76
|
Huang M, Roose ML, Yu Q, Du D, Yu Y, Zhang Y, Deng Z, Stover E, Gmitter FG. Construction of High-Density Genetic Maps and Detection of QTLs Associated With Huanglongbing Tolerance in Citrus. FRONTIERS IN PLANT SCIENCE 2018; 9:1694. [PMID: 30542355 PMCID: PMC6278636 DOI: 10.3389/fpls.2018.01694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/31/2018] [Indexed: 05/29/2023]
Abstract
Huanglongbing (HLB), or citrus greening, is the most devastating disease in citrus worldwide. Commercial citrus varieties including sweet orange (Citrus sinensis) are highly susceptible to HLB, and trifoliate orange (Poncirus trifoliata, a close Citrus relative) is widely considered resistant or highly tolerant to HLB. In this study, an intergeneric F1 population of sweet orange and trifoliate orange was genotyped by Genotyping-by-Sequencing, and high-density SNP-based genetic maps were constructed separately for trifoliate orange and sweet orange. The two genetic maps exhibited high synteny and high coverage of the citrus genome. Progenies of the F1 population and their parents were planted in a replicated field trial, exposed to intense HLB pressure for 3 years, and then evaluated for susceptibility to HLB over 2 years. The F1 population exhibited a wide range in severity of HLB foliar symptom and canopy damage. Genome-wide QTL analysis based on the phenotypic data of foliar symptom and canopy damage in 2 years identified three clusters of repeatable QTLs in trifoliate orange linkage groups LG-t6, LG-t8 and LG-t9. Co-localization of QTLs for two traits was observed within all three regions. Additionally, one cluster of QTLs in sweet orange (linkage group LG-s7) was also detected. The majority of the identified QTLs each explained 18-30% of the phenotypic variation, indicating their major role in determining HLB responses. These results show, for the first time, a quantitative genetic nature yet the presence of major loci for the HLB tolerance in trifoliate orange. The results suggest that sweet orange also contains useful genetic factor(s) for improving HLB tolerance in commercial citrus varieties. Findings from this study should be very valuable and timely to researchers worldwide as they are hastily searching for genetic solutions to the devastating HLB crisis through breeding, genetic engineering, or genome editing.
Collapse
|
77
|
Li B, Lu X, Dou J, Aslam A, Gao L, Zhao S, He N, Liu W. Construction of A High-Density Genetic Map and Mapping of Fruit Traits in Watermelon ( Citrullus Lanatus L.) Based on Whole-Genome Resequencing. Int J Mol Sci 2018; 19:ijms19103268. [PMID: 30347873 PMCID: PMC6214002 DOI: 10.3390/ijms19103268] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/26/2022] Open
Abstract
Watermelon (Citrullus lanatus L.) is an important horticultural crop that is grown worldwide and has a high economic value. To dissect the loci associated with important horticultural traits and to analyze the genetic and genomic information of this species, a high-density genetic map was constructed based on whole-genome resequencing (WGR), a powerful high-resolution method for single-nucleotide polymorphism (SNP) marker development, genetic map construction, and gene mapping. Resequencing of both parental lines and 126 recombinant inbred lines (RIL) resulted in the detection of 178,762 single-nucleotide polymorphism (SNP) markers in the parental lines at a sequencing depth greater than four-fold. Additionally, 2132 recombination bin markers comprising 103,029 SNP markers were mapped onto 11 linkage groups (LGs). Substantially more SNP markers were mapped to the genetic map compared with other recent studies. The total length of the linkage map was 1508.94 cM, with an average distance of 0.74 cM between adjacent bin markers. Based on this genetic map, one locus for fruit bitterness, one locus for rind color, and one locus for seed coat color with high LOD scores (58.361, 18.353, 26.852) were identified on chromosome 1, chromosome 8, and chromosome 3, respectively. These prominent loci were identified in a region of 6.16 Mb, 2.07 Mb, and 0.37 Mb, respectively. On the basis of current research, the high-density map and mapping results will provide a valuable tool for identifying candidate genes, map-based gene cloning, comparative mapping, and marker-assisted selection (MAS) in watermelon breeding.
Collapse
|
78
|
A High-Density EST-SSR-Based Genetic Map and QTL Analysis of Dwarf Trait in Cucurbita pepo L. Int J Mol Sci 2018; 19:ijms19103140. [PMID: 30322052 PMCID: PMC6213718 DOI: 10.3390/ijms19103140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022] Open
Abstract
As one of the earliest domesticated species, Cucurbita pepo (including squash and pumpkin) is rich in phenotypic polymorphism and has huge economic value. In this research, using 1660 expressed sequence tags-simple sequence repeats (EST-SSRs) and 632 genomic simple sequence repeats (gSSRs), we constructed the highest-density EST-SSR-based genetic map in Cucurbita genus, which spanned 2199.1 cM in total and harbored 623 loci distributed in 20 linkage groups. Using this map as a bridge, the two previous gSSR maps were integrated by common gSSRs and the corresponding relationships around chromosomes in three sets of genomes were also collated. Meanwhile, one large segmental inversion that existed between our map and the C. pepo genome was detected. Furthermore, three Quantitative Trait Loci (QTLs) of the dwarf trait (gibberellin-sensitive dwarf type) in C. pepo were located, and the candidate region that covered the major QTL spanned 1.39 Mb, which harbored a predicted gibberellin 2-β-oxidase gene. Considering the rich phenotypic polymorphism, the important economic value in the Cucurbita genus species and several advantages of the SSR marker were identified; thus, this high-density EST-SSR-based genetic map will be useful in Pumpkin and Squash breeding work in the future.
Collapse
|
79
|
Ramekar RV, Sa KJ, Park KC, Roy N, Kim NS, Lee JK. Construction of genetic linkage map and identification of QTLs related to agronomic traits in maize using DNA transposon-based markers. BREEDING SCIENCE 2018; 68:465-473. [PMID: 30369821 PMCID: PMC6198908 DOI: 10.1270/jsbbs.18017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Transposable elements (TEs), are a rich source for molecular marker development as they constitute a significant fraction of the eukaryotic genome and impact the overall genome structure. Here, we utilize Mutator-based transposon display (Mu-TD), and CACTA-derived sequence-characterized amplified regions (SCAR) anchored by simple sequence repeats and single nucleotide polymorphisms to locate quantitative trait loci (QTLs) linked to agriculturally important traits on a genetic map. Specifically, we studied recombinant inbred line populations derived from a cross between dent corn and waxy corn. The resulting linkage map included 259 Mu-anchored fragments, 34 SCARs, and 614 SSR markers distributed throughout the ten maize chromosomes. Linkage analysis revealed three SNP loci associated with kernel starch synthesis genes (sh2, su1, wx1) linked to either Mu-TD loci or SSR markers, which may be useful for maize breeding programs. In addition, we used QTL analysis to determine the chromosomal location of traits related to grain yield and kernel quality. We identified 24 QTLs associated with nine traits located on nine out of ten maize chromosomes. Among these, 13 QTLs involved Mu loci and two involved SCARs. This study demonstrates the potential use of DNA transposon-based markers to construct linkage maps and identify QTLs linked to agronomic traits.
Collapse
|
80
|
Moreno R, Castro P, Vrána J, Kubaláková M, Cápal P, García V, Gil J, Millán T, Doležel J. Integration of Genetic and Cyto genetic Maps and Identification of Sex Chromosome in Garden Asparagus ( Asparagus officinalis L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1068. [PMID: 30108600 PMCID: PMC6079222 DOI: 10.3389/fpls.2018.01068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/02/2018] [Indexed: 05/30/2023]
Abstract
A genetic linkage map of dioecious garden asparagus (Asparagus officinalis L., 2n = 2x = 20) was constructed using F1 population, simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. In total, 1376 SNPs and 27 SSRs were used for genetic mapping. Two resulting parental maps contained 907 and 678 markers spanning 1947 and 1814 cM, for female and male parent, respectively, over ten linkage groups representing ten haploid chromosomes of the species. With the aim to anchor the ten genetic linkage groups to individual chromosomes and develop a tool to facilitate genome analysis and gene cloning, we have optimized a protocol for flow cytometric chromosome analysis and sorting in asparagus. The analysis of DAPI-stained suspensions of intact mitotic chromosomes by flow cytometry resulted in histograms of relative fluorescence intensity (flow karyotypes) comprising eight major peaks. The analysis of chromosome morphology and localization of 5S and 45S rDNA by FISH on flow-sorted chromosomes, revealed that four chromosomes (IV, V, VI, VIII) could be discriminated and sorted. Seventy-two SSR markers were used to characterize chromosome content of individual peaks on the flow karyotype. Out of them, 27 were included in the genetic linkage map and anchored genetic linkage groups to chromosomes. The sex determining locus was located on LG5, which was associated with peak V representing a chromosome with 5S rDNA locus. The results obtained in this study will support asparagus improvement by facilitating targeted marker development and gene isolation using flow-sorted chromosomes.
Collapse
|
81
|
Ellis N, Hattori C, Cheema J, Donarski J, Charlton A, Dickinson M, Venditti G, Kaló P, Szabó Z, Kiss GB, Domoney C. NMR Metabolomics Defining Genetic Variation in Pea Seed Metabolites. FRONTIERS IN PLANT SCIENCE 2018; 9:1022. [PMID: 30065739 PMCID: PMC6056766 DOI: 10.3389/fpls.2018.01022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/25/2018] [Indexed: 05/13/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy profiling was used to provide an unbiased assessment of changes to the metabolite composition of seeds and to define genetic variation for a range of pea seed metabolites. Mature seeds from recombinant inbred lines, derived from three mapping populations for which there is substantial genetic marker linkage information, were grown in two environments/years and analyzed by non-targeted NMR. Adaptive binning of the NMR metabolite data, followed by analysis of quantitative variation among lines for individual bins, identified the main genomic regions determining this metabolic variability and the variability for selected compounds was investigated. Analysis by t-tests identified a set of bins with highly significant associations to genetic map regions, based on probability (p) values that were appreciably lower than those determined for randomized data. The correlation between bins showing high mean absolute deviation and those showing low p-values for marker association provided an indication of the extent to which the genetics of bin variation might be explained by one or a few loci. Variation in compounds related to aromatic amino acids, branched-chain amino acids, sucrose-derived metabolites, secondary metabolites and some unidentified compounds was associated with one or more genetic loci. The combined analysis shows that there are multiple loci throughout the genome that together impact on the abundance of many compounds through a network of interactions, where individual loci may affect more than one compound and vice versa. This work therefore provides a framework for the genetic analysis of the seed metabolome, and the use of genetic marker data in the breeding and selection of seeds for specific seed quality traits and compounds that have high commercial value.
Collapse
|
82
|
Adhikari L, Lindstrom OM, Markham J, Missaoui AM. Dissecting Key Adaptation Traits in the Polyploid Perennial Medicago sativa Using GBS-SNP Mapping. FRONTIERS IN PLANT SCIENCE 2018; 9:934. [PMID: 30022989 PMCID: PMC6039623 DOI: 10.3389/fpls.2018.00934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/11/2018] [Indexed: 05/18/2023]
Abstract
Understanding key adaptation traits is crucial to developing new cultivars with broad adaptations. The main objective of this research is to understand the genetic basis of winter hardiness (WH) and fall dormancy (FD) in alfalfa and the association between the two traits. QTL analysis was conducted in a pseudo-testcross F1 population developed from two cultivars contrasting in FD (3010 with FD = 2 and CW 1010 with FD = 10). The mapping population was evaluated in three replications at two locations (Watkinsville and Blairsville, GA). FD levels showed low to moderate correlations with WH (0.22-0.57). Assessing dormancy in winter is more reliable than in the fall in southern regions with warm winters. The mapping population was genotyped using Genotyping-by-sequencing (GBS). Single dose allele SNPs (SDA) were used for constructing linkage maps. The parental map (CW 1010) consisted of 32 linkage groups spanning 2127.5 cM with 1377 markers and an average marker density of 1.5 cM/SNP. The maternal map (3010) had 32 linkage groups spanning 2788.4 cM with 1837 SDA SNPs with an average marker density of 1.5 cM/SNP. Forty-five significant (P < 0.05) QTLs for FD and 35 QTLs for WH were detected on both male and female linkage maps. More than 75% (22/28) of the dormancy QTL detected from the 3010 parent did not share genomic regions with WH QTLs and more than 70% (12/17) dormancy QTLs detected from CW 1010 parent were localized in different genomic regions than WH QTLs. These results suggest that the two traits have independent inheritance and therefore can be improved separately in breeding programs.
Collapse
|
83
|
Abstract
An accurate and high-resolution genetic map is critical for mapping complex traits, yet the resolution of the current rat genetic map is far lower than human and mouse, and has not been updated since the original Jensen-Seaman map in 2004. For the first time, we have refined the rat genetic map to sub-centimorgan (cM) resolution (<0.02 cM) by using 95,769 genetic markers and 870 informative meioses from a cohort of 528 heterogeneous stock (HS) rats. Global recombination rates in the revised sex-averaged map (0.66 cM/Mb) did not differ compared to the historical map (0.65 cM/Mb); however, substantial refinement was made to the localization of highly recombinant regions within the revised map. Also for the first time, sex-specific rat genetic maps were generated, which revealed both genomewide and fine-scale variation in recombination rates between male and female rats. Reanalysis of multiple quantitative trait loci (QTL) using the historical and refined rat genetic maps demonstrated marked changes to QTL localization, shape, and effect size. As a resource to the rat research community, we have provided revised centimorgan positions for all physical positions within the rat genome and commonly used genetic markers for trait mapping, including 44,828 SSLP markers and the RATDIV genotyping array. Collectively, this study provides a substantial improvement to the rat genetic map and an unprecedented resource for analysis of complex traits and recombination in the rat.
Collapse
|
84
|
You FM, Xiao J, Li P, Yao Z, Jia G, He L, Zhu T, Luo MC, Wang X, Deyholos MK, Cloutier S. Chromosome-scale pseudomolecules refined by optical, physical and genetic maps in flax. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:371-384. [PMID: 29681136 DOI: 10.1111/tpj.13944] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 05/19/2023]
Abstract
Genomes of varying sizes have been sequenced with next-generation sequencing platforms. However, most reference sequences include draft unordered scaffolds containing chimeras caused by mis-scaffolding. A BioNano genome (BNG) optical map was constructed to improve the previously sequenced flax genome (Linum usitatissimum L., 2n = 30, about 373 Mb), which consisted of 3852 scaffolds larger than 1 kb and totalling 300.6 Mb. The high-resolution BNG map of cv. CDC Bethune totalled 317 Mb and consisted of 251 BNG contigs with an N50 of 2.15 Mb. A total of 622 scaffolds (286.6 Mb, 94.9%) aligned to 211 BNG contigs (298.6 Mb, 94.2%). Of those, 99 scaffolds, diagnosed to contain assembly errors, were refined into 225 new scaffolds. Using the newly refined scaffold sequences and the validated bacterial artificial chromosome-based physical map of CDC Bethune, the 211 BNG contigs were scaffolded into 94 super-BNG contigs (N50 of 6.64 Mb) that were further assigned to the 15 flax chromosomes using the genetic map. The pseudomolecules total about 316 Mb, with individual chromosomes of 15.6 to 29.4 Mb, and cover 97% of the annotated genes. Evidence from the chromosome-scale pseudomolecules suggests that flax has undergone palaeopolyploidization and mesopolyploidization events, followed by rearrangements and deletions or fusion of chromosome arms from an ancient progenitor with a haploid chromosome number of eight.
Collapse
|
85
|
Ji F, Wei W, Liu Y, Wang G, Zhang Q, Xing Y, Zhang S, Liu Z, Cao Q, Qin L. Construction of a SNP-Based High-Density Genetic Map Using Genotyping by Sequencing (GBS) and QTL Analysis of Nut Traits in Chinese Chestnut ( Castanea mollissima Blume). FRONTIERS IN PLANT SCIENCE 2018; 9:816. [PMID: 29963069 PMCID: PMC6011034 DOI: 10.3389/fpls.2018.00816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 05/28/2018] [Indexed: 05/09/2023]
Abstract
Chinese chestnut is a wildly distributed nut species with importantly economic value. The nut size and ripening period are mainly desired breeding objectives in Chinese chestnut. However, high-density linkage maps and quantitative trait loci (QTL) analyses related to nut traits are less than satisfactory, which hinders progress in the breeding of Chinese chestnut. Here, a single nucleotide polymorphism (SNP)-based high-density linkage map was constructed through genotyping-by-sequencing (GBS) of an F1 cross between the two widely grown Chinese chestnut cultivars 'Yanshanzaofeng' and 'Guanting No. 10'. The genetic linkage map consists of 2,620 SNP markers with a total length of 1078.06 cM in 12 linkage groups (LGs) and an average marker distance of 0.41 cM. 17 QTLs were identified for five nut traits, specifically single-nut weight (SNW), nut width (NW), nut thickness (NT), nut height (NH), and ripening period (RP), based on phenotypic data from two successive years. Of the 17 QTLs, two major QTLs, i.e., qNT-I-1 and qRP-B-1 related to the NT and RP traits, respectively, were exploited. Moreover, the data revealed one pleiotropic QTL at 23.97 cM on LG I, which might simultaneously control SNW, NT, and NW. This study provides useful benchmark information concerning high-density genetic mapping and QTLs identification related to nut size and ripening period, and will accelerate genetic improvements for nuts in the marker-assisted selection (MAS) breeding of Chinese chestnut.
Collapse
|
86
|
Veltsos P, Cossard G, Beaudoing E, Beydon G, Savova Bianchi D, Roux C, C González-Martínez S, R Pannell J. Size and Content of the Sex-Determining Region of the Y Chromosome in Dioecious Mercurialis annua, a Plant with Homomorphic Sex Chromosomes. Genes (Basel) 2018; 9:E277. [PMID: 29844299 PMCID: PMC6027223 DOI: 10.3390/genes9060277] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 01/01/2023] Open
Abstract
Dioecious plants vary in whether their sex chromosomes are heteromorphic or homomorphic, but even homomorphic sex chromosomes may show divergence between homologues in the non-recombining, sex-determining region (SDR). Very little is known about the SDR of these species, which might represent particularly early stages of sex-chromosome evolution. Here, we assess the size and content of the SDR of the diploid dioecious herb Mercurialis annua, a species with homomorphic sex chromosomes and mild Y-chromosome degeneration. We used RNA sequencing (RNAseq) to identify new Y-linked markers for M. annua. Twelve of 24 transcripts showing male-specific expression in a previous experiment could be amplified by polymerase chain reaction (PCR) only from males, and are thus likely to be Y-linked. Analysis of genome-capture data from multiple populations of M. annua pointed to an additional six male-limited (and thus Y-linked) sequences. We used these markers to identify and sequence 17 sex-linked bacterial artificial chromosomes (BACs), which form 11 groups of non-overlapping sequences, covering a total sequence length of about 1.5 Mb. Content analysis of this region suggests that it is enriched for repeats, has low gene density, and contains few candidate sex-determining genes. The BACs map to a subset of the sex-linked region of the genetic map, which we estimate to be at least 14.5 Mb. This is substantially larger than estimates for other dioecious plants with homomorphic sex chromosomes, both in absolute terms and relative to their genome sizes. Our data provide a rare, high-resolution view of the homomorphic Y chromosome of a dioecious plant.
Collapse
|
87
|
Xie M, Ming Y, Shao F, Jian J, Zhang Y, Peng Z. Restriction site-associated DNA sequencing for SNP discovery and high-density genetic map construction in southern catfish ( Silurus meridionalis). ROYAL SOCIETY OPEN SCIENCE 2018; 5:172054. [PMID: 29892392 PMCID: PMC5990832 DOI: 10.1098/rsos.172054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Single-nucleotide polymorphism (SNP) markers and high-density genetic maps are important resources for marker-assisted selection, mapping of quantitative trait loci (QTLs) and genome structure analysis. Although linkage maps in certain catfish species have been obtained, high-density maps remain unavailable in the economically important southern catfish (Silurus meridionalis). Recently developed restriction site-associated DNA (RAD) markers have proved to be a promising tool for SNP detection and genetic map construction. The objective of the present study was to construct a high-density linkage map using SNPs generated by next-generation RAD sequencing in S. meridionalis for future genetic and genomic studies. An F1 population of 100 individuals was obtained by intraspecific crossing of two wild heterozygous individuals. In total, 77 634 putative high-quality bi-allelic SNPs between the parents were discovered by mapping the parents' paired-end RAD reads onto the reference contigs from both parents, of which 54.7% were transitions and 45.3% were transversions (transition/transversion ratio of 1.2). Finally, 26 714 high-quality RAD markers were grouped into 29 linkage groups by using de novo clustering methods (Stacks). Among these markers, 4514 were linked to the female genetic map, 23 718 to the male map and 6715 effective loci were linked to the integrated map spanning 5918.31 centimorgans (cM), with an average marker interval of 0.89 cM. High-resolution genetic maps are a useful tool for both marker-assisted breeding and various genome investigations in catfish, such as sequence assembly, gene localization, QTL detection and genome structure comparison. Hence, such a high-density linkage map will serve as a valuable resource for comparative genomics and fine-scale QTL mapping in catfish species.
Collapse
|
88
|
Cui J, Luo S, Niu Y, Huang R, Wen Q, Su J, Miao N, He W, Dong Z, Cheng J, Hu K. A RAD-Based Genetic Map for Anchoring Scaffold Sequences and Identifying QTLs in Bitter Gourd ( Momordica charantia). FRONTIERS IN PLANT SCIENCE 2018; 9:477. [PMID: 29706980 PMCID: PMC5906717 DOI: 10.3389/fpls.2018.00477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/27/2018] [Indexed: 05/22/2023]
Abstract
Genetic mapping is a basic tool necessary for anchoring assembled scaffold sequences and for identifying QTLs controlling important traits. Though bitter gourd (Momordica charantia) is both consumed and used as a medicinal, research on its genomics and genetic mapping is severely limited. Here, we report the construction of a restriction site associated DNA (RAD)-based genetic map for bitter gourd using an F2 mapping population comprising 423 individuals derived from two cultivated inbred lines, the gynoecious line 'K44' and the monoecious line 'Dali-11.' This map comprised 1,009 SNP markers and spanned a total genetic distance of 2,203.95 cM across the 11 linkage groups. It anchored a total of 113 assembled scaffolds that covered about 251.32 Mb (85.48%) of the 294.01 Mb assembled genome. In addition, three horticulturally important traits including sex expression, fruit epidermal structure, and immature fruit color were evaluated using a combination of qualitative and quantitative data. As a result, we identified three QTL/gene loci responsible for these traits in three environments. The QTL/gene gy/fffn/ffn, controlling sex expression involved in gynoecy, first female flower node, and female flower number was detected in the reported region. Particularly, two QTLs/genes, Fwa/Wr and w, were found to be responsible for fruit epidermal structure and white immature fruit color, respectively. This RAD-based genetic map promotes the assembly of the bitter gourd genome and the identified genetic loci will accelerate the cloning of relevant genes in the future.
Collapse
|
89
|
Li N, Yin Y, Wang F, Yao M. Construction of a high-density genetic map and identification of QTLs for cucumber mosaic virus resistance in pepper ( Capsicum annuum L.) using specific length amplified fragment sequencing (SLAF-seq). BREEDING SCIENCE 2018; 68:233-241. [PMID: 29875607 PMCID: PMC5982177 DOI: 10.1270/jsbbs.17063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/13/2017] [Indexed: 05/09/2023]
Abstract
Pepper (Capsicum) is one of the most important vegetable and spice crops. Aphid-transmitted cucumber mosaic virus (CMV) causes significant damage to pepper crops across the world. The genetic basis of CMV resistance in pepper is complex, and the mechanisms underlying resistance remain largely unknown. Here, we employed a SLAF-seq approach to generate a high-density genetic map of pepper. The map spanned 1,785.46 cM, containing 12,727 markers on 12 chromosomes, with a mean marker distance of 0.16 cM between adjacent markers. We used this map and the interval mapping (IM) and multiple QTL mapping (MQM) procedures to detect genetic regions associated with quantitative trait for CMV resistance. Three QTLs, qcmv11.1, qcmv11.2 and qcmv12.1, conferred resistance to CMV and showed trait variation of 10.2%, 19.2% and 7.3% respectively. Our results will help to develop markers linked to CMV-resistant QTLs to improve pepper resistance to CMV.
Collapse
|
90
|
Tan Z, Zhang Z, Sun X, Li Q, Sun Y, Yang P, Wang W, Liu X, Chen C, Liu D, Teng Z, Guo K, Zhang J, Liu D, Zhang Z. Genetic Map Construction and Fiber Quality QTL Mapping Using the CottonSNP80K Array in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2018; 9:225. [PMID: 29535744 PMCID: PMC5835031 DOI: 10.3389/fpls.2018.00225] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/06/2018] [Indexed: 05/04/2023]
Abstract
Cotton fiber quality traits are controlled by multiple quantitative trait loci (QTL), and the improvement of these traits requires extensive germplasm. Herein, an Upland cotton cultivar from America, Acala Maxxa, was crossed with a local high fiber quality cultivar, Yumian 1, and 180 recombinant inbred lines (RILs) were obtained. In order to dissect the genetic basis of fiber quality differences between these parents, a genetic map containing 12116 SNP markers was constructed using the CottonSNP80K assay, which covered 3741.81 cM with an average distance of 0.31 cM between markers. Based on the genetic map and growouts in three environments, we detected a total of 104 QTL controlling fiber quality traits. Among these QTL, 25 were detected in all three environments and 35 in two environments. Meanwhile, 19 QTL clusters were also identified, and nine contained at least one stable QTL (detected in three environments for a given trait). These stable QTL or QTL clusters are priorities for fine mapping, identifying candidate genes, elaborating molecular mechanisms of fiber development, and application in cotton breeding programs by marker-assisted selection (MAS).
Collapse
|
91
|
Kirungu JN, Deng Y, Cai X, Magwanga RO, Zhou Z, Wang X, Wang Y, Zhang Z, Wang K, Liu F. Simple Sequence Repeat (SSR) Genetic Linkage Map of D Genome Diploid Cotton Derived from an Interspecific Cross between Gossypium davidsonii and Gossypium klotzschianum. Int J Mol Sci 2018; 19:E204. [PMID: 29324636 PMCID: PMC5796153 DOI: 10.3390/ijms19010204] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/06/2018] [Accepted: 01/07/2018] [Indexed: 12/22/2022] Open
Abstract
The challenge in tetraploid cotton cultivars is the narrow genetic base and therefore, the bottleneck is how to obtain interspecific hybrids and introduce the germplasm directly from wild cotton to elite cultivars. Construction of genetic maps has provided insight into understanding the genome structure, interrelationships between organisms in relation to evolution, and discovery of genes that carry important agronomic traits in plants. In this study, we generated an interspecific hybrid between two wild diploid cottons, Gossypium davidsonii and Gossypium klotzschianum, and genotyped 188 F2:3 populations in order to develop a genetic map. We screened 12,560 SWU Simple Sequence Repeat (SSR) primers and obtained 1000 polymorphic markers which accounted for only 8%. A total of 928 polymorphic primers were successfully scored and only 728 were effectively linked across the 13 chromosomes, but with an asymmetrical distribution. The map length was 1480.23 cM, with an average length of 2.182 cM between adjacent markers. A high percentage of the markers on the map developed, and for the physical map of G. raimondii, exhibited highly significant collinearity, with two types of duplication. High level of segregation distortion was observed. A total of 27 key genes were identified with diverse roles in plant hormone signaling, development, and defense reactions. The achievement of developing the F2:3 population and its genetic map constructions may be a landmark in establishing a new tool for the genetic improvement of cultivars from wild plants in cotton. Our map had an increased recombination length compared to other maps developed from other D genome cotton species.
Collapse
|
92
|
Huang M, Roose ML, Yu Q, Du D, Yu Y, Zhang Y, Deng Z, Stover E, Gmitter FG. Construction of High-Density Genetic Maps and Detection of QTLs Associated With Huanglongbing Tolerance in Citrus. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30542355 DOI: 10.1101/330753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Huanglongbing (HLB), or citrus greening, is the most devastating disease in citrus worldwide. Commercial citrus varieties including sweet orange (Citrus sinensis) are highly susceptible to HLB, and trifoliate orange (Poncirus trifoliata, a close Citrus relative) is widely considered resistant or highly tolerant to HLB. In this study, an intergeneric F1 population of sweet orange and trifoliate orange was genotyped by Genotyping-by-Sequencing, and high-density SNP-based genetic maps were constructed separately for trifoliate orange and sweet orange. The two genetic maps exhibited high synteny and high coverage of the citrus genome. Progenies of the F1 population and their parents were planted in a replicated field trial, exposed to intense HLB pressure for 3 years, and then evaluated for susceptibility to HLB over 2 years. The F1 population exhibited a wide range in severity of HLB foliar symptom and canopy damage. Genome-wide QTL analysis based on the phenotypic data of foliar symptom and canopy damage in 2 years identified three clusters of repeatable QTLs in trifoliate orange linkage groups LG-t6, LG-t8 and LG-t9. Co-localization of QTLs for two traits was observed within all three regions. Additionally, one cluster of QTLs in sweet orange (linkage group LG-s7) was also detected. The majority of the identified QTLs each explained 18-30% of the phenotypic variation, indicating their major role in determining HLB responses. These results show, for the first time, a quantitative genetic nature yet the presence of major loci for the HLB tolerance in trifoliate orange. The results suggest that sweet orange also contains useful genetic factor(s) for improving HLB tolerance in commercial citrus varieties. Findings from this study should be very valuable and timely to researchers worldwide as they are hastily searching for genetic solutions to the devastating HLB crisis through breeding, genetic engineering, or genome editing.
Collapse
|
93
|
Haag CR, Theodosiou L, Zahab R, Lenormand T. Low recombination rates in sexual species and sex-asex transitions. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160461. [PMID: 29109224 PMCID: PMC5698623 DOI: 10.1098/rstb.2016.0461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 12/11/2022] Open
Abstract
In most sexual, diploid eukaryotes, at least one crossover occurs between each pair of homologous chromosomes during meiosis, presumably in order to ensure proper segregation. Well-known exceptions to this rule are species in which one sex does not recombine and specific chromosomes lacking crossover. We review other possible exceptions, including species with chromosome maps of less than 50 cM in one or both sexes. We discuss the idea that low recombination rates may favour sex-asex transitions, or, alternatively may be a consequence of it. We then show that a yet undescribed species of brine shrimp Artemia from Kazakhstan (A sp. Kazakhstan), the closest known relative of the asexual Artemia parthenogenetica, has one of the shortest genetic linkage maps known. Based on a family of 42 individuals and 589 RAD markers, we find that many linkage groups are considerably shorter than 50 cM, suggesting either no obligate crossover or crossovers concentrated at terminal positions with little effect on recombination. We contrast these findings with the published map of the more distantly related sexual congener, A. franciscana, and conclude that the study of recombination in non-model systems is important to understand the evolutionary causes and consequences of recombination.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
|
94
|
Serin EAR, Snoek LB, Nijveen H, Willems LAJ, Jiménez-Gómez JM, Hilhorst HWM, Ligterink W. Construction of a High-Density Genetic Map from RNA-Seq Data for an Arabidopsis Bay-0 × Shahdara RIL Population. Front Genet 2017; 8:201. [PMID: 29259624 PMCID: PMC5723289 DOI: 10.3389/fgene.2017.00201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
High-density genetic maps are essential for high resolution mapping of quantitative traits. Here, we present a new genetic map for an Arabidopsis Bayreuth × Shahdara recombinant inbred line (RIL) population, built on RNA-seq data. RNA-seq analysis on 160 RILs of this population identified 30,049 single-nucleotide polymorphisms (SNPs) covering the whole genome. Based on a 100-kbp window SNP binning method, 1059 bin-markers were identified, physically anchored on the genome. The total length of the RNA-seq genetic map spans 471.70 centimorgans (cM) with an average marker distance of 0.45 cM and a maximum marker distance of 4.81 cM. This high resolution genotyping revealed new recombination breakpoints in the population. To highlight the advantages of such high-density map, we compared it to two publicly available genetic maps for the same population, comprising 69 PCR-based markers and 497 gene expression markers derived from microarray data, respectively. In this study, we show that SNP markers can effectively be derived from RNA-seq data. The new RNA-seq map closes many existing gaps in marker coverage, saturating the previously available genetic maps. Quantitative trait locus (QTL) analysis for published phenotypes using the available genetic maps showed increased QTL mapping resolution and reduced QTL confidence interval using the RNA-seq map. The new high-density map is a valuable resource that facilitates the identification of candidate genes and map-based cloning approaches.
Collapse
|
95
|
Shirasawa K, Isuzugawa K, Ikenaga M, Saito Y, Yamamoto T, Hirakawa H, Isobe S. The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. DNA Res 2017; 24:499-508. [PMID: 28541388 PMCID: PMC5737369 DOI: 10.1093/dnares/dsx020] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
We determined the genome sequence of sweet cherry (Prunus avium) using next-generation sequencing technology. The total length of the assembled sequences was 272.4 Mb, consisting of 10,148 scaffold sequences with an N50 length of 219.6 kb. The sequences covered 77.8% of the 352.9 Mb sweet cherry genome, as estimated by k-mer analysis, and included >96.0% of the core eukaryotic genes. We predicted 43,349 complete and partial protein-encoding genes. A high-density consensus map with 2,382 loci was constructed using double-digest restriction site–associated DNA sequencing. Comparing the genetic maps of sweet cherry and peach revealed high synteny between the two genomes; thus the scaffolds were integrated into pseudomolecules using map- and synteny-based strategies. Whole-genome resequencing of six modern cultivars found 1,016,866 SNPs and 162,402 insertions/deletions, out of which 0.7% were deleterious. The sequence variants, as well as simple sequence repeats, can be used as DNA markers. The genomic information helps us to identify agronomically important genes and will accelerate genetic studies and breeding programs for sweet cherries. Further information on the genomic sequences and DNA markers is available in DBcherry (http://cherry.kazusa.or.jp (8 May 2017, date last accessed)).
Collapse
|
96
|
Yang L, Wang D, Xu Y, Zhao H, Wang L, Cao X, Chen Y, Chen Q. A New Resistance Gene against Potato Late Blight Originating from Solanum pinnatisectum Located on Potato Chromosome 7. FRONTIERS IN PLANT SCIENCE 2017; 8:1729. [PMID: 29085380 PMCID: PMC5649132 DOI: 10.3389/fpls.2017.01729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/21/2017] [Indexed: 05/30/2023]
Abstract
Late blight, caused by the pathogen Phytophthora infestans, is one of the most devastating diseases of potato. Here, we describe a new single dominant resistance gene, Rpi2, from the Mexican diploid wild species Solanum pinnatisectum that confers high level and broad spectrum resistance to late blight. The Rpi2 locus confers full resistance to complex isolates of P. infestans, for which race specificity has not yet been demonstrated. This new gene, flanked by the RFLP-derived marker SpT1756 and AFLP-derived marker SpAFLP2 with a minimal genetic distance of 0.8 cM, was mapped to potato chromosome 7. Using the genomic sequence data of potato, we estimated that the physical distance of the nearest marker to the resistance gene was about 27 kb. The map location and other evidence indicated that this resistance locus was different from the previously reported resistance locus Rpi1 on the same chromosome from S. pinnatisectum. The presence of other reported resistance genes in the target region, such as Gro1-4, I-3, and three NBS-LLR like genes, on a homologous tomato genome segment indicates the Rpi2-related region is a hotspot for resistance genes. Comparative sequence analysis showed that the order of nine markers mapped to the Rpi2 genetic map was highly conserved on tomato chromosome 7; however, some rearrangements were observed in the potato genome sequence. Additional markers and potential resistance genes will promote accurate location of the site of Rpi2 and help breeders to introduce this resistance gene into different cultivars by marker-aided selection.
Collapse
|
97
|
He Y, Yuan W, Dong M, Han Y, Shang F. The First Genetic Map in Sweet Osmanthus ( Osmanthus fragrans Lour.) Using Specific Locus Amplified Fragment Sequencing. FRONTIERS IN PLANT SCIENCE 2017; 8:1621. [PMID: 29018460 PMCID: PMC5614988 DOI: 10.3389/fpls.2017.01621] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/05/2017] [Indexed: 05/23/2023]
Abstract
Osmanthus fragrans is an ornamental plant of substantial commercial value, and no genetic linkage maps of this species have previously been reported. Specific-locus amplified fragment sequencing (SLAF-seq) is a recently developed technology that allows massive single nucleotide polymorphisms (SNPs) to be identified and high-resolution genotyping. In our current research, we generated the first genetic map of O. fragrans using SLAF-seq, which is composed with 206.92 M paired-end reads and 173,537 SLAF markers. Among total 90,715 polymorphic SLAF markers, 15,317 polymorphic SLAFs could be used for genetic map construction. The integrated map contained 14,189 high quality SLAFs that were grouped in 23 genetic linkage groups, with a total length of 2962.46 cM and an average distance of 0.21 cM between two adjacent markers. In addition, 23,664 SNPs were identified from the mapped markers. As far as we know, this is the first of the genetic map of O. fragrans. Our results are further demonstrate that SLAF-seq is a very effective method for developing markers and constructing high-density linkage maps. The SNP markers and the genetic map reported in this study should be valuable resource in future research.
Collapse
|
98
|
Liu J, Sniezko RA, Zamany A, Williams H, Wang N, Kegley A, Savin DP, Chen H, Sturrock RN. Saturated genic SNP mapping identified functional candidates and selection tools for the Pinus monticola Cr2 locus controlling resistance to white pine blister rust. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1149-1162. [PMID: 28176454 PMCID: PMC5552481 DOI: 10.1111/pbi.12705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 01/11/2017] [Accepted: 02/02/2017] [Indexed: 05/17/2023]
Abstract
Molecular breeding incorporates efficient tools to increase rust resistance in five-needle pines. Susceptibility of native five-needle pines to white pine blister rust (WPBR), caused by the non-native invasive fungus Cronartium ribicola (J.C. Fisch.), has significantly reduced wild populations of these conifers in North America. Major resistance (R) genes against specific avirulent pathotypes have been found in several five-needle pine species. In this study, we screened genic SNP markers by comparative transcriptome and genetic association analyses and constructed saturated linkage maps for the western white pine (Pinus monticola) R locus (Cr2). Phenotypic segregation was measured by a hypersensitive reaction (HR)-like response on the needles and disease symptoms of cankered stems post inoculation by the C. ribicola avcr2 race. SNP genotypes were determined by HRM- and TaqMan-based SNP genotyping. Saturated maps of the Cr2-linkage group (LG) were constructed in three seed families using a total of 34 SNP markers within 21 unique genes. Cr2 was consistently flanked by contig_2142 (encoding a ruvb-like protein) and contig_3772 (encoding a delta-fatty acid desaturase) across the three seed families. Cr2 was anchored to the Pinus consensus LG-1, which differs from LGs where other R loci of Pinus species were mapped. GO annotation identified a set of NBS-LRR and other resistance-related genes as R candidates in the Cr2 region. Association of one nonsynonymous SNP locus of an NBS-LRR gene with Cr2-mediated phenotypes provides a valuable tool for marker-assisted selection (MAS), which will shorten the breeding cycle of resistance screening and aid in the restoration of WPBR-disturbed forest ecosystems.
Collapse
|
99
|
N’Diaye A, Haile JK, Fowler DB, Ammar K, Pozniak CJ. Effect of Co-segregating Markers on High-Density Genetic Maps and Prediction of Map Expansion Using Machine Learning Algorithms. FRONTIERS IN PLANT SCIENCE 2017; 8:1434. [PMID: 28878789 PMCID: PMC5572363 DOI: 10.3389/fpls.2017.01434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/03/2017] [Indexed: 05/28/2023]
Abstract
Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called 'large p, small n' problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly.
Collapse
|
100
|
Li L, Deng CH, Knäbel M, Chagné D, Kumar S, Sun J, Zhang S, Wu J. Integrated high-density consensus genetic map of Pyrus and anchoring of the 'Bartlett' v1.0 (Pyrus communis) genome. DNA Res 2017; 24:289-301. [PMID: 28130382 PMCID: PMC5499846 DOI: 10.1093/dnares/dsw063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 12/16/2016] [Indexed: 01/14/2023] Open
Abstract
Genetic maps are essential tools for pear genetics and genomics research. In this study, we first constructed an integrated simple sequence repeat (SSR) and single nucleotide polymorphism (SNP)-based consensus genetic map for pear based on common SSR markers between nine published maps. A total of 5,085 markers, including 1,232 SSRs and 3,853 SNPs, were localized on a consensus map spanning 3,266.0 cM in total, with an average marker interval of 0.64 cM, which represents the highest density consensus map of pear to date. Using three sets of high-density SNP-based genetic maps with European pear genetic backgrounds, we anchored a total of 291.5 Mb of the ‘Bartlett’ v1.0 (Pyrus communis L.) genome scaffolds into 17 pseudo-chromosomes. This accounted for 50.5% of the genome assembly, which was a great improvement on the 29.7% achieved originally. Intra-genome and inter-genome synteny analyses of the new ‘Bartlett’ v1.1 genome assembly with the Asian pear ‘Dangshansuli’ (Pyrus bretschneideri Rehd.) and apple (Malus × domestica Borkh.) genomes uncovered four new segmental duplication regions. The integrated high-density SSR and SNP-based consensus genetic map provided new insights into the genetic structure patterns of pear and assisted in the genome assembly of ‘Bartlett’ through further exploration of different pear genetic maps.
Collapse
|