76
|
Kitamoto T, Mohri S, Ironside JW, Miyoshi I, Tanaka T, Kitamoto N, Itohara S, Kasai N, Katsuki M, Higuchi J, Muramoto T, Shin RW. Follicular dendritic cell of the knock-in mouse provides a new bioassay for human prions. Biochem Biophys Res Commun 2002; 294:280-6. [PMID: 12051707 DOI: 10.1016/s0006-291x(02)00476-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Infectious prion diseases initiate infection within lymphoid organs where prion infectivity accumulates during the early stages of peripheral infection. In a mouse-adapted prion infection, an abnormal isoform (PrP(Sc)) of prion protein (PrP) accumulates in follicular dendritic cells within lymphoid organs. Human prions, however, did not cause an accumulation of PrP(Sc) in the wild type mice. Here, we report that knock-in mouse expressing humanized chimeric PrP demonstrated PrP(Sc) accumulations in follicular dendritic cells following human prion infections, including variant Creutzfeldt-Jakob disease. The accumulated PrP(Sc) consisted of recombinant PrP, but not of the inoculated human PrP. These accumulations were detectable in the spleens of all mice examined 30 days post-inoculation. Infectivity of the spleen was also evident. Conversion of humanized PrP in the spleen provides a rapid and sensitive bioassay method to uncover the infectivity of human prions. This model should facilitate the prevention of infectious prion diseases.
Collapse
|
77
|
Asante EA, Gowland I, Linehan JM, Mahal SP, Collinge J. Expression pattern of a mini human PrP gene promoter in transgenic mice. Neurobiol Dis 2002; 10:1-7. [PMID: 12079398 DOI: 10.1006/nbdi.2002.0486] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The prion protein is central to the pathogenesis of prion diseases, although its exact function remains unclear. Although transgenic mice have been widely utilised in prion research, their PrP expression patterns have not been characterised in detail. We have studied the developmental temporal and spatial expression of a 214-bp mini human PrP promoter in transgenic mice. Transgene expression is first detected at embryonic day 12.5, a day earlier than previously reported for endogenous mouse gene by in situ hybridization. The general expression pattern closely mirrors that of the endogenous mouse PrP gene, such that this small and clearly defined transgene cassette can replace the need to use large cosmid based vectors for transgenetic modeling of human and animal prion disease.
Collapse
|
78
|
Hill AF, Collinge J. Strain variations and species barriers. CONTRIBUTIONS TO MICROBIOLOGY 2002; 7:48-57. [PMID: 11923935 DOI: 10.1159/000060375] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
79
|
Bosque PJ, Ryou C, Telling G, Peretz D, Legname G, DeArmond SJ, Prusiner SB. Prions in skeletal muscle. Proc Natl Acad Sci U S A 2002; 99:3812-7. [PMID: 11904434 PMCID: PMC122606 DOI: 10.1073/pnas.052707499] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Considerable evidence argues that consumption of beef products from cattle infected with bovine spongiform encephalopathy (BSE) prions causes new variant Creutzfeldt-Jakob disease. In an effort to prevent new variant Creutzfeldt-Jakob disease, certain "specified offals," including neural and lymphatic tissues, thought to contain high titers of prions have been excluded from foods destined for human consumption [Phillips, N. A., Bridgeman, J. & Ferguson-Smith, M. (2000) in The BSE Inquiry (Stationery Office, London), Vol. 6, pp. 413-451]. Here we report that mouse skeletal muscle can propagate prions and accumulate substantial titers of these pathogens. We found both high prion titers and the disease-causing isoform of the prion protein (PrP(Sc)) in the skeletal muscle of wild-type mice inoculated with either the Me7 or Rocky Mountain Laboratory strain of murine prions. Particular muscles accumulated distinct levels of PrP(Sc), with the highest levels observed in muscle from the hind limb. To determine whether prions are produced or merely accumulate intramuscularly, we established transgenic mice expressing either mouse or Syrian hamster PrP exclusively in muscle. Inoculating these mice intramuscularly with prions resulted in the formation of high titers of nascent prions in muscle. In contrast, inoculating mice in which PrP expression was targeted to hepatocytes resulted in low prion titers. Our data demonstrate that factors in addition to the amount of PrP expressed determine the tropism of prions for certain tissues. That some muscles are intrinsically capable of accumulating substantial titers of prions is of particular concern. Because significant dietary exposure to prions might occur through the consumption of meat, even if it is largely free of neural and lymphatic tissue, a comprehensive effort to map the distribution of prions in the muscle of infected livestock is needed. Furthermore, muscle may provide a readily biopsied tissue from which to diagnose prion disease in asymptomatic animals and even humans.
Collapse
|
80
|
Suárez Fernández G. [Bovine spongiform encephalopathy]. ANALES DE LA REAL ACADEMIA NACIONAL DE MEDICINA 2002; 118:617-31. [PMID: 11783042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
An histórical and conceptual review is made about Bovine Spongiform Encephalopathy or mad cows disease and an epidemiological analysis as a present and future health problem. This analysis of BSE should not be negative, considering the truths that we know today.
Collapse
|
81
|
Gu Y, Fujioka H, Mishra RS, Li R, Singh N. Prion peptide 106-126 modulates the aggregation of cellular prion protein and induces the synthesis of potentially neurotoxic transmembrane PrP. J Biol Chem 2002; 277:2275-86. [PMID: 11682469 DOI: 10.1074/jbc.m104345200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In infectious and familial prion disorders, neurodegeneration is often seen without obvious deposits of the scrapie prion protein (PrP(Sc)), the principal cause of neuronal death in prion disorders. In such cases, neurotoxicity must be mediated by alternative pathways of cell death. One such pathway is through a transmembrane form of PrP. We have investigated the relationship between intracellular accumulation of prion protein aggregates and the consequent up-regulation of transmembrane prion protein in a cell model. Here, we report that exposure of neuroblastoma cells to the prion peptide 106-126 catalyzes the aggregation of cellular prion protein to a weakly proteinase K-resistant form and induces the synthesis of transmembrane prion protein, the proposed mediator of neurotoxicity in certain prion disorders. The N terminus of newly synthesized transmembrane prion protein is cleaved spontaneously on the cytosolic face of the endoplasmic reticulum, and the truncated C-terminal fragment accumulates on the cell surface. Our results suggest that neurotoxicity in prion disorders is mediated by a complex pathway involving transmembrane prion protein and not by deposits of aggregated and proteinase K-resistant PrP alone.
Collapse
|
82
|
Wickner RB, Edskes HK, Roberts BT, Pierce MM, Baxa U, Ross E. Prions beget prions: the [PIN+] mystery! Trends Biochem Sci 2001; 26:697-9. [PMID: 11738587 DOI: 10.1016/s0968-0004(01)02020-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
83
|
Crozet C, Bencsik A, Flamant F, Lezmi S, Samarut J, Baron T. Florid plaques in ovine PrP transgenic mice infected with an experimental ovine BSE. EMBO Rep 2001; 2:952-6. [PMID: 11571272 PMCID: PMC1084082 DOI: 10.1093/embo-reports/kve204] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The occurrence of the variant Creutzfeldt-Jakob disease (vCJD), related to bovine spongiform encephalopathy (BSE), raises the important question of the sources of human contamination. The possibility that sheep may have been fed with BSE-contaminated foodstuff raises the serious concern that BSE may now be present in sheep without being distinguishable from scrapie. Sensitive models are urgently needed given the dramatic consequences of such a possible contamination on animal and human health. We inoculated transgenic mice expressing the ovine PrP gene with a brain homogenate from sheep experimentally infected with BSE. We found numerous typical florid plaques in their brains. Such florid plaques are a feature of vCJD in humans and experimental BSE infection in macaques. Our observation represents the first description, after a primary infection, of this hallmark in a transgenic mouse model. Moreover, these mice appear to be a promising tool in the search for BSE in sheep.
Collapse
|
84
|
Peretz D, Williamson RA, Kaneko K, Vergara J, Leclerc E, Schmitt-Ulms G, Mehlhorn IR, Legname G, Wormald MR, Rudd PM, Dwek RA, Burton DR, Prusiner SB. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 2001; 412:739-43. [PMID: 11507642 DOI: 10.1038/35089090] [Citation(s) in RCA: 389] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prions are the transmissible pathogenic agents responsible for diseases such as scrapie and bovine spongiform encephalopathy. In the favoured model of prion replication, direct interaction between the pathogenic prion protein (PrPSc) template and endogenous cellular prion protein (PrPC) is proposed to drive the formation of nascent infectious prions. Reagents specifically binding either prion-protein conformer may interrupt prion production by inhibiting this interaction. We examined the ability of several recombinant antibody antigen-binding fragments (Fabs) to inhibit prion propagation in cultured mouse neuroblastoma cells (ScN2a) infected with PrPSc. Here we show that antibodies binding cell-surface PrPC inhibit PrPSc formation in a dose-dependent manner. In cells treated with the most potent antibody, Fab D18, prion replication is abolished and pre-existing PrPSc is rapidly cleared, suggesting that this antibody may cure established infection. The potent activity of Fab D18 is associated with its ability to better recognize the total population of PrPC molecules on the cell surface, and with the location of its epitope on PrPC. Our observations support the use of antibodies in the prevention and treatment of prion diseases and identify a region of PrPC for drug targeting.
Collapse
|
85
|
Arrabal S, Touchard M, Mouthon F, Klonjkowski B, Deslys JP, Dormont D, Eloit M. Nervous and nonnervous cell transduction by recombinant adenoviruses that inducibly express the human PrP. Biochem Biophys Res Commun 2001; 285:623-32. [PMID: 11453638 DOI: 10.1006/bbrc.2001.5208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study of the prion protein (PrP) physiological functions or its specific role in transmissible spongiform encephalopathies (TSE) requires new tools, particularly those able to induce PrP overexpression in a large range of cells, in vivo as well as in vitro. Here we describe the construction of two recombinant adenoviruses encoding the human PrP either with a valine at position 129 (AdTRVal) or a methionine (AdTRMet). Both genes were put under the control of the tetracycline-responsive promoter, allowing tight regulation of PrP expression. AdTRVal and AdTRMet induced high expression of the human PrP in CHO-KI cells and in organotypic brain slices in culture. The proteins expressed from these viruses exhibited a glycosylphosphatidyl inositol (GPI) anchor, proper glycosylation and sensitivity to proteinase K digestion. AdTRVal and AdTRMet will allow future studies on the human PrP and on the role of the codon 129 polyphormism in human TSE.
Collapse
|
86
|
Abstract
Two unusual phenotypes in Saccharomyces cerevisiae, [PSI+] and [URE3], have been suggested to be due to prion proteins. Various research groups have shown that this is indeed the case and have characterized these yeast prions in more detail. The factors involved in prion formation, such as chaperone protein, and the intramolecular determinants of prion formation have been investigated. The ability of these yeast proteins to form prion is due to modular domains conserved throughout evolution.
Collapse
|
87
|
Jansen GH, Vogelaar CF, Elshof SM. Distribution of cellular prion protein in normal human cerebral cortex--does it have relevance to Creutzfeldt-Jakob disease? Clin Chem Lab Med 2001; 39:294-8. [PMID: 11388651 DOI: 10.1515/cclm.2001.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Creutzfeldt-Jakob disease and bovine spongiform encephalopathy are the best known forms of prion diseases. A basis for their pathogenesis is the transformation of normal prion protein to abnormal prion protein. This would mean that either loss of normal function or a gain of a toxic function of the prion protein would play a major role. Since the prime target for Creutzfeldt-Jakob disease in humans is the neocortex, and the intracortical distribution of the destructive process in prion diseases appears not to be haphazard, it may be that a clear cortical study of normal prion protein production in the premorbid human neocortex might contribute to insight in the pathogenesis of prion diseases. As no such study is available, we performed a detailed study in normal human cortex using immunohistochemistry for prion protein, in both frozen and vibratomised tissue, and in situ hybridisation for prion protein mRNA. We have found normal prion protein production mainly in the upper cortical neurons in neocortex and Purkinje cells in the cerebellum. This finding implicates that normal prion protein is more important as an anti-apoptotic signal in disease than abnormal prion protein is as a toxic substance.
Collapse
|
88
|
Vilette D, Andreoletti O, Archer F, Madelaine MF, Vilotte JL, Lehmann S, Laude H. Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc Natl Acad Sci U S A 2001; 98:4055-9. [PMID: 11259656 PMCID: PMC31178 DOI: 10.1073/pnas.061337998] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transmissible spongiform encephalopathies, or prion diseases, are fatal degenerative disorders of the central nervous system that affect humans and animals. Prions are nonconventional infectious agents whose replication depends on the host prion protein (PrP). Transmission of prions to cultured cells has proved to be a particularly difficult task, and with a few exceptions, their experimental propagation relies on inoculation to laboratory animals. Here, we report on the development of a permanent cell line supporting propagation of natural sheep scrapie. This model was obtained by stable expression of a tetracycline-regulatable ovine PrP gene in a rabbit epithelial cell line. After exposure to scrapie agent, cultures were repeatedly found to accumulate high levels of abnormal PrP (PrPres). Cell extracts induced a scrapie-like disease in transgenic mice overexpressing ovine PrP. These cultures remained healthy and stably infected upon subpassaging. Such data show that (i) cultivated cells from a nonneuronal origin can efficiently replicate prions; and (ii) species barrier can be crossed ex vivo through the expression of a relevant PrP gene. This approach led to the ex vivo propagation of a natural transmissible spongiform encephalopathy agent (i.e., without previous experimental adaptation to rodents) and might be applied to human or bovine prions.
Collapse
|
89
|
Boguta M. [Prions in yeast and filamentous fungi]. Postepy Biochem 2001; 46:108-14. [PMID: 11058996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
90
|
Zhou P, Derkatch IL, Liebman SW. The relationship between visible intracellular aggregates that appear after overexpression of Sup35 and the yeast prion-like elements [PSI(+)] and [PIN(+)]. Mol Microbiol 2001; 39:37-46. [PMID: 11123686 DOI: 10.1046/j.1365-2958.2001.02224.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Overproduced fusions of Sup35 or its prion domain with green fluorescent protein (GFP) have previously been shown to form frequent dots in [PSI(+)] cells. Rare foci seen in [psi(-)] cells were hypothesized to indicate the de novo induction of [PSI(+)] caused by the overproduced prion domain. Here, we describe novel ring-type aggregates that also appear in [psi(-)] cultures upon Sup35 overproduction and show directly that dot and ring aggregates only appear in cells that have become [PSI(+)]. The formation of either type of aggregate requires [PIN(+)], an element needed for the induction of [PSI(+)]. Although aggregates are visible predominantly in stationary-phase cultures, [PSI(+)] induction starts in exponential phase, suggesting that much smaller aggregates can also propagate [PSI(+)]. Such small aggregates are probably present in [PSI(+)] cells and, upon Sup35-GFP overproduction, facilitate the frequent formation of dot aggregates, but only the occasional appearance of ring aggregates. In contrast, rings are very frequent when [PSI(+)] cultures, including those lacking [PIN(+)], are grown in the presence of GuHCl or excess Hsp104 while overexpressing Sup35-GFP. Thus, intermediates formed during [PSI(+)] curing seem to facilitate ring formation. Surprisingly, GuHCl and excess Hsp104, which are known to promote loss of [PSI(+)], did not prevent the de novo induction of [PSI(+)] by excess Sup35 in [psi(-)][PIN(+)] strains.
Collapse
|
91
|
Raeber AJ, Montrasio F, Hegyi I, Frigg R, Klein MA, Aguzzi A, Weissmann C. Studies on prion replication in spleen. DEVELOPMENTAL IMMUNOLOGY 2001; 8:291-304. [PMID: 11785678 PMCID: PMC2276082 DOI: 10.1155/2001/95404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Some of the early events following scrapie infection take place in the lymphoreticular system (LRS) and result in significant replication of prions in lymphoid organs. The identity of the cells in the LRS that produce prions and their role in neuroinvasion are still unknown. We find that in the spleen of scrapie-infected mice, prions are associated with T and B cells and to a somewhat lesser degree with the stroma, which contains the follicular dendritic cells (FDC's); curiously, no infectivity was found in lymphocytes from blood of the same mice. Thus, splenic lymphocytes either replicate prions or acquire them from another source. Studies on PrP knockout mice with ectopic expression of PrP restricted to only B or T lymphocytes suggest that neither of these by themselves are competent for prion replication. To determine whether B and T cells are able to pick up prions from other sources, irradiated wild-type mice were reconstituted with PrP-deficient lymphohaematopoietic stem cells. Following intraperitoneal inoculation of these mice, no infectivity was found on splenic lymphocytes whereas the stroma (comprising the radiation-resistant, PrP-expressing FDC's) contained prions. These results imply that splenic lymphocytes can acquire prions, possibly from FDC's, but only if they express PrP.
Collapse
|
92
|
Haïk S, Peyrin JM, Lins L, Rosseneu MY, Brasseur R, Langeveld JP, Tagliavini F, Deslys JP, Lasmézas C, Dormont D. Neurotoxicity of the putative transmembrane domain of the prion protein. Neurobiol Dis 2000; 7:644-56. [PMID: 11114262 DOI: 10.1006/nbdi.2000.0316] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been shown recently that the generation of an abnormal transmembrane form of the prion protein ((Ctm)PrP) is involved in the neurodegeneration process during inherited and infectious prion diseases but a causative relationship has never been established. We wanted to know if and how the proposed transmembrane domain of PrP could induce neuronal dysfunction. Thus, we investigated the neurotoxic properties of two peptides whose sequences are encompassed within this domain. We show that PrP peptides 118-135 and 105-132 as well as an amidated more soluble peptide 105-132 induce the death of pure cortical neurons originating from normal and PrP knockout mice. This can be correlated with the high propensity of these peptides to insert stably into and to destabilize cell membranes. Through this study, we have identified a novel mechanism of neurotoxicity for PrP, which directly involves membrane perturbation; this mechanism is independent of fibril formation and probably corresponds to the effect of the transmembrane insertion of (Ctm)PrP.
Collapse
|
93
|
|
94
|
Korth C, Kaneko K, Prusiner SB. Expression of unglycosylated mutated prion protein facilitates PrP(Sc) formation in neuroblastoma cells infected with different prion strains. J Gen Virol 2000; 81:2555-2563. [PMID: 10993946 DOI: 10.1099/0022-1317-81-10-2555] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Prion replication involves conversion of the normal, host-encoded prion protein PrP(C), which is a sialoglycoprotein bound to the plasma membrane by a glycophosphatidylinositol anchor, into a pathogenic isoform, PrP(Sc). In earlier studies, tunicamycin prevented glycosylation of PrP(C) in scrapie-infected mouse neuroblastoma (ScN2a) cells but it was still expressed on the cell surface and converted into PrP(Sc); mutation of PrP(C) at glycosylation consensus sites (T182A, T198A) produced low steady-state levels of PrP that were insufficient to propagate prions in transgenic mice. By mutating asparagines to glutamines at the consensus sites, we obtained expression of unglycosylated, epitope-tagged MHM2PrP(N180Q,N196Q), which was converted into PrP(Sc) in ScN2a cells. Cultures of uninfected neuroblastoma (N2a) cells transiently expressing mutated PrP were exposed to brain homogenates prepared from mice infected with the RML, Me7 or 301V prion strains. In each case, mutated PrP was converted into PrP(Sc) as judged by Western blotting. These findings raise the possibility that the N2a cell line can support replication of different strains of prions.
Collapse
|
95
|
Kawashima T, Doh-ura K, Torisu M, Uchida Y, Furuta A, Iwaki T. Differential expression of metallothioneins in human prion diseases. Dement Geriatr Cogn Disord 2000; 11:251-62. [PMID: 10940676 DOI: 10.1159/000017247] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We herein report an immunohistochemical and a Western blot analysis on metal/free radical chelating proteins, metallothioneins (MTs; MT-I/II and MT-III), in the brains of human prion disease patients with or without prion protein gene mutation and polymorphism. Irrespective of the isoforms of MTs, the immunoreaction was detected in the cytoplasm and processes of the astrocytes in the cerebral cortex and white matter in normal controls and prion disease brains. Although the immunoreactivities for MTs in Creutzfeldt-Jakob disease (CJD) brains varied from case to case, they were generally dependent upon the disease duration. In CJD patients with a relatively long disease course, the immunoreaction for both MT-I/II and MT-III in the astrocytes was significantly reduced, and this finding was not modified by the genotypes of the patients. On the other hand, in patients with Gerstmann-Sträussler-Scheinker syndrome, MT-I/II immunoreactivity in the astrocytes was exclusively reduced, while the immunoreaction for MT-III was relatively well preserved. Especially the astrocytes in the vicinities of the kuru plaques exhibited a weak or no immunoreaction even for MTs but a strong immunoreaction for glial fibrillary acidic protein. A quantitative Western blot analysis also revealed that MT-I/II protein accumulated in CJD brain with a short disease duration, whereas MT-III in CJD brain with a long disease duration was statistically significantly reduced in comparison to the normal brains. These findings suggest that the protein expression of MTs in the astrocytes is thus regulated differentially among human prion diseases and modified locally by such abnormal prion protein depositions as kuru plaques.
Collapse
|
96
|
Caughey B. Formation of protease-resistant prion protein in cell-free systems. Curr Issues Mol Biol 2000; 2:95-101. [PMID: 11471561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Abstract
In transmissible spongiform encephalopathies (TSE) or prion diseases, the endogenous protease-sensitive prion protein (PrP-sen) of the host is converted to an abnormal pathogenic form that has a characteristic partial protease resistance (PrP-res). Studies with cell-free reactions indicate that the PrP-res itself can directly induce this conversion of PrP-sen. This PrP-res induced conversion reaction is highly specific in ways that might account at the molecular level for TSE species barriers, polymorphism barriers, and strains. Not only has this reaction been observed using mostly purified PrP-sen and PrP-res reactants, but also in TSE-infected brain slices. The conversion mechanism appears to involve both the binding of PrP-sen to polymeric PrP-res and a conformational change that results in incorporation into the PrP-res polymer.
Collapse
|
97
|
Edskes HK, Wickner RB. A protein required for prion generation: [URE3] induction requires the Ras-regulated Mks1 protein. Proc Natl Acad Sci U S A 2000; 97:6625-9. [PMID: 10823922 PMCID: PMC18680 DOI: 10.1073/pnas.120168697] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infectious proteins (prions) can arise de novo as well as by transmission from another individual. De novo prion generation is believed responsible for most cases of Creutzfeldt-Jakob disease and for initiating the mad cow disease epidemic. However, the cellular components needed for prion generation have not been identified in any system. The [URE3] prion of Saccharomyces cerevisiae is an infectious form of Ure2p, apparently a self-propagating amyloid. We now demonstrate a protein required for de novo prion generation. Mks1p negatively regulates Ure2p and is itself negatively regulated by the presence of ammonia and by the Ras-cAMP pathway. We find that in mks1Delta strains, de novo generation of the [URE3] prion is blocked, although [URE3] introduced from another strain is expressed and propagates stably. Ras2(Val19) increases cAMP production and also blocks [URE3] generation. These results emphasize the distinction between prion generation and propagation, and they show that cellular regulatory mechanisms can critically affect prion generation.
Collapse
|
98
|
Zhao X, Dong X, Zhou W. [Preparation of polyclonal antibody to human prion protein using the expressed GST-PrP fusion protein as antigen]. ZHONGHUA SHI YAN HE LIN CHUANG BING DU XUE ZA ZHI = ZHONGHUA SHIYAN HE LINCHUANG BINGDUXUE ZAZHI = CHINESE JOURNAL OF EXPERIMENTAL AND CLINICAL VIROLOGY 2000; 14:131-3. [PMID: 11503042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
OBJECTIVE Preparing specific antibody to prion protein. METHODS Using prokaryotic expressed GST-PrP fusion protein as antigen, rabbits were immunized subcutaneously. RESULTS ELISA assay revealed that the titer of the prepared antiserum against expressed PrP protein was as high as 1:128 000. Western blot test showed that the antiserum was able to react with the in vitro expressed intact and different lengths of C-terminus truncated PrP proteins, as well as the native PrP proteins from brain homogenization of human and mouse. CONCLUSIONS The prokaryotic expressed GST-PrP fusion protein can efficiently elicit in immunized animals the PrP-specific antibody.
Collapse
|
99
|
|
100
|
Bailleul-Winslett PA, Newnam GP, Wegrzyn RD, Chernoff YO. An antiprion effect of the anticytoskeletal drug latrunculin A in yeast. Gene Expr 2000; 9:145-56. [PMID: 11243411 PMCID: PMC5964936 DOI: 10.3727/000000001783992650] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/07/2000] [Accepted: 09/18/2000] [Indexed: 11/24/2022]
Abstract
Prions are infectious aggregation-prone isoforms of the normal proteins, supposedly able to seed aggregation of the normal cellular counterparts. In vitro, prion proteins form amyloid fibers, resembling cytoskeletal structures. Yeast prion [PSI], which is a cytoplasmically inherited aggregated isoform of the translation termination factor Sup35p (eRF3), serves as a useful model for studying mechanisms of prion diseases and other amyloidoses. The previously described interaction between Sup35p and cytoskeletal assembly protein Sla1p points to the possible relationships between prions and cytoskeletal networks. Although the Sup35PSI+ aggregates do not colocalize with actin patches, we have shown that yeast cells are efficiently cured of the [PSI] prion by prolonged incubation with latrunculin A, a drug disrupting the actin cytoskeleton. On the other hand, treatments with sodium azide or cycloheximide, agents blocking yeast protein synthesis and cell proliferation but not disrupting the cytoskeleton, do not cause a significant loss of [PSI]. Moreover, simultaneous treatment with sodium azide or cycloheximide blocks [PSI] curing by latrunculin A, indicating that prion loss in the presence of latrunculin A requires a continuation of protein synthesis during cytoskeleton disruption. The sodium azide treatment also decreases the toxic effect of latrunculin A. Latrunculin A influences neither the levels of total cellular Sup35p nor the levels of chaperone proteins, such as Hsp104 and Hsp70, which were previously shown to affect [PSI]. This makes an indirect effect of latrunculin A on [PSI] via induction of Hsps unlikely. Fluorescence microscopy detects changes in the structure and/or localization of the Sup35PSI+ aggregates in latrunculin A-treated cells. We conclude that the stable maintenance of the [PSI] prion aggregates in the protein-synthesizing yeast cells partly depends on an intact actin cytoskeleton, suggesting that anticytoskeletal treatments could be used to counteract some aggregation-related disorders.
Collapse
|