1176
|
Li G, Tan Y, Liu YQ. Measurement of eddy-current distribution in the vacuum vessel of the Sino-UNIted Spherical Tokamak. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:083502. [PMID: 26329187 DOI: 10.1063/1.4927682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Eddy currents have an important effect on tokamak plasma equilibrium and control of magneto hydrodynamic activity. The vacuum vessel of the Sino-UNIted Spherical Tokamak is separated into two hemispherical sections by a toroidal insulating barrier. Consequently, the characteristics of eddy currents are more complex than those found in a standard tokamak. Thus, it is necessary to measure and analyze the eddy-current distribution. In this study, we propose an experimental method for measuring the eddy-current distribution in a vacuum vessel. By placing a flexible printed circuit board with magnetic probes onto the external surface of the vacuum vessel to measure the magnetic field parallel to the surface and then subtracting the magnetic field generated by the vertical-field coils, the magnetic field due to the eddy current can be obtained, and its distribution can be determined. We successfully applied this method to the Sino-UNIted Spherical Tokamak, and thus, we obtained the eddy-current distribution despite the presence of the magnetic field generated by the external coils.
Collapse
|
|
10 |
2 |
1177
|
Molnar L, Eby D, Vivoda J, Bogard S, Zakraksek J, St. Louis R, Zanier N, Ryan L, LeBlanc D, Smith J, Yung R, Nyquist L, DiGuiseppi C, Li G, Mielenz T, Strogatz D. The effects of demographics, functioning, and perceptions on the relationship between self-reported and objective measures of driving exposure and patterns among older adults. TRANSPORTATION RESEARCH. PART F, TRAFFIC PSYCHOLOGY AND BEHAVIOUR 2018; 54:367-377. [PMID: 30337834 PMCID: PMC6190922 DOI: 10.1016/j.trf.2018.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The exploratory study reported here was intended to examine: how strongly subjectively reported driving avoidance behaviors (commonly referred to as self-regulation) and exposure were related to their objectively measured counterparts and whether it depended on the specific behavior; the extent to which gender and age play a role in the association between subjectively reported driving avoidance behaviors and exposure and their objectively measured counterparts; and the extent to which demographics, health and functioning, driving-related perceptions, and cognition influence the association between subjective and objective driving avoidance behaviors overall. The study used data from the Longitudinal Research on Aging Drivers (LongROAD) study, a multisite, prospective cohort study designed to generate empirical data for understanding the role of medical, behavioral, environmental, and technological factors in driving safety during the process of aging. Objective driving measures were derived from GPS/datalogger data from 2131 LongROAD participants' vehicles. The corresponding subjective measures came from a comprehensive questionnaire administered to participants at baseline that asked them to report on their driving exposure, patterns, and other aspects of driving. Several other variables used in the analyses came from the comprehensive questionnaire and an inperson clinical assessment administered to participants at baseline. A series of simple linear and logistic models were fitted to examine the relationship between the subjective and objective driving measures of interest, and a multivariable analysis was conducted to examine the potential role of selected factors in the relationship between objective and subjective driving avoidance behaviors. Results of the models are presented and overall findings are discussed within the context of the existing research literature.
Collapse
|
research-article |
7 |
2 |
1178
|
Wang Y, Li G, Lin L, Liu YL, Li XX, Lu SCY. Study on the measurement method of a dynamic spectrum. ACTA ACUST UNITED AC 2005. [DOI: 10.1088/1742-6596/13/1/066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
20 |
2 |
1179
|
Gao RM, Li J, Guo MW, Li G. Two coordination polymers from 2-p-butylphenyl imidazole dicarboxylate: Syntheses, crystal structures, and thermal properties. RUSS J COORD CHEM+ 2014. [DOI: 10.1134/s1070328414050042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
|
11 |
2 |
1180
|
Smith B, Li G, Sembrowlch WL. THE EFFECTS OF ENDURANCE TRAINING ON CALCIUM TRANSPORT BY MITOCHONDRIA FROM RAT SKELETAL MUSCLE FIBER TYPES. Med Sci Sports Exerc 1982. [DOI: 10.1249/00005768-198202000-00191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
43 |
2 |
1181
|
Baker C, Li G, Wang Z, Yao Z, Yuan N, Talebi V, Tan J, Wang Y, Zhou Y. Second-order neuronal responses to contrast modulation stimuli in primate visual cortex. J Vis 2013. [DOI: 10.1167/13.9.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
|
12 |
2 |
1182
|
Ablikim M, Achasov M, Adlarson P, Ahmed S, Albrecht M, Aliberti R, Amoroso A, An M, An Q, Bai X, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere R, Cai H, Cai X, Calcaterra A, Cao G, Cao N, Cetin S, Chang J, Chang W, Chelkov G, Chen D, Chen G, Chen H, Chen M, Chen S, Chen X, Chen Y, Chen Z, Cheng W, Cibinetto G, Cossio F, Cui X, Dai H, Dai X, Dbeyssi A, de Boer R, Dedovich D, Deng Z, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong L, Dong M, Dong X, Du S, Fan Y, Fang J, Fang S, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng C, Feng J, Fritsch M, Fu C, Gao Y, Gao Y, Gao Y, Gao Y, Garzia I, Ge P, Geng C, Gersabeck E, Gilman A, Goetzen K, Gong L, Gong W, Gradl W, Greco M, Gu L, Gu M, Gu S, Gu Y, Guan C, Guo A, Guo L, Guo R, Guo Y, Guskov A, Han T, Han W, Hao X, Harris F, He K, Heinsius F, Heinz C, Held T, Heng Y, Herold C, Himmelreich M, Holtmann T, Hou G, Hou Y, Hou Z, Hu H, Hu J, Hu T, Hu Y, Huang G, Huang L, Huang X, Huang Y, Huang Z, Hussain T, Hüsken N, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji Q, Ji X, Ji X, Ji Y, Jiang H, Jiang X, Jiao J, Jiao Z, Jin S, Jin Y, Jing M, Johansson T, Kalantar-Nayestanaki N, Kang X, Kappert R, Kavatsyuk M, Ke B, Keshk I, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu O, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kühn W, Lane J, Lange J, Larin P, Lavania A, Lavezzi L, Lei Z, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li C, Li D, Li F, Li G, Li H, Li H, Li H, Li H, Li J, Li J, Li J, Li K, Li L, Li L, Li P, Li S, Li W, Li W, Li X, Li X, Li X, Li Z, Liang H, Liang H, Liang H, Liang Y, Liang Y, Liao G, Liao L, Libby J, Lin C, Liu B, Liu C, Liu D, Liu F, Liu F, Liu F, Liu H, Liu H, Liu H, Liu H, Liu J, Liu J, Liu J, Liu K, Liu K, Liu L, Liu M, Liu P, Liu Q, Liu Q, Liu S, Liu S, Liu T, Liu W, Liu X, Liu Y, Liu Y, Liu Z, Liu Z, Lou X, Lu F, Lu H, Lu J, Lu J, Lu X, Lu Y, Lu Y, Luo C, Luo M, Luo P, Luo T, Luo X, Lyu X, Ma F, Ma H, Ma L, Ma M, Ma Q, Ma R, Ma R, Ma X, Ma X, Maas F, Maggiora M, Maldaner S, Malde S, Malik Q, Mangoni A, Mao Y, Mao Z, Marcello S, Meng Z, Messchendorp J, Mezzadri G, Min T, Mitchell R, Mo X, Mo Y, Muchnoi N, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev I, Ning Z, Nisar S, Olsen S, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pathak A, Patteri P, Pelizaeus M, Peng H, Peters K, Pettersson J, Ping J, Ping R, Poling R, Prasad V, Qi H, Qi H, Qi K, Qi M, Qi T, Qian S, Qian W, Qian Z, Qiao C, Qin L, Qin X, Qin X, Qin Z, Qiu J, Qu S, Rashid K, Ravindran K, Redmer C, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sang H, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan D, Shan W, Shan X, Shangguan J, Shao M, Shen C, Shen H, Shen P, Shen X, Shi H, Shi R, Shi X, Shi X, Song J, Song W, Song Y, Sosio S, Spataro S, Su K, Su P, Sui F, Sun G, Sun H, Sun J, Sun L, Sun S, Sun T, Sun W, Sun W, Sun X, Sun Y, Sun Y, Sun Y, Sun Z, Tan Y, Tan Y, Tang C, Tang G, Tang J, Teng J, Thoren V, Tian W, Tian Y, Uman I, Wang B, Wang C, Wang D, Wang H, Wang H, Wang K, Wang L, Wang M, Wang M, Wang M, Wang W, Wang W, Wang W, Wang X, Wang X, Wang X, Wang Y, Wang Y, Wang Y, Wang Y, Wang Y, Wang Y, Wang Z, Wang Z, Wang Z, Wang Z, Wei D, Weidner F, Wen S, White D, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu J, Wu L, Wu L, Wu X, Wu Z, Xia L, Xiao H, Xiao S, Xiao Z, Xie X, Xie Y, Xie Y, Xing T, Xu G, Xu Q, Xu W, Xu X, Xu Y, Yan F, Yan L, Yan W, Yan W, Yan X, Yang H, Yang H, Yang L, Yang S, Yang Y, Yang Y, Yang Z, Ye M, Ye M, Yin J, You Z, Yu B, Yu C, Yu G, Yu J, Yu T, Yuan C, Yuan L, Yuan X, Yuan Y, Yuan Z, Yue C, Zafar A, Zeng XZ, Zeng Y, Zhang A, Zhang B, Zhang G, Zhang H, Zhang H, Zhang H, Zhang H, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang L, Zhang L, Zhang L, Zhang S, Zhang S, Zhang S, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Z, Zhang Z, Zhao G, Zhao J, Zhao J, Zhao J, Zhao L, Zhao L, Zhao M, Zhao Q, Zhao S, Zhao Y, Zhao Y, Zhao Z, Zhemchugov A, Zheng B, Zheng J, Zheng Y, Zheng Y, Zhong B, Zhong C, Zhou L, Zhou Q, Zhou X, Zhou X, Zhou X, Zhou X, Zhu A, Zhu J, Zhu K, Zhu K, Zhu S, Zhu T, Zhu W, Zhu W, Zhu Y, Zhu Z, Zou B, Zou J. Measurement of the branching fraction of leptonic decay
Ds+→τ+ντ
via
τ+→π+π0ν¯τ. Int J Clin Exp Med 2021. [DOI: 10.1103/physrevd.104.032001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
4 |
2 |
1183
|
Kuo L, Ballangrud A, Ho A, Mechalakos J, Li G, Hong L. SU-E-T-209: Comparison of Plan Quality Between Arm Avoidance (AA) Vs. Non Arm Avoidance VMAT Planning Techniques for Breast Cancer Patients with Bilateral Implant Reconstructions Receiving Postmastectomy Radiation. Med Phys 2015. [DOI: 10.1118/1.4924570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
|
10 |
2 |
1184
|
Zhao XG, Zheng Y, Chan QCC, Yang XF, Li G, Yang ES. Biopsy needle as MRE driver for tumor detection. ACTA ACUST UNITED AC 2007; 2007:2050-2. [PMID: 18002389 DOI: 10.1109/iembs.2007.4352723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Magnetic Resonance Elastography (MRE) is a phase contrast imaging technique to quantitatively measure the elasticity of tissues. Typically, an oscillating driver is placed on the surface to generate the shear waves. The depth penetration of the wave is limited by attenuation and the biopsy procedure has to be done separately. In this study, we use a biopsy needle as the driver to detect the 15% porcine gel inclusion in a 10% porcine gel phantom which simulates a tumor in tissues. We also perform the experiment with the biopsy needle for in-vivo tumor detection in rabbits. It is shown that the biopsy needle driver can accurately measure the stiffness and location of the tumor.
Collapse
|
|
18 |
2 |
1185
|
Zou LY, Liu SR, Li G, Huang L, Yang ES. Melatonin reduced volume of cerebral infarct induced by photothrombosis in wild-type mice, not in Cyclooxygenase-1 gene knockout mice. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:4748-50. [PMID: 17271370 DOI: 10.1109/iembs.2004.1404314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cyclooxygenase (COX) is crucial in inflammation and plays important role in cerebral ischemia. Antiinflammatory effects of melatonin have been verified in previous studies. In this study, cerebral blood flow (CBF) was monitored during operation, infarct volume (IFV) was determined with 5-triphenyltetrazolium chloride (TTC) staining and MR image, and neurological functions were evaluated with turn in an alley and fall pole test in both COX1-gene knockout and wide-type mice with or without melatonin administration 3 days after photothrombosis. CBF reduction, IFV and neurological deficits were not significantly different in COX-1 wild-type and COX-1 knockout mice. Melatonin (15 mg/kg) intraperitoneal injection decreased the CBF reduction, IFV and the latency to turn in an alley in COX-1 wide-type mice, whereas the neuroprotective effect of melatonin was attenuated in COX-1 knockout mice. We concluded that melatonin reduced susceptibility to photothrombotic stroke. COX-1 gene knockout does not alter the susceptibility to cerebral ischemia caused by photothrombosis. COX-1 plays an important role in the pathway of the protection of melatonin.
Collapse
|
Journal Article |
18 |
2 |
1186
|
Xia C, Liu X, Chandrasekhar S, Fontaine NK, Zhu L, Li G. Multi-channel nonlinearity compensation of PDM-QPSK signals in dispersion-managed transmission using dispersion-folded digital backward propagation. OPTICS EXPRESS 2014; 22:5859-5866. [PMID: 24663923 DOI: 10.1364/oe.22.005859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We demonstrate nonlinearity compensation of 37.5-GHz-spaced 128-Gb/s PDM-QPSK signals using dispersion-folded digital-backward-propagation and a spectrally-sliced receiver that simultaneously receives three WDM signals, showing mitigation of intra-channel and inter-channel nonlinear effects in a 2560-km dispersion-managed TWRS-fiber link. Intra-channel and adjacent inter-channel nonlinear compensation gains when WDM channels are fully populated in the C-band are estimated based on the GN-model.
Collapse
|
|
11 |
2 |
1187
|
Li G, Zhang S, Isenhower L, Maller K, Saffman M. Crossed vortex bottle beam trap for single-atom qubits. OPTICS LETTERS 2012; 37:851-853. [PMID: 22378415 DOI: 10.1364/ol.37.000851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We demonstrate trapping and quantum state control of single cesium atoms in a 532 nm wavelength bottle beam trap. The three-dimensional trap is formed by crossing two unit charge vortex beams. Single atoms are loaded with 50% probability directly from a magneto-optical trap. We achieve a trapping lifetime of up to 6 s and demonstrate fast Rabi oscillations with a coherence time of T(2)~43±9 ms.
Collapse
|
|
13 |
2 |
1188
|
Zhang E, Wu S, Cai W, Zeng J, Li J, Li G, Liu J. Validation of superior reference genes for qRT-PCR and Western blot analyses in marine Emiliania huxleyi-virus model system. J Appl Microbiol 2020; 131:257-271. [PMID: 33275816 DOI: 10.1111/jam.14958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
AIMS To search for a set of reference genes for reliable gene expression analysis in the globally important marine coccolithophore Emiliania huxleyi-virus model system. METHODS AND RESULTS Fifteen housekeeping genes (CDKA, CYP15, EFG3, POLAI, RPL30, RPL13, SAMS, COX1, GPB1-2, HSP90, TUA, TUB, UBA1, CAM3 and GAPDH) were evaluated for their stability as potential reference genes for qRT-PCR using ΔCt, geNorm, NormFinder, Bestkeeper and RefFinder software. CDKA, TUA and TUB genes were tested as loading controls for Western blot in the same sample panel. Additionally, target genes associated with cell apoptosis, that is metacaspase genes, were applied to validate the selection of reference genes. The analysis results demonstrated that putative housekeeping genes exhibited significant variations in both mRNA and protein content during virus infection. After a comprehensive analysis with all the algorithms, CDKA and GAPDH were recommended as the most stable reference genes for E huxleyi virus (EhV) infection treatments. For Western blot, significant variation was seen for TUA and TUB, whereas CDKA was stably expressed, consistent with the results of qRT-PCR. CONCLUSIONS CDKA and GAPDH are the best choice for gene and protein expression analysis than the other candidate reference genes under EhV infection conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The stable internal control genes identified in this work will help to improve the accuracy and reliability of gene expression analysis and gain insight into complex E. huxleyi-EhV interaction regulatory networks.
Collapse
|
Journal Article |
5 |
2 |
1189
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Amoroso A, An Q, Bai XH, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng WS, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, de Boer RB, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao XL, Gao Y, Gao Y, Gao YG, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guo YP, Guskov A, Han S, Han TT, Han TZ, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Holtmann T, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang YP, Huang Z, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HB, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavezzi L, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li JL, Li JQ, Li K, Li LK, Li L, Li PL, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao LZ, Libby J, Lin CX, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu Q, Liu SB, Liu S, Liu T, Liu X, Liu YB, Liu ZA, Liu ZQ, Long YF, Lou XC, Lu FX, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Mo YJ, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi H, Qi HR, Qi M, Qi TY, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Shan DC, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song QQ, Song WM, Song YX, Sosio S, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun YJ, Sun YK, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang Z, Wang ZY, Wang Z, Wang Z, Wei DH, Weidenkaff P, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao YJ, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xiong XA, Xu GF, Xu JJ, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan L, Yan WB, Yan WC, Yan X, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan W, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang G, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang L, Zhang L, Zhang S, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu ZA, Zou BS, Zou JH. First Observation of D^{+}→ημ^{+}ν_{μ} and Measurement of Its Decay Dynamics. PHYSICAL REVIEW LETTERS 2020; 124:231801. [PMID: 32603168 DOI: 10.1103/physrevlett.124.231801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
By analyzing a data sample corresponding to an integrated luminosity of 2.93 fb^{-1} collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, we measure for the first time the absolute branching fraction of the D^{+}→ημ^{+}ν_{μ} decay to be B_{D^{+}→ημ^{+}ν_{μ}}=(10.4±1.0_{stat}±0.5_{syst})×10^{-4}. Using the world averaged value of B_{D^{+}→ηe^{+}ν_{e}}, the ratio of the two branching fractions is determined to be B_{D^{+}→ημ^{+}ν_{μ}}/B_{D^{+}→ηe^{+}ν_{e}}=0.91±0.13_{(stat+syst)}, which agrees with the theoretical expectation of lepton flavor universality within uncertainty. By studying the differential decay rates in five four-momentum transfer intervals, we obtain the product of the hadronic form factor f_{+}^{η}(0) and the c→d Cabibbo-Kobayashi-Maskawa matrix element |V_{cd}| to be f_{+}^{η}(0)|V_{cd}|=0.087±0.008_{stat}±0.002_{syst}. Taking the input of |V_{cd}| from the global fit in the standard model, we determine f_{+}^{η}(0)=0.39±0.04_{stat}±0.01_{syst}. On the other hand, using the value of f_{+}^{η}(0) calculated in theory, we find |V_{cd}|=0.242±0.022_{stat}±0.006_{syst}±0.033_{theory}.
Collapse
|
|
5 |
2 |
1190
|
Ablikim M, Achasov MN, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Baldini Ferroli R, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dou ZL, Du SX, Fan JZ, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang XZ, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khan T, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XH, Li XL, Li XN, Li XQ, Li ZB, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Lin YJ, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu KY, Liu K, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales Morales C, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Redmer CF, Richter M, Ripka M, Rivetti A, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HH, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang P, Wang PL, Wang RM, Wang WP, Wang X, Wang XF, Wang Y, Wang YF, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Wen HW, Wen SP, Wiedner U, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yuan CZ, Yuan XQ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Observation of the Decay X(3872)→π^{0}χ_{c1}(1P). PHYSICAL REVIEW LETTERS 2019; 122:202001. [PMID: 31172749 DOI: 10.1103/physrevlett.122.202001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Using a total of 9.0 fb^{-1} of e^{+}e^{-} collision data with center-of-mass energies between 4.15 and 4.30 GeV collected by the BESIII detector, we search for the processes e^{+}e^{-}→γX(3872) with X(3872)→π^{0}χ_{cJ} for J=0, 1, 2. We report the first observation of X(3872)→π^{0}χ_{c1}, a new decay mode of the X(3872), with a statistical significance of more than 5σ for all systematic fit variations. Normalizing to the previously established process e^{+}e^{-}→γX(3872) with X(3872)→π^{+}π^{-}J/ψ, we find B(X(3872)→π^{0}χ_{c1})/B(X(3872)→π^{+}π^{-}J/ψ)=0.88_{-0.27}^{+0.33}±0.10, where the first error is statistical and the second is systematic. We set 90% confidence level upper limits on the corresponding ratios for the decays to π^{0}χ_{c0} and π^{0}χ_{c2} of 19 and 1.1, respectively.
Collapse
|
|
6 |
2 |
1191
|
Jenden DJ, Scremin OU, Roch M, Li G. The influence of aging on whole body choline release and clearance. Life Sci 1996; 58:2003-9. [PMID: 8637430 DOI: 10.1016/0024-3205(96)00191-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have confirmed that hypoxia elicits a substantial rise in blood choline levels in young adult rats. An intravenous infusion of tracer quantities of [2H4]-Ch, serial measurements of blood [2H0]-Ch and [2H4]-Ch, and a simple pharmacokinetic model were used to assess the bidirectional flux of choline between the central pool and peripheral pools before, during and after a period of imposed hypoxia, in rats ranging from 56 to 780 days of age. The results indicate that the age-dependence of the hypercholinemic response to hypoxia is predominantly due to an increase in the amount of choline released in response to hypoxia, and that changes in its clearance are relatively unimportant.
Collapse
|
|
29 |
2 |
1192
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Aliberti R, Amoroso A, An MR, An Q, Bai XH, Bai Y, Bakina O, Ferroli RB, Balossino I, Ban Y, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Chen ZJ, Cheng WS, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai XC, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dong X, Du SX, Fan YL, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fritsch M, Fu CD, Gao Y, Gao Y, Gao YG, Garzia I, Ge PT, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han TT, Han WY, Hao XQ, Harris FA, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Himmelreich M, Holtmann T, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang YP, Huang Z, Hussain T, Hüsken N, Andersson WI, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jiang HB, Jiang XS, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li H, Li HB, Li HJ, Li HN, Li JL, Li JQ, Li JS, Li K, Li LK, Li L, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li X, Li ZY, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin T, Liu BJ, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu GM, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu L, Liu MH, Liu PL, Liu Q, Liu Q, Liu SB, Liu T, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XX, Ma XY, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pogodin S, Poling R, Prasad V, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sang HS, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan W, Shan XY, Shangguan JF, Shao M, Shen CP, Shen HF, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song JJ, Song WM, Song YX, Sosio S, Spataro S, Su KX, Su PP, Sui FF, Sun GX, Sun HK, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun X, Sun YJ, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Teng JX, Thoren V, Tian WH, Tian YT, Uman I, Wang B, Wang CW, Wang DY, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang S, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang YD, Wang YF, Wang YQ, Wang YY, Wang Z, Wang ZY, Wang Z, Wang Z, Wei DH, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Z, Xia L, Xiao H, Xiao SY, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xu GF, Xu QJ, Xu W, Xu XP, Xu YC, Yan F, Yan L, Yan WB, Yan WC, Yang HJ, Yang HX, Yang L, Yang SL, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan L, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng XZ, Zeng Y, Zhang AQ, Zhang BX, Zhang G, Zhang H, Zhang HH, Zhang HH, Zhang HY, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang S, Zhang SF, Zhang S, Zhang XD, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu TJ, Zhu WJ, Zhu WJ, Zhu YC, Zhu ZA, Zou BS, Zou JH. Measurement of the Cross Section for e^{+}e^{-}→Hadrons at Energies from 2.2324 to 3.6710 GeV. PHYSICAL REVIEW LETTERS 2022; 128:062004. [PMID: 35213186 DOI: 10.1103/physrevlett.128.062004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Based on electron-positron collision data collected with the BESIII detector operating at the Beijing Electron-Positron Collider II storage rings, the value of R≡σ(e^{+}e^{-}→hadrons)/σ(e^{+}e^{-}→μ^{+}μ^{-}) is measured at 14 center-of-mass energies from 2.2324 to 3.6710 GeV. The resulting uncertainties are less than 3.0% and are dominated by systematic uncertainties.
Collapse
|
|
3 |
2 |
1193
|
Yun J, Li G, Enomoto H, Jin F. Selective Production of Formic Acid by Hydrothermal Alkaline Oxidation of Carbohydrates. ACTA ACUST UNITED AC 2007. [DOI: 10.1063/1.2721266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
|
18 |
2 |
1194
|
Li G, Duan YX, Zhang XB, Wu F. Mitochondrial tRNA mutations may be infrequent in hepatocellular carcinoma patients. GENETICS AND MOLECULAR RESEARCH 2016; 15:gmr7665. [PMID: 27420959 DOI: 10.4238/gmr.15027665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mitochondrial DNA mutations have been shown to play important roles in the pathogenesis of hepatocellular carcinoma (HCC). In particular, genes encoding mitochondrial tRNA (mt-tRNA) are hotspots for pathogenic mutations associated with HCC. Recently, an increasing number of studies have reported the involvement of such mutations in this disease. As a result, several mt-tRNA mutations associated with HCC have been described. Some of these are neutral polymorphisms and may not cause mitochondrial dysfunction. Moreover, the molecular mechanisms by which these pathogenic mutations result in HCC remain unclear. To address this problem, we evaluated five mt-tRNA variants (tRNA(Val) T1659C, tRNA(Ala) G5650A, tRNA(Arg) T10463C, tRNA(Glu) A14679G, and tRNA(Pro) C15975T) implicated in the clinical manifestation of HCC in humans. We performed evolutionary conservation analysis and used a bioinformatic tool to predict the secondary structure of the mt-tRNAs carrying these mutations. Using an established pathogenicity scoring system, we classified T10463C and A14679G as neutral polymorphisms, and determined that the T1659C, G5650A, and C15975T variants should be regarded as pathogenic mutations. To the best of our knowledge, this is the first report to establish the pathogenicity of HCC-associated mt-tRNA mutations.
Collapse
|
Meta-Analysis |
9 |
2 |
1195
|
Altarawneh MM, Harrison N, Li G, Balicas L, Tobash PH, Ronning F, Bauer ED. Superconducting pairs with extreme uniaxial anisotropy in URu2Si2. PHYSICAL REVIEW LETTERS 2012; 108:066407. [PMID: 22401097 DOI: 10.1103/physrevlett.108.066407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Indexed: 05/31/2023]
Abstract
We report magnetic field orientation-dependent measurements of the superconducting upper critical field in high quality single crystals of URu(2)Si(2) and find the effective g factor estimated from the Pauli limit to agree remarkably well with that found in quantum oscillation experiments, both quantitatively and in the extreme anisotropy (≈10(3)) of the spin susceptibility. Rather than a strictly itinerant or purely local f-electron picture being applicable, the latter suggests the quasiparticles subject to pairing in URu(2)Si(2) to be "composite heavy fermions" formed from bound states between conduction electrons and local moments with a protected Ising behavior. Non-Kramers doublet local magnetic degrees of freedom suggested by the extreme anisotropy favor a local pairing mechanism.
Collapse
|
|
13 |
2 |
1196
|
Li G, Mori WB, Ren C. Laser hosing in relativistically hot plasmas. PHYSICAL REVIEW LETTERS 2013; 110:155002. [PMID: 25167277 DOI: 10.1103/physrevlett.110.155002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Indexed: 06/03/2023]
Abstract
Electron response in an intense laser is studied in the regime where the electron temperature is relativistic. Equations for laser envelope and plasma density evolution, both in the electron plasma wave and ion acoustic wave regimes, are rederived from the relativistic fluid equations to include relativistic plasma temperature effect. These equations are used to study short-pulse and long-pulse laser hosing instabilities using a variational method approach. The analysis shows that relativistic electron temperatures reduce the hosing growth rates and shift the fastest-growing modes to longer wavelengths. These results resolve a long-standing discrepancy between previous nonrelativistic theory and simulations or experiments on hosing.
Collapse
|
|
12 |
2 |
1197
|
Chen W, Ma T, Bai X, Zhang X, Li G, Lao M, Liang T. Acute Graft-vs-Host Disease After Liver Transplantation in a Patient Presenting With Neurogenic Symptoms as the Single Primary Manifestation: A Case Report. Transplant Proc 2018; 50:4028-4032. [PMID: 30577308 DOI: 10.1016/j.transproceed.2018.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/23/2018] [Indexed: 12/24/2022]
|
|
7 |
2 |
1198
|
Tuerdi B, Zuo L, Sun H, Wang K, Wang Z, Li G. Safety and efficacy of regional citrate anticoagulation in continuous blood purification treatment of patients with multiple organ dysfunction syndrome. Braz J Med Biol Res 2017; 51:e6378. [PMID: 29185591 PMCID: PMC5685057 DOI: 10.1590/1414-431x20176378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/23/2017] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to discuss the safety and efficacy of regional citrate anticoagulation (RCA) on continuous blood purification (CBP) during the treatment of multiple organ dysfunction syndrome (MODS). Thirty-five patients with MODS were divided into two groups: the local citrate anticoagulation (RCA) group, and the heparin-free blood purification (hfBP) group. The MODS severity was assessed according to Marshall's MODS score criteria. Blood coagulation indicators, blood pressure, filter lifespan, filter replacement frequency, anticoagulation indicators, and main metabolic and electrolyte indicators were analyzed and compared between RCA and hfBP groups. RCA resulted in lower blood pressure than hfBP. The filter efficacy in RCA treatment was longer than in the hfBP group. The blood clearance of creatine, blood urea nitrogen and uric acid was better in the RCA group. RCA also led to higher pH than hfBP. Neither treatment resulted in severe bleeding events. In addition, MODS score was positively correlated with prothrombin time and activated partial thromboplastin time but negatively correlated with platelet concentration. RCA is a safer and more effective method in CBP treatment; however, it could also lead to low blood pressure and blood alkalosis.
Collapse
|
research-article |
8 |
2 |
1199
|
Li G, Fu F, Song H, Niu Y, Su Y. CT imaging spectrum and the histopathological features of adult metanephric adenoma. Br J Radiol 2015; 88:20140807. [PMID: 25966289 DOI: 10.1259/bjr.20140807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE To retrospectively evaluate the radiopathological features of adult metanephric adenoma (MA) and explore whether MA can be differentiated on CT images, including the basis of their morphological features and enhancement patterns. METHODS 18 consecutive MA cases (age range, 18-66 years; 9 males and 9 females) were pathologically proven and recruited in our study between January 2004 and June 2014. Unenhanced and contrast-enhanced CT were performed and correlated with corresponding pathological findings to differentiate between MA and other renal tumours. The enhancement pattern, lesion contour and presence of calcifications were evaluated. RESULTS On unenhanced CT scan, the most common (n = 15, 83.3%) CT imaging characteristics were the presence of homogeneity and well-defined solid renal masses; the minority (n = 3, 16.7%) were heterogeneous or centrally located low-attenuation masses. Contrast-enhanced CT image revealed hypoattenuating heterogeneous masses with varying degrees of contrast enhancement in 16 (88.9%) cases, in contrast to those without increased attenuation in 2 (11.1%) cases. Scattered calcification was found only in one case (5.6%). Pathological results revealed that a total of 6 (33.3%) cases had concomitant malignant carcinoma components; 2 (11.1%) patients had malignant MA; and pure MA was found in 10 cases, with a surprisingly high proportion of malignant tumours. CONCLUSION The positive-predictive values of "high" enhancement seemed relatively characteristic for the diagnosis of malignant and composite MA. ADVANCES IN KNOWLEDGE Radiopathological features of adult MA and exploring whether MA can be differentiated on CT images, including the basis of their morphological features and enhancement patterns.
Collapse
|
|
10 |
2 |
1200
|
Huang Y, Song Y, Li G, Drake PL, Zheng W, Li Z, Zhou D. Morphological and structural plasticity of grassland species in response to a gradient in saline-sodic soils. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1187-1195. [PMID: 26177120 DOI: 10.1111/plb.12368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 07/09/2015] [Indexed: 06/04/2023]
Abstract
The abundance and distribution of species can be ascribed to both environmental heterogeneity and stress tolerance, with the latter measure sometimes associated with phenotypic plasticity. Although phenotypic plasticity varies predictably in response to common forms of stress, we lack a mechanistic understanding of the response of species to high saline-sodic soils. We compared the phenotypic plasticity of three pairs of high and low saline-sodic tolerant congeners from the families Poaceae (Leymus chinensis versus L. secalinus), Fabaceae (Lespedeza davurica versus L. bicolor) and Asteraceae (Artemisia mongolica versus A. sieversiana) in a controlled pot experiment in the Songnen grassland, China. The low tolerant species, L. secalinus and A. sieversiana exhibited higher plasticity in response to soil salinity and sodicity than their paired congeners. Highly tolerant species, L. chinensis and A. mongolica, had higher values for several important morphological traits, such as shoot length and total biomass under the high saline-sodic soil treatment than their paired congeners. In contrast, congeners from the family Fabaceae, L. davurica and L. bicolor, did not exhibit significantly different plasticity in response to soil salinity and sodicity. All species held a constant reproductive effort in response to saline-sodic soil stress. The different responses between low and high tolerant species offer an explanation for the distribution patterns of these species in the Songnen grassland. Highly tolerant species showed less morphological plasticity over a range of saline-sodic conditions than their paired congeners, which may manifest as an inability to compete with co-occurring species in locations where saline-sodic soils are absent.
Collapse
|
|
10 |
2 |