigation will be needed to determine if SUVmax can stratify patient response to immunotherapy.
Collapse
|
Journal Article |
5 |
2 |
91
|
Abstract
Immune checkpoint inhibitors (ICI) have emerged as an important treatment strategy in lung cancer in recent years. Implementation and approval status of each approved ICI will be presented by summarizing the most important phase III studies of nivolumab, pembrolizumab, atezolizumab and durvalumab. ICI are used as mono- or combination therapy with chemotherapy according to programmed cell death 1 ligand 1 (PD-L1) status and therapy line.
Collapse
|
Review |
5 |
2 |
92
|
Mutational burden, MHC-I expression and immune infiltration as limiting factors for in situ vaccination by TNFα and IL-12 gene electrotransfer. Bioelectrochemistry 2021; 140:107831. [PMID: 33991775 DOI: 10.1016/j.bioelechem.2021.107831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
In situ vaccination is a promising immunotherapeutic approach, where various local ablative therapies are used to induce an immune response against tumor antigens that are released from the therapy-killed tumor cells. We recently proposed using intratumoral gene electrotransfer for concomitant transfection of a cytotoxic cytokine tumor necrosis factor-α (TNFα) to induce in situ vaccination, and an immunostimulatory cytokine interleukin 12 (IL-12) to boost the primed immune response. Here, our aim was to test the local and systemic effectiveness of the approach in tree syngeneic mouse tumor models and associate it with tumor immune profiles, characterized by tumor mutational burden, immune infiltration and expression of PD-L1 and MHC-I on tumor cells. While none of the tested characteristic proved predictive for local effectiveness, high tumor mutational burden, immune infiltration and MHC-I expression were associated with higher abscopal effectiveness. Hence, we have confirmed that both the abundance and presentation of tumor antigens as well as the absence of immunosuppressive mechanisms are important for effective in situ vaccination. These findings provide important indications for future development of in situ vaccination based treatments, and for the selection of tumor types that will most likely benefit from it.
Collapse
|
Journal Article |
4 |
2 |
93
|
Gong J, Robertson MD, Kim E, Fakih M, Schrock AB, Tam KW, Burugapalli B, Monjazeb AM, Hendifar AE, Hitchins M, Klempner SJ, Cho M. Efficacy of PD-1 Blockade in Refractory Microsatellite-Stable Colorectal Cancer With High Tumor Mutation Burden. Clin Colorectal Cancer 2019; 18:307-309. [PMID: 31563511 DOI: 10.1016/j.clcc.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/10/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
|
Case Reports |
6 |
1 |
94
|
Wagener-Ryczek S, Buettner R. The value of tumor mutational burden to select patients for immunotherapy. Expert Rev Anticancer Ther 2020; 21:1-3. [PMID: 33043725 DOI: 10.1080/14737140.2020.1831386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
Editorial |
5 |
1 |
95
|
Farmanbar A, Firouzi S, Kneller R, Khiabanian H. Mutational signatures reveal ternary relationships between homologous recombination repair, APOBEC, and mismatch repair in gynecological cancers. J Transl Med 2022; 20:65. [PMID: 35109853 PMCID: PMC8812249 DOI: 10.1186/s12967-022-03259-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 01/29/2023] Open
Abstract
Background Revealing the impacts of endogenous and exogenous mutagenesis processes is essential for understanding the etiology of somatic genomic alterations and designing precise prognostication and treatment strategies for cancer. DNA repair deficiency is one of the main sources of endogenous mutagenesis and is increasingly recognized as a target for cancer therapeutics. The role and prevalence of mechanisms that underly different forms of DNA repair deficiencies and their interactions remain to be elucidated in gynecological malignancies. Methods We analyzed 1231 exomes and 268 whole-genomes from three major gynecological malignancies including uterine corpus endometrial carcinoma (UCEC) as well as ovarian and cervical cancers. We also analyzed data from 134 related cell lines. We extracted and compared de novo and refitted mutational signature profiles using complementary and confirmatory approaches and performed interaction analysis to detect co-occurring and mutually exclusive signatures. Results We found an inverse relationship between homologous recombination deficiency (HRd) and mismatch repair deficiency (MMRd). Moreover, APOBEC co-occurred with HRd but was mutually exclusive with MMRd. UCEC tumors were dominated by MMRd, yet a subset of them manifested the HRd and APOBEC signatures. Conversely, ovarian tumors were dominated by HRd, while a subset represented MMRd and APOBEC. In contrast to both, cervical tumors were dominated by APOBEC with a small subsets showing the POLE, HRd, and MMRd signatures. Although the type, prevalence, and heterogeneity of mutational signatures varied across the tumor types, the patterns of co-occurrence and exclusivity were consistently observed in all. Notably, mutational signatures in gynecological tumor cell lines reflected those detected in primary tumors. Conclusions Taken together, these analyses indicate that application of mutation signature analysis not only advances our understanding of mutational processes and their interactions, but also it has the potential to stratify patients that could benefit from treatments available for tumors harboring distinct mutational signatures and to improve clinical decision-making for gynecological malignancies. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03259-0.
Collapse
|
|
3 |
1 |
96
|
Myer NM, Shitara K, Chung HC, Lordick F, Kelly RJ, Szabo Z, Cao ZA, Leong S, Ilson DH, Weichert W. Evolution of predictive and prognostic biomarkers in the treatment of advanced gastric cancer. J Cancer Res Clin Oncol 2022; 148:2023-2043. [PMID: 35551464 PMCID: PMC11110882 DOI: 10.1007/s00432-021-03902-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022]
Abstract
Despite new therapeutic options, advanced gastric cancer remains associated with a poor prognosis compared with other cancers. Recent gains in the treatment of gastric cancer were accompanied by the identification of novel biomarkers associated with various cellular pathways and corresponding diagnostic technologies. It is expected that the standardization of clinical workflow and technological refinements in biomarker assessment will support greater personalization and further improve treatment outcomes. In this article, we review the current state of prognostic and predictive biomarkers in gastric cancer.
Collapse
|
Review |
3 |
1 |
97
|
Yang W, Qiang Y, Wu W, Xin J. Graph-ETMB: A graph neural network-based model for tumour mutation burden estimation. Comput Biol Chem 2023; 105:107900. [PMID: 37285654 DOI: 10.1016/j.compbiolchem.2023.107900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/06/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
As a critical indicator of how easily the human immune system recognizes tumour cells, tumour mutational burden (TMB) is widely used to identify the potential effectiveness of immune checkpoint inhibitor therapy. However, the difficulties associated with the whole exome sequencing (WES) process, such as high tissue sampling requirements, high costs, and long turnaround times, have hindered the widespread clinical use of WES. Furthermore, the mutation landscape varies across cancer types, and the distribution of TMBs varies across cancer subtypes. Therefore, there is an urgent clinical need to develop a small cancer-specific panel to estimate TMB accurately, predict immunotherapy response cost-effectively and assist physicians in precise decision-making. This paper uses a graph neural network framework (Graph-ETMB) to address the cancer specificity problem in TMB. The correlation and tractability between mutated genes are described through message-passing and aggregation algorithms between graph networks. Then the graph neural network is trained in the lung adenocarcinoma data through a semi-supervised approach, resulting in a mutation panel containing 20 genes with a length of only 0.16 Mb. The number of genes to be detected is smaller than most commercial panels currently in clinical use. In addition, the efficacy of the designed panel in predicting immunotherapy response was further determined in an independent validation dataset, exploring the association between TMB and immunotherapy efficacy.
Collapse
|
|
2 |
1 |
98
|
Li D, Wang D, Johann DJ, Hong H, Xu J. Assessments of tumor mutational burden estimation by targeted panel sequencing: A comprehensive simulation analysis. Exp Biol Med (Maywood) 2023; 248:1918-1926. [PMID: 38062992 PMCID: PMC10798187 DOI: 10.1177/15353702231211882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 01/06/2024] Open
Abstract
Tumor mutational burden (TMB), when at a high level, is an emerging indicative factor of sensitivity to immune checkpoint inhibitors. Previous studies have shown that the more affordable and accurate targeted panels can be used to measure TMB as a substitute for whole exome sequencing (WES). However, additional processes, such as hotspot mutations exclusion and TMB adjustment, are usually required to deal with the effect of the limited panel sizes. A comprehensive investigation of the effective factors is needed for accurate TMB estimation by targeted panels. In this study, we quantitatively evaluated the variances of TMB values calculated by WES and targeted panels using 10,000 simulated targeted panels with panel sizes ranging from 0.2 to 3.1 million bases. With The Cancer Genome Atlas (TCGA) cancer samples and mutation profiles, we fixed regressions on WES-TMBs and panel-TMBs to assess the performance of a given targeted panel. Panel size was found as one of the major effective factors of TMB estimation. Meanwhile, by investigating the well-performing small panels that reported TMB values similar to those of WES, we demonstrated the evidence of the cancer type-specific impacts of genes on TMB estimation and identified high-impact gene sets for different cancer types based on the TCGA data. This study revealed the quantitative correlations between TMB variance and panel size, and the potential impacts of individual genes on TMB estimation. Our results suggested that for cancer patients diagnosed using targeted panels, it would be highly beneficial to have the capability to directly measure TMB from the targeted sequencing data. This would greatly assist in making decisions regarding the use of immunotherapies.
Collapse
|
research-article |
2 |
1 |
99
|
Mou H, Yang Q, Yu L, Wang T, Liu K, Shen R, Pan X, Dai Y, Wan Q, Zhou F, Qian L, Chen D, Yau T, Dong X, Wang X, Wang S. Programmed cell death-ligand 1 expression in hepatocellular carcinoma and its correlation with clinicopathological characteristics. J Gastroenterol Hepatol 2021; 36:2601-2609. [PMID: 33656759 PMCID: PMC8518358 DOI: 10.1111/jgh.15475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/23/2021] [Accepted: 02/22/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIM Programmed cell death-ligand 1 (PD-L1) immunohistochemistry score has been approved as the predictive biomarker for anti-PD1/PD-L1 therapy in several advanced malignancies. Although its predictive role remained inconclusive in hepatocellular carcinoma, ongoing study of anti-PD1/PD-L1 therapy showed promising results. However, less is known about the PD-L1 immunohistochemistry score and factors correlated with it in hepatocellular carcinoma. We investigated PD-L1 immunohistochemistry scores in a large cohort of hepatocellular carcinoma, as well as its correlation with various clinical and genomic factors. METHODS Immunohistochemistry was performed to detect the expression of PD-L1 protein in 315 hepatocellular carcinoma tissues. All slides were independently reviewed by three senior pathologists. Next-generation YS panel (450 genes) sequencing was performed on 309 patients. RESULTS Higher PD-L1 expression as measured by combined positive score (CPS) was associated with increased Edmondson-Steiner grade (grade III vs II, P = 0.041) and TP53 mutations (P = 0.021). PD-L1 CPS had no correlation with tumor mutational burden (Spearman's correlation coefficient 0.067). PD-L1 CPS was not significantly associated with hepatitis B virus infection. CONCLUSIONS Our data indicated that patients with higher Edmondson-Steiner grade (grade III) had significantly higher PD-L1 CPS than patients with lower Edmondson-Steiner grade (grade II). Patients with TP53 mutations had significantly higher PD-L1 expression.
Collapse
|
research-article |
4 |
1 |
100
|
Xu F, Guan Y, Zhang P, Xue L, Ma Y, Gao M, Chong T, Ren BC. Tumor mutational burden presents limiting effects on predicting the efficacy of immune checkpoint inhibitors and prognostic assessment in adrenocortical carcinoma. BMC Endocr Disord 2022; 22:130. [PMID: 35568842 PMCID: PMC9107278 DOI: 10.1186/s12902-022-01017-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is a highly malignant urologic cancer and tends to metastasize. Although immune checkpoint inhibitors (ICIs) bring a glimmer of light to conquer ACC, only a fraction of patients have benefit from ICIs treatment. It is well known that tumor mutational burden (TMB) is closely associated with the efficacy and response rate of immunotherapy. However, its roles in ACC were not investigated. METHODS Using somatic mutations data of 92 ACC samples in TCGA database, we calculated their TMB values by the 'maftools' package in R software (Ver 3.6.3). To explore the roles of TMB in ICIs therapy, we have addressed this issue from three perspectives. First, the effects of TMB levels on tumor immune microenvironment (TIM) were analyzed through CIBERSORT algorithm, ssGSEA method and TIMER web server. Second, we investigated the expressive correlations between TMB level and five pivotal immune checkpoints based on Pearson coefficient. Third, the difference in TIDE score between high- and low-TMB groups was compared. The prognostic value of TMB was also evaluated. Besides, GSEA was performed to determine the changes in the activities of signaling pathways caused by TMB. RESULTS TMB values in ACC samples were not high. The average of total mutation counts in each sample was only 21.5. High TMB could lead metabolic reprogramming and poor survival outcomes. However, it was unable to affect the infiltration levels of lymphocytes, and failed to facilitate the activities of immune-related pathways. Regarding immune checkpoints (ICs), only PD-L1 upregulation could result in a good prognosis, and TMB level did not correlate with the expressions of other ICs except for LAG3. There was no significant difference in TIDE score between high- and low-TMB groups. Combining the present results and previous study, we speculated that inadequate stimulation for neoantigens formation, intrinsic immune-resistance and special genomic alterations were three possible reasons for TMB limiting functions in TIM and ICIs. Besides, TMB was toughly applied in clinical practice due to its high cost of determination and non-universal definition of high TMB. CONCLUSIONS TMB presents limiting effects on prediction for ICIs efficacy and prognostic assessment for ACC patients.
Collapse
|
research-article |
3 |
1 |