101
|
Mao YS, Gao SG, Li Y, Xue Q, Li F, Jin DH, Yi H, He J. [Hotspots and prospects of esophageal cancer research in China]. ZHONGHUA WEI CHANG WAI KE ZA ZHI = CHINESE JOURNAL OF GASTROINTESTINAL SURGERY 2023; 26:307-311. [PMID: 37072305 DOI: 10.3760/cma.j.cn441530-20221222-00535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Esophageal cancer is a malignant tumor with a high incidence in China. At pesent, advanced esophageal cancer patients are still frequently encountered. The primary treatment for resectable advanced esophageal cancer is surgery-based multimodality therapy, including preoperative neoadjuvant therapy, such as chemotherapy, chemoradiotherapy or chemotherapy plus immunotherapy, followed by radical esophagectomy with thoraco-abdominal two-field or cervico-thoraco-abdominal three-field lymphadenectomy via minimally invasive approach or thoracotomy. In addition, adjuvant chemotherapy, radiotherapy, or chemoradiotherapy, or immunotherapy may also be administered if suggested by postoperative pathological results. Although the treatment outcome of esophageal cancer has improved significantly in China, many clinical issues remain controversial. In this article, we summarize the current hotspots and important issues of esophageal cancer in China, including prevention and early diagnosis, treatment selection for early esophageal cancer, surgical approach selection, lymphadenectomy method, preoperative neoadjuvant therapy, postoperative adjuvant therapy, and nutritional support treatment.
Collapse
|
102
|
Wu LD, Li F, Qian LL, Wang RX. [Research progress on the roles of epigenetic modifications in atrial fibrillation]. ZHONGHUA XIN XUE GUAN BING ZA ZHI 2023; 51:426-430. [PMID: 37057331 DOI: 10.3760/cma.j.cn112148-20230220-00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|
103
|
Zhang XF, Wang Z, Liu WX, Li F, He J, Zhang F, Zhang MY, Qi L, Li Y. [Thoracoscopic laparoscopy-assisted Ivor-Lewis resection of esophagogastric junction cancer]. ZHONGHUA ZHONG LIU ZA ZHI [CHINESE JOURNAL OF ONCOLOGY] 2023; 45:368-374. [PMID: 37078219 DOI: 10.3760/cma.j.cn112152-20220920-00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Objective: To investigate the outcome of patients with esophagogastric junction cancer undergoing thoracoscopic laparoscopy-assisted Ivor-Lewis resection. Methods: Eighty-four patients who were diagnosed with esophagogastric junction cancer and underwent Ivor-Lewis resection assisted by thoracoscopic laparoscopy at the National Cancer Center from October 2019 to April 2022 were collected. The neoadjuvant treatment mode, surgical safety and clinicopathological characteristics were analyzed. Results: Siewert type Ⅱ (92.8%) and adenocarcinoma (95.2%) were predominant in the cases. A total of 2 774 lymph nodes were dissected in 84 patients. The average number was 33 per case, and the median was 31. Lymph node metastasis was found in 45 patients, and the lymph node metastasis rate was 53.6% (45/84). The total number of lymph node metastasis was 294, and the degree of lymph node metastasis was 10.6%(294/2 774). Among them, abdominal lymph nodes (100%, 45/45) were more likely to metastasize than thoracic lymph nodes (13.3%, 6/45). Sixty-eight patients received neoadjuvant therapy before surgery, and nine patients achieved pathological complete remission (pCR) (13.2%, 9/68). Eighty-three patients had negative surgical margins and underwent R0 resection (98.8%, 83/84). One patient, the intraoperative frozen pathology suggested resection margin was negative, while vascular tumor thrombus was seen on the postoperative pathological margin, R1 resection was performed (1.2%, 1/84). The average operation time of the 84 patients was 234.5 (199.3, 275.0) minutes, and the intraoperative blood loss was 90 (80, 100) ml. One case of intraoperative blood transfusion, one case of postoperative transfer to ICU ward, two cases of postoperative anastomotic leakage, one case of pleural effusion requiring catheter drainage, one case of small intestinal hernia with 12mm poke hole, no postoperative intestinal obstruction, chyle leakage and other complications were observed. The number of deaths within 30 days after surgery was 0. Number of lymph nodes dissection, operation duration, and intraoperative blood loss were not related to whether neoadjuvant therapy was performed (P>0.05). Preoperative neoadjuvant chemotherapy combined with radiotherapy or immunotherapy was not related to whether postoperative pathology achieved pCR (P>0.05). Conclusion: Laparoscopic-assisted Ivor-Lewis surgery for esophagogastric junction cancer has a low incidence of intraoperative and postoperative complications, high safety, wide range of lymph node dissection, and sufficient margin length, which is worthy of clinical promotion.
Collapse
|
104
|
An FP, Bai WD, Balantekin AB, Bishai M, Blyth S, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen HY, Chen SM, Chen Y, Chen YX, Chen ZY, Cheng J, Cheng ZK, Cherwinka JJ, Chu MC, Cummings JP, Dalager O, Deng FS, Ding YY, Ding XY, Diwan MV, Dohnal T, Dolzhikov D, Dove J, Duyang HY, Dwyer DA, Gallo JP, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Han Y, Hans S, He M, Heeger KM, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, Lu HQ, Luk KB, Ma BZ, Ma XB, Ma XY, Ma YQ, Mandujano RC, Marshall C, McDonald KT, McKeown RD, Meng Y, Napolitano J, Naumov D, Naumova E, Nguyen TMT, Ochoa-Ricoux JP, Olshevskiy A, Pan HR, Park J, Patton S, Peng JC, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren J, Morales Reveco C, Rosero R, Roskovec B, Ruan XC, Russell B, Steiner H, Sun JL, Tmej T, Treskov K, Tse WH, Tull CE, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang Y, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wei LH, Wei W, Wen LJ, Whisnant K, White CG, Wong HLH, Worcester E, Wu DR, Wu Q, Wu WJ, Xia DM, Xie ZQ, Xing ZZ, Xu HK, Xu JL, Xu T, Xue T, Yang CG, Yang L, Yang YZ, Yao HF, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yue BB, Zavadskyi V, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang FY, Zhang HH, Zhang JL, Zhang JW, Zhang QM, Zhang SQ, Zhang XT, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao RZ, Zhou L, Zhuang HL, Zou JH. Precision Measurement of Reactor Antineutrino Oscillation at Kilometer-Scale Baselines by Daya Bay. PHYSICAL REVIEW LETTERS 2023; 130:161802. [PMID: 37154643 DOI: 10.1103/physrevlett.130.161802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/24/2023] [Indexed: 05/10/2023]
Abstract
We present a new determination of the smallest neutrino mixing angle θ_{13} and the mass-squared difference Δm_{32}^{2} using a final sample of 5.55×10^{6} inverse beta-decay (IBD) candidates with the final-state neutron captured on gadolinium. This sample is selected from the complete dataset obtained by the Daya Bay reactor neutrino experiment in 3158 days of operation. Compared to the previous Daya Bay results, selection of IBD candidates has been optimized, energy calibration refined, and treatment of backgrounds further improved. The resulting oscillation parameters are sin^{2}2θ_{13}=0.0851±0.0024, Δm_{32}^{2}=(2.466±0.060)×10^{-3} eV^{2} for the normal mass ordering or Δm_{32}^{2}=-(2.571±0.060)×10^{-3} eV^{2} for the inverted mass ordering.
Collapse
|
105
|
Li F, Yu R, Zhang D. An In-Situ Tester for Extracting Piezoresistive Coefficients. MICROMACHINES 2023; 14:885. [PMID: 37421119 DOI: 10.3390/mi14040885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 07/09/2023]
Abstract
In this study, an electrostatic force-driven on-chip tester consisting of a mass with four guided cantilever beams was employed to extract the process-related bending stiffness and piezoresistive coefficient in-situ for the first time. The tester was manufactured using the standard bulk silicon piezoresistance process of Peking University, and was tested on-chip without additional handling. In order to reduce the deviation from process effects, the process-related bending stiffness was first extracted as an intermediate value, namely, 3590.74 N/m, which is 1.66% lower than the theoretical value. Then, the value was used to extract the piezoresistive coefficient using a finite element method (FEM) simulation. The extracted piezoresistive coefficient was 9.851 × 10-10 Pa-1, which essentially matched the average piezoresistive coefficient of the computational model based on the doping profile we first proposed. Compared with traditional extraction methods, such as the four-point bending method, this test method is on-chip, achieving automatic loading and precise control of the driving force, so it has high reliability and repeatability. Because the tester is manufactured together with the MEMS device, it has the potential to be used for process quality evaluation and monitoring on MEMS sensor production lines.
Collapse
|
106
|
Ablikim M, Achasov MN, Adlarson P, Aliberti R, Amoroso A, An MR, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Batozskaya V, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bianco E, Bloms J, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang TT, Chang WL, Che GR, Chelkov G, Chen C, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Cheng WS, Choi SK, Chu X, Cibinetto G, Coen SC, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du SX, Duan ZH, Egorov P, Fan YL, Fang J, Fang SS, Fang WX, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fischer K, Fritsch M, Fritzsch C, Fu CD, Fu YW, Gao H, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guan ZL, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, H XT, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Hussain T, Hüsken N, Imoehl W, Irshad M, Jackson J, Jaeger S, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jia ZK, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, K X, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Khoukaz A, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuessner M, Kupsc A, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei TT, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li JW, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li SX, Li T, Li WD, Li WG, Li XH, Li XL, Li X, Li YG, Li ZJ, Li ZX, Li ZY, Liang C, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin DX, Lin T, Liu BX, Liu BJ, Liu C, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma HL, Ma JL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XY, Ma Y, Maas FE, Maggiora M, Maldaner S, Malde S, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pei YP, Pelizaeus M, Peng HP, Peters K, Ping JL, Ping RG, Plura S, Pogodin S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Redmer CF, Ren KJ, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Ruan SN, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi HC, Shi JY, Shi QQ, Shi RS, Shi X, Song JJ, Song TZ, Song WM, Song YX, Sosio S, Spataro S, Stieler F, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZT, Tan YX, Tang CJ, Tang GY, Tang J, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian WH, Tian Y, Tian ZF, Uman I, Wang B, Wang BL, Wang B, Wang CW, Wang DY, Wang F, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang M, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang Y, Wang YD, Wang YF, Wang YH, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei D, Wei DH, Weidner F, Wen SP, Wenzel CW, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YJ, Wu Z, Xia L, Xian XM, Xiang T, Xiao D, Xiao GY, Xiao H, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu WL, Xu XP, Xu YC, Xu ZP, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YX, Yang Y, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu T, Yu XD, Yuan CZ, Yuan L, Yuan SC, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng X, Zeng Y, Zeng YJ, Zhai XY, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang HH, Zhang HH, Zhang HQ, Zhang HY, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou LP, Zhou X, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu L, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou JH, Zu J. Measurements of the Electric and Magnetic Form Factors of the Neutron for Timelike Momentum Transfer. PHYSICAL REVIEW LETTERS 2023; 130:151905. [PMID: 37115883 DOI: 10.1103/physrevlett.130.151905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/27/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
We present the first measurements of the electric and magnetic form factors of the neutron in the timelike (positive q^{2}) region as function of four-momentum transfer. We explored the differential cross sections of the reaction e^{+}e^{-}→n[over ¯]n with data collected with the BESIII detector at the BEPCII accelerator, corresponding to an integrated luminosity of 354.6 pb^{-1} in total at twelve center-of-mass energies between sqrt[s]=2.0-2.95 GeV. A relative uncertainty of 18% and 12% for the electric and magnetic form factors, respectively, is achieved at sqrt[s]=2.3935 GeV. Our results are comparable in accuracy to those from electron scattering in the comparable spacelike region of four-momentum transfer. The electromagnetic form factor ratio R_{em}≡|G_{E}|/|G_{M}| is within the uncertainties close to unity. We compare our result on |G_{E}| and |G_{M}| to recent model predictions, and the measurements in the spacelike region to test the analyticity of electromagnetic form factors.
Collapse
|
107
|
Ablikim M, Achasov MN, Adlarson P, Albrecht M, Aliberti R, Amoroso A, An MR, An Q, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Batozskaya V, Becker D, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bianco E, Bloms J, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Che GR, Chelkov G, Chen C, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen ZJ, Cheng WS, Choi SK, Chu X, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du SX, Duan ZH, Egorov P, Fan YL, Fang J, Fang SS, Fang WX, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fischer K, Fritsch M, Fritzsch C, Fu CD, Gao H, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Huang Z, Hussain T, Hüsken N, Imoehl W, Irshad M, Jackson J, Jaeger S, Janchiv S, Jang E, Jeong JH, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jia ZK, Jiang PC, Jiang SS, Jiang XS, Jiang Y, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei TT, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li H, Li HB, Li HJ, Li HN, Li JQ, Li JS, Li JW, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li SX, Li SY, Li T, Li WD, Li WG, Li XH, Li XL, Li X, Li YG, Li ZX, Li ZY, Liang C, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin CX, Lin DX, Lin T, Liu BJ, Liu C, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XY, Ma Y, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pei YP, Pelizaeus M, Peng HP, Peters K, Ping JL, Ping RG, Plura S, Pogodin S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Redmer CF, Ren KJ, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Ruan SN, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi HC, Shi JY, Shi QQ, Shi RS, Shi X, Song JJ, Song WM, Song YX, Sosio S, Spataro S, Stieler F, Su PP, Su YJ, Sun GX, Sun H, Sun HK, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun YJ, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian Y, Uman I, Wang B, Wang B, Wang BL, Wang CW, Wang DY, Wang F, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang YD, Wang YF, Wang YH, Wang YQ, Wang Y, Wang Z, Wang ZY, Wang Z, Wei DH, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YJ, Wu Z, Xia L, Xiang T, Xiao D, Xiao GY, Xiao H, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu XP, Xu YC, Xu ZP, Yan F, Yan L, Yan WB, Yan WC, Yang HJ, Yang HL, Yang HX, Yang T, Yang YF, Yang YX, Yang Y, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu T, Yu XD, Yuan CZ, Yuan L, Yuan SC, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng X, Zeng Y, Zhai XY, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang HH, Zhang HH, Zhang HQ, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng YH, Zhong B, Zhong C, Zhong X, Zhou H, Zhou LP, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou JH, Zu J. Observation of a New X(3872) Production Process e^{+}e^{-}→ωX(3872). PHYSICAL REVIEW LETTERS 2023; 130:151904. [PMID: 37115900 DOI: 10.1103/physrevlett.130.151904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Using 4.7 fb^{-1} of e^{+}e^{-} collision data at center-of-mass energies from 4.661 to 4.951 GeV collected by the BESIII detector at the BEPCII collider, we observe the X(3872) production process e^{+}e^{-}→ωX(3872) for the first time. The significance is 7.8σ, including both the statistical and systematic uncertainties. The e^{+}e^{-}→ωX(3872) Born cross section and the corresponding upper limit at 90% confidence level at each energy point are reported. The line shape of the cross section indicates that the ωX(3872) signals may be from the decays of some nontrivial structures.
Collapse
|
108
|
Zheng H, Wang Q, Fu T, Wei Z, Ye J, Huang B, Li C, Liu B, Zhang A, Li F, Gao F, Tong W. Robotic versus laparoscopic left colectomy with complete mesocolic excision for left-sided colon cancer: a multicentre study with propensity score matching analysis. Tech Coloproctol 2023:10.1007/s10151-023-02781-7. [PMID: 36964884 DOI: 10.1007/s10151-023-02781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Robotic surgery for right-sided colon and rectal cancer has rapidly increased; however, there is limited evidence in the literature of advantages of robotic left colectomy (RLC) for left-sided colon cancer. The purpose of this study was to compare the outcomes of RLC versus laparoscopic left colectomy (LLC) with complete mesocolic excision (CME) for left-sided colon cancer. METHODS Patients who had RLC or LLC with CME for left-sided colon cancer at 5 hospitals in China between January 2014 and April 2022 were included. A one-to-one propensity score matched analysis was performed to decrease confounding. The primary outcome was postoperative complications occurring within 30 days of surgery. Secondary outcomes were disease-free survival, overall survival and the number of harvested lymph nodes. RESULTS A total of 292 patients (187 males; median age 61.0 [20.0-85.0] years) were eligible for this study, and propensity score matching yielded 102 patients in each group. The clinical-pathological characteristics were well-matched between groups. The two groups did not differ in estimated blood loss, conversion to open rate, time to first flatus, reoperation rate, or postoperative length of hospital stay (p > 0.05). RLC was associated with a longer operation time (192.9 ± 53.2 vs. 168.9 ± 52.8 minutes, p=0.001). The incidence of postoperative complications did not differ between the RLC and LLC groups (18.6% vs. 17.6%, p = 0.856). The total number of lymph nodes harvested in the RLC group was higher than that in the LLC group (15.7 ± 8.3 vs. 12.1 ± 5.9, p< 0.001). There were no significant differences in 3-year and 5-year overall survival or 3-year and 5-year disease-free survival. CONCLUSIONS Compared to laparoscopic surgery, RLC with CME for left-sided colon cancer was found to be associated with higher numbers of lymph nodes harvested and similar postoperative complications and long-term survival outcomes.
Collapse
|
109
|
Cai GJ, Shi GW, Li F, Chen T. [Value of recanalization of the occluded radial artery via the distal radial artery approach]. ZHONGHUA XIN XUE GUAN BING ZA ZHI 2023; 51:329-332. [PMID: 36925146 DOI: 10.3760/cma.j.cn112148-20230112-00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
110
|
Ablikim M, Achasov MN, Adlarson P, Aliberti R, Amoroso A, An MR, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Batozskaya V, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bianco E, Bloms J, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang TT, Chang WL, Che GR, Chelkov G, Chen C, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Cheng WS, Choi SK, Chu X, Cibinetto G, Coen SC, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du SX, Duan ZH, Egorov P, Fan YL, Fang J, Fang SS, Fang WX, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fischer K, Fritsch M, Fritzsch C, Fu CD, Fu YW, Gao H, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guan ZL, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, H XT, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Hussain T, Hüsken N, Imoehl W, Irshad M, Jackson J, Jaeger S, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jia ZK, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, K X, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Khoukaz A, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuessner M, Kupsc A, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei TT, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li JW, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li SX, Li T, Li WD, Li WG, Li XH, Li XL, Li X, Li YG, Li ZJ, Li ZX, Li ZY, Liang C, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin DX, Lin T, Liu BX, Liu BJ, Liu C, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma HL, Ma JL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XY, Ma Y, Maas FE, Maggiora M, Maldaner S, Malde S, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pei YP, Pelizaeus M, Peng HP, Peters K, Ping JL, Ping RG, Plura S, Pogodin S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Redmer CF, Ren KJ, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi HC, Shi JY, Shi QQ, Shi RS, Shi X, Song JJ, Song TZ, Song WM, Song YX, Sosio S, Spataro S, Stieler F, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZT, Tan YX, Tang CJ, Tang GY, Tang J, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian WH, Tian Y, Tian ZF, Uman I, Wang B, Wang BL, Wang B, Wang CW, Wang DY, Wang F, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang M, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang Y, Wang YD, Wang YF, Wang YH, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei D, Wei DH, Weidner F, Wen SP, Wenzel CW, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YJ, Wu Z, Xia L, Xian XM, Xiang T, Xiao D, Xiao GY, Xiao H, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu WL, Xu XP, Xu YC, Xu ZP, Xu ZS, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YX, Yang Y, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu T, Yu XD, Yuan CZ, Yuan L, Yuan SC, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng X, Zeng Y, Zeng YJ, Zhai XY, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang HH, Zhang HH, Zhang HQ, Zhang HY, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou LP, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu L, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou JH, Zu J. Observation of Three Charmoniumlike States with J^{PC}=1^{--} in e^{+}e^{-}→D^{*0}D^{*-}π^{+}. PHYSICAL REVIEW LETTERS 2023; 130:121901. [PMID: 37027853 DOI: 10.1103/physrevlett.130.121901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
The Born cross sections of the process e^{+}e^{-}→D^{*0}D^{*-}π^{+} at center-of-mass energies from 4.189 to 4.951 GeV are measured for the first time. The data samples used correspond to an integrated luminosity of 17.9 fb^{-1} and were collected by the BESIII detector operating at the BEPCII storage ring. Three enhancements around 4.20, 4.47, and 4.67 GeV are visible. The resonances have masses of 4209.6±4.7±5.9 MeV/c^{2}, 4469.1±26.2±3.6 MeV/c^{2}, and 4675.3±29.5±3.5 MeV/c^{2} and widths of 81.6±17.8±9.0 MeV, 246.3±36.7±9.4 MeV, and 218.3±72.9±9.3 MeV, respectively, where the first uncertainties are statistical and the second systematic. The first and third resonances are consistent with the ψ(4230) and ψ(4660) states, respectively, while the second one is compatible with the ψ(4500) observed in the e^{+}e^{-}→K^{+}K^{-}J/ψ process. These three charmoniumlike ψ states are observed in the e^{+}e^{-}→D^{*0}D^{*-}π^{+} process for the first time.
Collapse
|
111
|
Yao L, Li F, Yu C, Wang H, Wang Y, Ye L, Yu F. Chronological and Replicative Aging of CD51 +/PDGFR-α + Pulp Stromal Cells. J Dent Res 2023:220345231158038. [PMID: 36919905 DOI: 10.1177/00220345231158038] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
As a crucial source of mesenchymal stromal cells, CD51+/PDGFR-α+ human dental pulp stromal cells (hDPSCs) are promising seeding cells for regenerative medicine. Cellular senescence hinders the translational application of hDPSCs. However, it remains unclear whether chronological and replicative senescence results in distinct outcomes for hDPSCs. To investigate the influence of senescence on DPSCs, we used transgenic lineage tracking, immunofluorescence, flow cytometry, and various molecular experiments to depict the dynamic pattern of hDPSCs in mice and humans during chronological and replicative senescence. The data demonstrated that CD51+/PDGFR-α+ cells were decreased in chronological senescence. Impaired self-renewal and higher ossificatory differentiation were observed in chronologically senescent hDPSCs. Regarding replicative senescence, a decreased CD51+ but upregulated PDGFR-α+ population was observed in culture. Furthermore, weakened self-renewal and osteogenic differentiation were observed in replicatively senescent hDPSCs. In summary, CD51+/PDGFR-α+ hDPSCs decrease in chronologically aged pulp, with self-renewal that is impaired without impaired osteogenic differentiation. However, replicative senescence has a different impact: self-renewal and ossific differentiation are impaired and CD51 expression is reduced, but PDGFR-α expression remains. These findings demonstrate the different outcomes of chronological and replicative senescence in CD51+/PDGFR-α+ hDPSCs. Furthermore, we revealed that impaired self-renewal is the core dysfunction for both types of cellular aging and that osteogenic differentiation capability differs between them. This study provides insights into the influence of chronological and replicative senescence on the characteristics and capabilities of hDPSCs. These advances provide fundamental knowledge to alleviate cellular aging of CD51+/PDGFR-α+ hDPSCs and promote their translational applications.
Collapse
|
112
|
Li F, Liu YP, Zhu H, Hong M, Qian SX, Zhu Y, Shen WY, Chen LJ, He GS, Wu HX, Lu H, Li JY, Miao KR. [Clinical study of induction chemotherapy followed by allogeneic hematopoietic stem cell transplantation in the treatment of FLT3-ITD(+) acute myeloid leukemia with normal karyotype]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:230-235. [PMID: 37356985 PMCID: PMC10119728 DOI: 10.3760/cma.j.issn.0253-2727.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 06/27/2023]
Abstract
Objective: To assess the efficacy of induction chemotherapy followed by allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the treatment of FLT3-ITD(+) acute myeloid leukemia (AML) with normal karyotype. Methods: The clinical data of FLT3-ITD(+) AML patients with normal karyotype in the First Affiliated Hospital of Nanjing Medical University from Jan 2018 to March 2021 were retrospectively analyzed. Results: The study included 49 patients with FLT3-ITD(+)AML, 31 males, and 18 females, with a median age of 46 (16-59) years old. All patients received induction chemotherapy, and 24 patients received sequential allo-HSCT (transplantation group) . The median follow-up time was 465 days, the one-year overall survival (OS) from diagnosis was (70.0 ± 7.4) %, and one-year disease-free survival (DFS) was (70.3±7.4) %. The one-year OS was significantly different between the transplantation group and the non-transplantation group [ (85.2 ± 7.9) % vs (52.6 ± 12.3) %, P=0.049]. but one-year DFS [ (84.7 ± 8.1) % vs (55.2 ± 11.9) %, P=0.061] was not. No significance was found in one-year OS between patients with low-frequency and high-frequency FLT3-ITD(+) (P>0.05) . There were 12 patients with high-frequency FLT3-ITD(+) in the transplantation and the non-transplantation groups, respectively. The one-year OS [ (68.8 ± 15.7) % in the transplantation group vs (26.2 ± 15.3) % in the non-transplantation group, P=0.027] and one-year DFS [ (45.5 ± 21.3) % in the transplantation group vs (27.8±15.8) % in the non-transplantation group, P=0.032] were significantly different between the two groups. Conclusion: Induction chemotherapy followed by allo-HSCT can enhance the prognosis of FLT3-ITD(+) patients, particularly those with FLT3-ITD high-frequency mutation.
Collapse
|
113
|
Xu P, Li F, Tang H. Pyroptosis and airway homeostasis regulation. Physiol Res 2023; 72:1-13. [PMID: 36545873 PMCID: PMC10069808 DOI: 10.33549/physiolres.934971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Pyroptosis is a form of cell death associated with inflammation. In the maintenance of airway homeostasis, pyroptosis goes through activation and assembly of Inflammasome. The pyroptosis pathway is mediated by caspase which activates the pore-forming effect of substrate gasdermin family members. It eventually leads to lysis and release of the cell contents and then induces an inflammatory response. In this process, it participates in airway homeostasis regulation by affecting airway immunity, airway epithelial structure and airway microbiota. Therefore, we discussed the correlation between airway immunity, airway epithelial structure, airway microbiota and the mechanism of pyroptosis to describe the role of pyroptosis in airway homeostasis regulation which is of great significance for understanding the occurrence and treatment of airway inflammatory diseases.
Collapse
|
114
|
Zhang YH, Li F, Zhou YY, Shi P, Cao LF, Wang JS, Shen J. [Characteristics of plasma Epstein-Barr virus DNA in children with primary infection]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2023; 61:245-249. [PMID: 36849352 DOI: 10.3760/cma.j.cn112140-20220825-00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Objective: To explore the characteristics of plasma Epstein-Barr virus (EBV) DNA in primary infection in pediatric cases. Methods: The laboratory and clinical data of 571 children diagnosed with EBV primary infection in Children's Hospital of Fudan University during September 1st, 2017 to September 30th, 2018 were retrospectively analyzed. According to the results of plasma EBV DNA, they were divided into positive group and negative group. According to the EBV DNA, they were devided into high plasma virol load group and low plasma virol load group. The Chi-square test, Wilcoxon rank sum test were used to compare the differences between groups. Results: Among the 571 children with EBV primary infection, 334 were males and 237 were females. The age of first diagnosis was 3.8 (2.2, 5.7) years. There were 255 cases in positive group and 316 cases in negative group. The percentage of cases with fever,hepatomegaly and (or) splenomegaly, elevated transaminase in the positive group were higher than those in the negative group (235 cases (92.2%) vs. 255 cases (80.7%), χ2=15.22, P<0.001; 169 cases (66.3%) vs. 85 cases (26.9%), χ2=96.80, P<0.001; and 144 cases (56.5%) vs. 120 cases (38.0%), χ2=18.27, P<0.001; respectively).In the positive group, 70 cases were followed up for 46 (27, 106) days, 68 cases (97.1%) turned negative within 28 days, with the exception of 2 cases (2.9%) developed chronic active EBV infection by follow-up revision.There were 218 cases in high plasma viral DNA copies group and 37 cases in low copies group. More cases presented with elevated transaminases in the high plasma viral DNA copies group than those in the low group (75.7% (28/37) vs. 56.0%(116/207), χ2=5.00, P=0.025).Both the positive rate of EBV DNA in peripheral blood leukocytes (84.2% (266/316) vs. 44.7% (255/571), χ2=76.26, P<0.001) and the copies of EBV DNA (7.0×107 (1.3×107, 3.0×108) vs. 3.1×106 (1.6×106, 6.1×106) copies /L, Z=15.23, P<0.001) were higher than that of plasma. Conclusions: In immunocompetent pediatric cases diagnosed as EBV primary infection, cases with positive plasma EBV DNA were prone to have fever, hepatomegaly and (or) splenomegaly, and elevated transaminase than those with negative plasma viral DNA. The plasma EBV DNA usually turns negative within 28 days after initial diagnosis.Most cases with high viral load in plasma showed elevated aminotransferase.
Collapse
|
115
|
Zhu DQ, Shi P, Shen J, Chen YW, Li F. [Clinical characteristics of anomalous aortic origin of a coronary artery in children]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2023; 61:240-244. [PMID: 36849351 DOI: 10.3760/cma.j.cn112140-20221031-00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Objective: To analyze the clinical characteristics, diagnosis and treatment of anomalous aortic origin of a coronary artery (AAOCA) in children. Methods: There were 17 children diagnosed with AAOCA from January 2013 to January 2022 in Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine.Their clinical manifestations, laboratory and imaging data, treatment and prognosis were retrospectively analyzed. Results: These 17 children included 14 males and 3 females, with the age of (8.7±3.5) years. There were 4 anomalous left coronary artery (ALCA) and 13 anomalous right coronary artery (ARCA). Seven children presented with chest pain or chest pain after exercise, three patients presented with cardiac syncope, one complained chest tightness and weakness, and the other six patients had no specific symptoms. Cardiac syncope and chest tightness occurred in patients with ALCA. Fourteen children had the dangerous anatomical basis of myocardial ischemia caused by coronary artery compression or stenosis on imaging. Seven children had coronary artery repair, of whom two were ALCA and five were ARCA. One patient had received heart transplantation because of heart failure. The incidence of adverse cardiovascular events and poor prognosis in ALCA group was higher than that in ARCA group (4/4 vs. 0/13, P<0.05). They were followed up in the outpatient department regularly for 6 (6, 12) months; except for the one who lost visit, the rest of the patients had a good prognosis. Conclusions: Cardiogenic syncope or cardiac insufficiency usually occurs in ALCA, and adverse cardiovascular events and poor prognosis are more common in ALCA than in ARCA. Early surgical treatment should be considered for children with ALCA and ARCA accompanied by myocardial ischemia.
Collapse
|
116
|
Li F, Yang G, Zeng M, Huang H, Ye X, Xing C, Tang S, Zhang J, Jiang Y, Chen H, Yin C, Zhang L, Huang Y, Zha X, Wang N. WCN23-0302 RELATIONSHIP BETWEEN BLOOD BONE METABOLIC BIOMARKERS AND ANEMIA IN CKD PATIENTS. Kidney Int Rep 2023. [DOI: 10.1016/j.ekir.2023.02.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
|
117
|
Ye H, Liu ZM, Zhou L, Li F, Cai Q, Zhang MF, Mu QS. Levels of peripheral IL-6 and CD4+ and CD8+ T cells and their prognostic significance in COVID-19. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2023; 27:2686-2691. [PMID: 37013787 DOI: 10.26355/eurrev_202303_31806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
OBJECTIVE The aim of this study was to discuss the prognostic significance of peripheral interleukin-6 (IL-6) and CD4+ and CD8+ T cells in COVID-19. PATIENTS AND METHODS Eighty-four COVID-19 patients were retrospectively analyzed and classified into three groups, including the moderate group (15 cases), the serious group (45 cases), and the critical group (24 cases). The levels of peripheral IL-6, CD4+, and CD8+ T cells and CD4+/CD8+ were determined for each group. It was assessed whether these indicators were correlated to the prognosis and death risks of COVID-19 patients. RESULTS The three groups of COVID-19 patients differed significantly in the levels of peripheral IL-6 and CD4+ and CD8+ cells. The IL-6 levels in the critical, moderate, and serious groups were increased successively, but the changed levels of CD4+ and CD8+ T cells were just opposite to that of IL-6 (p<0.05). The peripheral IL-6 level increased dramatically in the death group, while the levels of CD4+ and CD8+ T cells decreased significantly (p<0.05). The peripheral IL-6 level was significantly correlated with the level of CD8+ T cells and CD4+/CD8+ ratio in the critical group (p<0.05). The logistic regression analysis indicated a dramatic increase in the peripheral IL-6 level in the death group (p=0.025). CONCLUSIONS The aggressiveness and survival of COVID-19 were highly correlated with the increases in IL-6 and CD4+/CD8+ T cells. The fatalities of COVID-19 individuals remained at increased incidence due to elevated peripheral IL-6 levels.
Collapse
|
118
|
Li F, Zeng M, Ouyang C, Liu J, Ning S, Cui H, Yuan Y, Su Z, Zhou J, Liu W, Wang L, Wang X, Xing C, Qin L, Wang N. WCN23-0614 HUMAN AMNION-DERIVED MESENCHYMAL STEM CELL TREATMENT FOR A MALE UREMIC CALCIPHYLAXIS PATIENT WITH MULTISYSTEM ANGIOPATHY. Kidney Int Rep 2023. [DOI: 10.1016/j.ekir.2023.02.486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
|
119
|
Ablikim M, Achasov MN, Adlarson P, Albrecht M, Aliberti R, Amoroso A, An MR, An Q, Bai XH, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Batozskaya V, Becker D, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen C, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen ZJ, Cheng WS, Chu X, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du SX, Egorov P, Fan YL, Fang J, Fang SS, Fang WX, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fischer K, Fritsch M, Fritzsch C, Fu CD, Gao H, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han TT, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Himmelreich M, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang LQ, Huang XT, Huang YP, Huang Z, Hussain T, Hüsken N, Imoehl W, Irshad M, Jackson J, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jia ZK, Jiang HB, Jiang SS, Jiang XS, Jiang Y, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li H, Li HB, Li HJ, Li HN, Li JQ, Li JS, Li JW, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li SX, Li SY, Li T, Li WD, Li WG, Li XH, Li XL, Li X, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin CX, Lin DX, Lin T, Liu BJ, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XY, Ma Y, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pathak A, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Plura S, Pogodin S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Qu SQ, Rashid KH, Redmer CF, Ren KJ, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Ruan SN, Sang HS, Sarantsev A, Schelhaas Y, Schnier C, Schönning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen XY, Shi BA, Shi HC, Shi JY, Shi QQ, Shi RS, Shi X, Shi XD, Song JJ, Song WM, Song YX, Sosio S, Spataro S, Stieler F, Su KX, Su PP, Su YJ, Sun GX, Sun H, Sun HK, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun X, Sun YJ, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian Y, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang F, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang S, Wang T, Wang TJ, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang YD, Wang YF, Wang YH, Wang YQ, Wang YQ, Wang Y, Wang Z, Wang ZY, Wang Z, Wei DH, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu Z, Xia L, Xiang T, Xiao D, Xiao GY, Xiao H, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu SY, Xu XP, Xu YC, Xu ZP, Yan F, Yan L, Yan WB, Yan WC, Yang HJ, Yang HL, Yang HX, Yang L, Yang SL, Yang T, Yang YX, Yang Y, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu T, Yuan CZ, Yuan L, Yuan SC, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng X, Zeng Y, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang HH, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng YH, Zhong B, Zhong C, Zhong X, Zhou H, Zhou LP, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou BS, Zou JH. Evidence for the Cusp Effect in η' Decays into ηπ^{0}π^{0}. PHYSICAL REVIEW LETTERS 2023; 130:081901. [PMID: 36898113 DOI: 10.1103/physrevlett.130.081901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Using a sample of 4.3×10^{5} η^{'}→ηπ^{0}π^{0} events selected from the ten billion J/ψ event dataset collected with the BESIII detector, we study the decay η^{'}→ηπ^{0}π^{0} within the framework of nonrelativistic effective field theory. Evidence for a structure at π^{+}π^{-} mass threshold is observed in the invariant mass spectrum of π^{0}π^{0} with a statistical significance of around 3.5σ, which is consistent with the cusp effect as predicted by the nonrelativistic effective field theory. After introducing the amplitude for describing the cusp effect, the ππ scattering length combination a_{0}-a_{2} is determined to be 0.226±0.060_{stat}±0.013_{syst}, which is in good agreement with theoretical calculation of 0.2644±0.0051.
Collapse
|
120
|
Zhu J, Zhu R, Jiang H, Li Z, Jiang X, Li F, Zhang F, Feng X, Gu J, Li N, Lei L. Adh Promotes Actinobacillus pleuropneumoniae Survival in Porcine Alveolar Macrophages by Inhibiting CHAC2-Mediated Respiratory Burst and Inflammatory Cytokine Expression. Cells 2023; 12:cells12050696. [PMID: 36899832 PMCID: PMC10001268 DOI: 10.3390/cells12050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Actinobacillus pleuropneumoniae (A. pleuropneumoniae) causes porcine pleuropneumonia that seriously endangers pig's health. Adh, located in the head region of trimeric autotransporter adhesion of A. pleuropneumoniae, affects bacterial adhesion and pathogenicity. However, how Adh mediates A. pleuropneumoniae immune invasion is still unclear. Here, we established the A. pleuropneumoniae strain L20 or L20 ΔAdh-infected porcine alveolar macrophages (PAM) model, and applied protein overexpression, RNA interference, qRT-PCR, Western blot and immunoflourescence techniques to dissect the effects of Adh on PAM during A. pleuropneumoniae infection. We found that Adh could increase the A. pleuropneumoniae adhesion and intracellular survival in PAM. Gene chip analysis of piglet lungs further showed that Adh significantly induced cation transport regulatory-like protein 2 (CHAC2) expression, whose overexpression suppressed the phagocytic capacity of PAM. Furthermore, CHAC2 overexpression dramatically increased glutathione (GSH) expression, decreased reactive oxygen species (ROS), and promoted A. pleuropneumoniae survival in PAM, while the knockdown of CHAC2 reversed these phenomena. Meanwhile, CHAC2 silence activated the NOD1/NF-κB pathway, resulting in an increase in IL-1β, IL-6, and TNF-α expression, whereas this effect was weakened by CHAC2 overexpression and addition of NOD1/NF-κB inhibitor ML130. Moreover, Adh enhanced the secretion of LPS of A. pleuropneumoniae, which regulated the expression of CHAC2 via TLR4. In conclusion, through a LPS-TLR4-CHAC2 pathway, Adh inhibits respiratory burst and inflammatory cytokines expression to promote A. pleuropneumoniae survival in PAM. This finding may provide a novel target for the prevention and treatment of A. pleuropneumoniae.
Collapse
|
121
|
Li F, Hu X, Wu Z, Yang Q, Sa Q, Ren W, Wang T, Ji Z, Li N, Huang J, Lei L. Untargeted metabolomics reveals alternations in metabolism of bovine mammary epithelial cells upon IFN-γ treatment. BMC Vet Res 2023; 19:44. [PMID: 36765367 PMCID: PMC9921584 DOI: 10.1186/s12917-023-03588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND IFN-γ is a pleiotropic cytokine that has been shown to affect multiple cellular functions of bovine mammary epithelial cells (BMECs) including impaired milk fat synthesis and induction of malignant transformation via depletion of arginine, one of host conditionally essential amino acids. But the molecular mechanisms of these IFN-γ induced phenotypes are still unknown. METHODS BMECs were treated with IFN-γ for 6 h, 12 h, and 24 h. The metabolomic profiling in BMECs upon IFN-γ induction were assessed using untargeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) metabolomic analysis. Key differentially expressed metabolites (DEMs) were quantified by targeted metabolomics. RESULTS IFN-γ induction resulted in significant differences in the contents of metabolites. Untargeted analysis identified 221 significantly DEMs, most of which are lipids and lipid-like molecules, organic acids and derivatives, organ heterocyclic compounds and benzenoids. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, DEMs were enriched in fructose and mannose metabolism, phosphotransferase system (PTS), β-alanine metabolism, arginine and proline metabolism, methane metabolism, phenylalanine metabolism, and glycolysis/gluconeogenesis. Quantification of selected key DEMs by targeted metabolomics showed significantly decreased levels of D-(-)-mannitol, argininosuccinate, and phenylacetylglycine (PAG), while increased levels in S-hydroxymethylglutathione (S-HMG) and 2,3-bisphospho-D-glyceric acid (2,3-BPG). CONCLUSIONS These results provide insights into the metabolic alterations in BMECs upon IFN-γ induction and indicate potential theoretical basis for clarifying IFN-γ-induced diseases in mammary gland.
Collapse
|
122
|
Ji Y, Xi H, Zhao Z, Jiang Q, Chen C, Wang X, Li F, Li N, Sun C, Feng X, Lei L, Han W, Gu J. Metagenomics analysis reveals potential pathways and drivers of piglet gut phage-mediated transfer of ARGs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160304. [PMID: 36427721 DOI: 10.1016/j.scitotenv.2022.160304] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The growing prevalence of antibiotic-resistant pathogens has led to a better understanding of the underlying processes that lead to this expansion. Intensive pig farms are considered one of the hotspots for antibiotic resistance gene (ARG) transmission. Phages, as important mobile carriers of ARGs, are widespread in the animal intestine. However, our understanding of phage-associated ARGs in the pig intestine and their underlying drivers is limited. Here, metagenomic sequencing and analysis of viral DNA and total DNA of different intestinal (ileum, cecum and feces) contents in healthy piglets and piglets with diarrhea were separately conducted. We found that phages in piglet ceca are the main repository for ARGs and mobile genetic element (MGE) genes. Phage-associated MGEs are important factors affecting the maintenance and transfer of ARGs. Interestingly, the colocalization of ARGs and MGE genes in piglet gut phages does not appear to be randomly selected but rather related to a specific phage host (Streptococcus). In addition, in the feces of piglets with diarrhea, the abundance of phages carrying ARGs and MGE genes was significantly increased, as was the diversity of polyvalent phages (phages with broad host ranges), which would facilitate the transfection and wider distribution of ARGs in the bacterial community. Moreover, the predicted host spectrum of polyvalent phages in diarrheal feces tended to be potential enteropathogenic genera, which greatly increased the risk of enteropathogens acquiring ARGs. Notably, we also found ARG-homologous genes in the sequences of piglet intestinal mimiviruses, suggesting that the piglet intestinal mimiviruses are a potential repository of ARGs. In conclusion, this study greatly expands our knowledge of the piglet gut microbiome, revealing the underlying mechanisms of maintenance and dissemination of piglet gut ARGs and providing a reference for the prevention and control of ARG pollution in animal husbandry.
Collapse
|
123
|
Zhan TL, Chen YW, Wu JJ, Li F, Zhang H, Fu LJ. [A case of severe pulmonary hypertension in children treated by transcatheter Potts shunt]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2023; 61:169-171. [PMID: 36720601 DOI: 10.3760/cma.j.cn112140-20220717-00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
124
|
Ding YX, Wang YT, Mei WT, Zheng Z, Qu YX, Liang K, Li J, Cao F, Li F. [Exosomes secreted from human umbilical cord mesenchymal stem cells promote pancreatic ductal adenocarcinoma growth by transferring miRNAs]. ZHONGHUA ZHONG LIU ZA ZHI [CHINESE JOURNAL OF ONCOLOGY] 2023; 45:50-55. [PMID: 36709120 DOI: 10.3760/cma.j.cn112152-20200622-00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective: To observe the effects of exosomes derived from human umbilical cord mesenchymal stem cells on the proliferation and invasion of pancreatic cancer cells, and to analyze the contents of exosomes and explore the mechanisms affecting pancreatic cancer cells. Methods: Exosomes extracted from human umbilical cord mesenchymal stem cells were added to pancreatic cancer cells BxPC3, Panc-1 and mouse models of pancreatic cancer, respectively. The proliferative activity and invasion abilities of BxPC3 and Panc-1 cells were measured by cell counting kit-8 (CCK-8) and Transwell assays. The expressions of miRNAs in exosomes were detected by high-throughput sequencing. GO and KEGG were used to analyze the related functions and the main metabolic pathways of target genes with high expressions of miRNAs. Results: The results of CCK-8 cell proliferation assay showed that the absorbance of BxPC3 and Panc-1 cells in the hucMSCs-exo group was significantly higher than that in the control group [(4.68±0.09) vs. (3.68±0.01), P<0.05; (5.20±0.20) vs. (3.45±0.17), P<0.05]. Transwell test results showed that the number of invasion cells of BxPC3 and Panc-1 in hucMSCs-exo group was significantly higher than that in the control group (129.40±6.02) vs. (89.40±4.39), P<0.05; (134.40±7.02) vs. (97.00±6.08), P<0.05. In vivo experimental results showed that the tumor volume and weight in the exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-exo) group were significantly greater than that in the control group [(884.57±59.70) mm(3) vs. (695.09±57.81) mm(3), P<0.05; (0.94±0.21) g vs. (0.60±0.13) g, P<0.05]. High-throughput sequencing results showed that miR-148a-3p, miR-100-5p, miR-143-3p, miR-21-5p and miR-92a-3p were highly expressed. GO and KEGG analysis showed that the target genes of these miRNAs were mainly involved in the regulation of glucosaldehylation, and the main metabolic pathways were ascorbic acid and aldehyde acid metabolism, which were closely related to the development of pancreatic cancer. Conclusion: Exosomes derived from human umbilical cord mesenchymal stem cells can promote the growth of pancreatic cancer cells and the mechanism is related to miRNAs that are highly expressed in exosomes.
Collapse
|
125
|
Wu QG, Zeng LY, Li F, Zhu ZQ, Yin L, Meng XM, Zhang L, Zhang P, Jiang XH, Ling Y, Zhang LJ. Nirmatrelvir increases blood tacrolimus concentration in COVID-19 patients as determined by UHPLC-MS/MS method. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2023; 27:818-825. [PMID: 36734723 DOI: 10.26355/eurrev_202301_31083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Transplant recipients have a higher risk of SARS-CoV-2 infection owing to the use of immunosuppressive drugs like tacrolimus (FK506). FK506 and nirmatrelvir (NMV) (an anti-SARS-CoV-2 drug) are metabolized by cytochrome P450 3A4 and may have potential drug-drug interactions. It is important to determine the effect of NMV on FK506 concentrations. PATIENTS AND METHODS Following protein precipitation from blood, FK506 and its internal standard (FK506-13C,2d4) were detected by ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). Total 22 blood samples (valley concentrations) from two coronavirus disease 2019 (COVID-19) patients were collected and analyzed for FK506 concentrations. RESULTS Blood levels of FK506 (0.5-100 ng/mL) showed good linearity. The UHPLC-MS/MS method was validated with intra- and inter-batch accuracies of 104.55-107.85%, and 99.52-108.01%, respectively, and precisions of < 15%. Mean blood FK506 concentration was 12.01 ng/mL (range, 3.15-33.1 ng/mL). Five-day co-administration with NMV increased the FK506 concentrations from 3.15 ng/mL to 33.1 ng/mL, returning to 3.36 ng/mL after a 9-day-washout. CONCLUSIONS We developed a simple quantification method for therapeutic drug monitoring of FK506 in patients with COVID-19 using UHPLC-MS/MS with protein precipitation. We found that NMV increased FK506 blood concentration 10-fold. Therefore, it is necessary to re-consider co-administration of FK506 with NMV.
Collapse
|