101
|
Herman PK, Rine J. Yeast spore germination: a requirement for Ras protein activity during re-entry into the cell cycle. EMBO J 1997; 16:6171-81. [PMID: 9321396 PMCID: PMC1326301 DOI: 10.1093/emboj/16.20.6171] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Saccharomyces cerevisiae spore germination is a process in which quiescent, non-dividing spores become competent for mitotic cell division. Using a novel assay for spore uncoating, we found that spore germination was a multi-step process whose nutritional requirements differed from those for mitotic division. Although both processes were controlled by nutrient availability, efficient spore germination occurred in conditions that did not support cell division. In addition, germination did not require many key regulators of cell cycle progression including the cyclin-dependent kinase, Cdc28p. However, two processes essential for cell growth, protein synthesis and signaling through the Ras protein pathway, were required for spore germination. Moreover, increasing Ras protein activity in spores resulted in an accelerated rate of germination and suggested that activation of the Ras pathway was rate-limiting for entry into the germination program. An early step in germination, commitment, was identified as the point at which spores became irreversibly destined to complete the uncoating process even if the original stimulus for germination was removed. Spore commitment to germination required protein synthesis and Ras protein activity; in contrast, post-commitment events did not require ongoing protein synthesis. Altogether, these data suggested a model for Ras function during transitions between periods of quiescence and cell cycle progression.
Collapse
|
102
|
Trueblood CE, Boyartchuk VL, Rine J. Substrate specificity determinants in the farnesyltransferase beta-subunit. Proc Natl Acad Sci U S A 1997; 94:10774-9. [PMID: 9380709 PMCID: PMC23482 DOI: 10.1073/pnas.94.20.10774] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protein prenyltransferases catalyze the covalent attachment of isoprenoid lipids (farnesyl or geranylgeranyl) to a cysteine near the C terminus of their substrates. This study explored the specificity determinants for interactions between the farnesyltransferase of Saccharomyces cerevisiae and its protein substrates. A series of substitutions at amino acid 149 of the farnesyltransferase beta-subunit were tested in combination with a series of substitutions at the C-terminal amino acid of CaaX protein substrates Ras2p and a-factor. Efficient prenylation was observed when oppositely charged amino acids were present at amino acid 149 of the yeast farnesyltransferase beta-subunit and the C-terminal amino acid of the CaaX protein substrate, but not when like charges were present at these positions. This evidence for electrostatic interaction between amino acid 149 and the C-terminal amino acid of CaaX protein substrates leads to the prediction that the C-terminal amino acid of the protein substrate binds near amino acid 149 of the yeast farnesyltransferase beta-subunit.
Collapse
|
103
|
Abstract
This work describes the phosphorylation of Saccharomyces cerevisiae Ras proteins and explores the physiological role of the phosphorylation of Ras2 protein. Proteins expressed from activated alleles of RAS were less stable and less phosphorylated than proteins from cells expressing wild-type alleles of RAS. This difference in phosphorylation level did not result from increased signaling through the Ras-cAMP pathway or reflect the primarily GTP-bound nature of activated forms of Ras protein per se. In addition, phosphorylation of Ras protein was not dependent on proper localization of the Ras2 protein to the plasma membrane nor on the interaction of Ras2p with its exchange factor, Cdc25p. The preferred phosphorylation site on Ras2 protein was identified as serine 214. This site, when mutated to alanine, led to promiscuous phosphorylation of Ras2 protein on nearby serine residues. A decrease in phosphorylation may lead to a decrease in signaling through the Ras-cAMP pathway.
Collapse
|
104
|
Fox CA, Ehrenhofer-Murray AE, Loo S, Rine J. The origin recognition complex, SIR1, and the S phase requirement for silencing. Science 1997; 276:1547-51. [PMID: 9171055 DOI: 10.1126/science.276.5318.1547] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Silencing of transcription in Saccharomyces cerevisiae has several links to DNA replication, including a role for the origin recognition complex (ORC), the DNA replication initiator, in both processes. In addition, the establishment of silencing at the HML and HMR loci requires cells to pass through the S phase of the cell cycle. Passage through S phase was required for silencing of HMR even under conditions in which ORC itself was no longer required. The requirement for ORC in silencing of HMR could be bypassed by tethering the Sir1 protein to the HMR-E silencer. However, ORC had a Sir1-independent role in transcriptional silencing at telomeres. Thus, the role of ORC in silencing was separable from its role in initiation, and the role of S phase in silencing was independent of replication initiation at the silencers.
Collapse
|
105
|
Ehrenhofer-Murray AE, Rivier DH, Rine J. The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics 1997; 145:923-34. [PMID: 9093847 PMCID: PMC1207897 DOI: 10.1093/genetics/145.4.923] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Silencing at the cryptic mating-type loci HML and HMR of Saccharomyces cerevisiae requires regulatory sites called silencers. Mutations in the Rap1 and Abf1 binding sites of the HMR-E silencer (HMRa-e**) cause the silencer to be nonfunctional, and hence, cause derepression of HMR. Here, we have isolated and characterized mutations in SAS2 as second-site suppressors of the silencing defect of HMRa-e**. Silencing conferred by the removal of SAS2 (sas2 delta) depended upon the integrity of the ARS consensus sequence of the HMR-E silencer, thus arguing for an involvement of the origin recognition complex (ORC). Restoration of silencing by sas2 delta required ORC2 and ORC5, but not SIR1 or RAP1. Furthermore, sas2 delta suppressed the temperature sensitivity, but not the silencing defect of orc2-1 and orc5-1. Moreover, sas2 delta had opposing effects on silencing of HML and HMR. The putative Sas2 protein bears similarities to known protein acetyltransferases. Several models for the role of Sas2 in silencing are discussed.
Collapse
|
106
|
Yalovsky S, Trueblood CE, Callan KL, Narita JO, Jenkins SM, Rine J, Gruissem W. Plant farnesyltransferase can restore yeast Ras signaling and mating. Mol Cell Biol 1997; 17:1986-94. [PMID: 9121446 PMCID: PMC232045 DOI: 10.1128/mcb.17.4.1986] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Farnesyltransferase (FTase) is a heterodimeric enzyme that modifies a group of proteins, including Ras, in mammals and yeasts. Plant FTase alpha and beta subunits were cloned from tomato and expressed in the yeast Saccharomyces cerevisiae to assess their functional conservation in farnesylating Ras and a-factor proteins, which are important for cell growth and mating. The tomato FTase beta subunit (LeFTB) alone was unable to complement the growth defect of ram1 delta mutant yeast strains in which the chromosomal FTase beta subunit gene was deleted, but coexpression of LeFTB with the plant alpha subunit gene (LeFTA) restored normal growth, Ras membrane association, and mating. LeFTB contains a novel 66-amino-acid sequence domain whose deletion reduces the efficiency of tomato FTase to restore normal growth to yeast ram1 delta strains. Coexpression of LeFTA and LeFTB in either yeast or insect cells yielded a functional enzyme that correctly farnesylated CaaX-motif-containing peptides. Despite their low degree of sequence homology, yeast and plant FTases shared similar in vivo and in vitro substrate specificities, demonstrating that this enzymatic modification of proteins with intermediates from the isoprenoid biosynthesis pathway is conserved in evolutionarily divergent eukaryotes.
Collapse
|
107
|
Abstract
Prenylated proteins contain a covalently linked cholesterol intermediate near their carboxyl-termini. Maturation of most prenylated proteins involves proteolytic removal of the last three amino acids. Two genes in Saccharomyces cerevisiae, RCE1 and AFC1, were identified that appear to be responsible for this processing. The Afc1 protein is a zinc protease that participates in the processing of yeast a-factor mating pheromone. The Rce1 protein contributes to the processing of both Ras protein and a-factor. Deletion of both AFC1 and RCE1 resulted in the loss of proteolytic processing of prenylated proteins. Disruption of RCE1 led to defects in Ras localization and signaling and suppressed the activated phenotype associated with the allele RAS2val19.
Collapse
|
108
|
Moazed D, Kistler A, Axelrod A, Rine J, Johnson AD. Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc Natl Acad Sci U S A 1997; 94:2186-91. [PMID: 9122169 PMCID: PMC20062 DOI: 10.1073/pnas.94.6.2186] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The SIR2, SIR3, and SIR4 silent information regulator proteins are involved in the assembly of silent chromatin domains in the budding yeast Saccharomyces cerevisiae. Using a series of biochemical experiments, we have studied protein-protein interactions involving these proteins. We found that yeast extracts contained a SIR2/SIR4 complex that was associated with little or no SIR3. However, truncations of the N-terminal two-thirds of the SIR4 protein allowed it to efficiently associate with SIR3, suggesting that the N-terminal domain of SIR4 inhibited its interaction with SIR3. We propose that the SIR3 and SIR4 proteins interact only during the assembly of the SIR protein complex at the silencer and that an early step in assembly unmasks the SIR4 protein to allow its association with SIR3. To test whether the interactions observed in yeast extracts were direct, we tested these SIR-SIR interactions using bacterially expressed SIR proteins. We observed direct interactions between SIR4 and SIR2, SIR4 and SIR3, SIR2 and SIR3, SIR2 and SIR2, and SIR4 and SIR4, indicating that the associations observed in yeast extracts were direct.
Collapse
|
109
|
Abstract
We performed a comparative study of four subfamilies of olfactory receptor genes first identified in the dog to assess changes in the gene family during mammalian evolution, and to begin linking the dog genetic map to that of humans. The human subfamilies were localized to chromosomes 7, 11, and 19. The two subfamilies that were tightly linked in the dog genome were also tightly linked in the human genome. The four subfamilies were compared in human (primate), horse (perissodactyl), and a variety of artiodactyls and carnivores. Some changes in gene number were detected, but overall subfamily size appeared to have been established before the divergence of these mammals 60-100 million years ago.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Southern
- Chromosome Mapping
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 19
- Chromosomes, Human, Pair 7
- DNA
- Dogs
- Evolution, Molecular
- Genes
- Humans
- Mammals
- Molecular Sequence Data
- Receptors, Odorant/classification
- Receptors, Odorant/genetics
- Sequence Homology, Amino Acid
Collapse
|
110
|
Hampton RY, Gardner RG, Rine J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol Biol Cell 1996; 7:2029-44. [PMID: 8970163 PMCID: PMC276048 DOI: 10.1091/mbc.7.12.2029] [Citation(s) in RCA: 453] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
3-hydroxy-3-methylglutaryl-CoA reductase (HMG-R), a key enzyme of sterol synthesis, is an integral membrane protein of the endoplasmic reticulum (ER). In both humans and yeast, HMG-R is degraded at or in the ER. The degradation of HMG-R is regulated as part of feedback control of the mevalonate pathway. Neither the mechanism of degradation nor the nature of the signals that couple the degradation of HMG-R to the mevalonate pathway is known. We have launched a genetic analysis of the degradation of HMG-R in Saccharomyces cerevisiae using a selection for mutants that are deficient in the degradation of Hmg2p, an HMG-R isozyme. The underlying genes are called HRD (pronounced "herd"), for HMG-CoA reductase degradation. So far we have discovered mutants in three genes: HRD1, HRD2, and HRD3. The sequence of the HRD2 gene is homologous to the p97 activator of the 26S proteasome. This p97 protein, also called TRAP-2, has been proposed to be a component of the mature 26S proteasome. The hrd2-1 mutant had numerous pleiotropic phenotypes expected for cells with a compromised proteasome, and these phenotypes were complemented by the human TRAP-2/p97 coding region. In contrast, HRD1 and HRD3 genes encoded previously unknown proteins predicted to be membrane bound. The Hrd3p protein was homologous to the Caenorhabditis elegans sel-1 protein, a negative regulator of at least two different membrane proteins, and contained an HRD3 motif shared with several other proteins. Hrd1p had no full-length homologues, but contained an H2 ring finger motif. These data suggested a model of ER protein degradation in which the Hrd1p and Hrd3p proteins conspire to deliver HMG-R to the 26S proteasome. Moreover, our results lend in vivo support to the proposed role of the p97/TRAP-2/Hrd2p protein as a functionally important component of the 26S proteasome. Because the HRD genes were required for the degradation of both regulated and unregulated substrates of ER degradation, the HRD genes are the agents of HMG-R degradation but not the regulators of that degradation.
Collapse
|
111
|
Issel-Tarver L, Rine J. Organization and expression of canine olfactory receptor genes. Proc Natl Acad Sci U S A 1996; 93:10897-902. [PMID: 8855279 PMCID: PMC38254 DOI: 10.1073/pnas.93.20.10897] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Four members of the canine olfactory receptor gene family were characterized. The predicted proteins shared 40-64% identity with previously identified olfactory receptors. The four subfamilies identified in Southern hybridization experiments had as few as 2 and as many as 20 members. All four genes were expressed exclusively in olfactory epithelium. Expression of multiple members of the larger subfamilies was detected, suggesting that most if not all of the cross-hybridizing bands in genomic Southern blots represented actively transcribed olfactory receptor genes. Analysis of large DNA fragments using Southern blots of pulsed-field gels indicated that subfamily members were clustered together, and that two of the subfamilies were closely linked in the dog genome. Analysis of the four olfactory receptor gene subfamilies in 26 breeds of dog provided evidence that the number of genes per subfamily was stable in spite of differential selection on the basis of olfactory acuity in scent hounds, sight hounds, and toy breeds.
Collapse
|
112
|
Dimster-Denk D, Rine J. Transcriptional regulation of a sterol-biosynthetic enzyme by sterol levels in Saccharomyces cerevisiae. Mol Cell Biol 1996; 16:3981-9. [PMID: 8754796 PMCID: PMC231394 DOI: 10.1128/mcb.16.8.3981] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sterols and all nonsterol isoprenoids are derived from the highly conserved mevalonate pathway. In animal cells, this pathway is regulated in part at the transcriptional level through the action of sterol response element-binding proteins acting at specific DNA sequences near promoters. Here we extend at least part of this regulatory paradigm to the ERG10 gene, which encodes a sterol-biosynthetic enzyme of Saccharomyces cerevisiae. Specifically, the discovery of sterol-mediated feedback control of ERG10 transcription is reported. Deletion analysis of the ERG10 promoter region identified sequences involved in the expression of ERG10. This regulatory axis appeared to involve sterol levels, as a late block in the pathway that depletes sterol, but not nonsterol isoprenoids, was able to elicit the regulatory response.
Collapse
|
113
|
Abstract
Silencing in Saccharomyces cerevisiae is a form of transcriptional repression that involves the assembly of a specialized and heritable structure of chromatin. The HML and HMR loci, which contain copies of the genes found at the yeast mating-type locus, are silenced, as are telomeres. These examples share several features which are also found in position-effect variegation in flies and X-chromosome inactivation and genomic imprinting in mammals. Silenced chromatin is confined to a few special domains of the yeast genome, and active genes inserted into these domains become silenced. Molecular and genetic evidence has suggested that the establishment of silenced chromatin requires some S phase specific function. Recent experiments indicate that the assembly and maintenance of silenced chromatin can also be influenced at other phases of the cell cycle.
Collapse
|
114
|
Hampton R, Dimster-Denk D, Rine J. The biology of HMG-CoA reductase: the pros of contra-regulation. Trends Biochem Sci 1996; 21:140-5. [PMID: 8701471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hydroxymethylglutaryl-CoA reductase (HMG-R) is a key enzyme in the mevalonate pathway, from which thousands of molecules are derived including cholesterol and prenyl moieties. The regulation of HMG-R is complex and includes feedback control, cross-regulation by independent bio-chemical processes and contra-regulation of separate isozymes. From studies in yeast, these separate modes of regulation can be considered in an integrated fashion.
Collapse
|
115
|
Hampton R, Dimster-Denk D, Rine J. The biology of HMG-CoA reductase: the pros of contra-regulation. Trends Biochem Sci 1996. [DOI: 10.1016/s0968-0004(96)80168-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
116
|
Hampton RY, Koning A, Wright R, Rine J. In vivo examination of membrane protein localization and degradation with green fluorescent protein. Proc Natl Acad Sci U S A 1996; 93:828-33. [PMID: 8570643 PMCID: PMC40142 DOI: 10.1073/pnas.93.2.828] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To test the utility of green fluorescent protein (GFP) as an in vivo reporter protein when fused to a membrane domain, we made a fusion protein between yeast hydroxymethylglutaryl-CoA reductase and GFP. Fusion proteins displayed spatial localization and regulated degradation consistent with the native hydroxymethylglutaryl-CoA reductase proteins. Thus, GFP should be useful in the study of both membrane protein localization and protein degradation in vivo.
Collapse
|
117
|
Ehrenhofer-Murray AE, Gossen M, Pak DT, Botchan MR, Rine J. Separation of origin recognition complex functions by cross-species complementation. Science 1995; 270:1671-4. [PMID: 7502078 DOI: 10.1126/science.270.5242.1671] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transcriptional silencing at the HMRa locus of Saccharomyces cerevisiae requires the function of the origin recognition complex (ORC), the replication initiator of yeast. Expression of a Drosophila melanogaster Orc2 complementary DNA in the yeast orc2-1 strain, which is defective for replication and silencing, complemented the silencing defect but not the replication defect; this result indicated that the replication and silencing functions of ORC were separable. The orc2-1 mutation mapped to the region of greatest homology between the Drosophila and yeast proteins. The silent state mediated by DmOrc2 was epigenetic; it was propagated during mitotic divisions in a relatively stable way, whereas the nonsilent state was metastable. In contrast, the silent state was erased during meiosis.
Collapse
|
118
|
Abstract
Silencing is a process that assembles particular regions of eukaryotic chromosomes into transcriptionally inactive chromatin structures. Silencing involves specialized regulatory sites known as silencers and a combination of general DNA-binding proteins and proteins dedicated to silencing. In the yeast Saccharomyces cerevisiae, these proteins include transcription factors and the origin recognition complex (ORC). Silencing has three recognizably separate phases: establishment, maintenance, and inheritance. At least some silencers are origins of replication, and the establishment of the silenced state requires an S phase-specific event. Once established, the silenced state is heritable, even in the absence of proteins required for its establishment. The silencing of mating-type genes bears many similarities to telomere position effects, and the two processes require many of the same proteins.
Collapse
|
119
|
Loo S, Laurenson P, Foss M, Dillin A, Rine J. Roles of ABF1, NPL3, and YCL54 in silencing in Saccharomyces cerevisiae. Genetics 1995; 141:889-902. [PMID: 8582634 PMCID: PMC1206852 DOI: 10.1093/genetics/141.3.889] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A sensitized genetic screen was carried out to identify essential genes involved in silencing in Saccharomyces cerevisiae. This screen identified temperature-sensitive alleles of ORC2 and ORC5, as described elsewhere, and ABF1, NPL3, and YCL54, as described here. Alleles of ABF1 that caused silencing defects provided the genetic proof of Abflp's role in silencing. The roles of Npl3p and Ycl54p are less clear. These proteins did not act exclusively through any one of the three protein binding sites of the HMR-E silencer. Unlike the orc2, orc5, and abf1 mutations that were isolated in the same (or a similar) screen for silencing mutants, neither temperature-sensitive mutation in NPL3 or YCL54 caused overt replication defects.
Collapse
|
120
|
Loo S, Fox CA, Rine J, Kobayashi R, Stillman B, Bell S. The origin recognition complex in silencing, cell cycle progression, and DNA replication. Mol Biol Cell 1995; 6:741-56. [PMID: 7579692 PMCID: PMC301233 DOI: 10.1091/mbc.6.6.741] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This report describes the isolation of ORC5, the gene encoding the fifth largest subunit of the origin recognition complex, and the properties of mutants with a defective allele of ORC5. The orc5-1 mutation caused temperature-sensitive growth and, at the restrictive temperature, caused cell cycle arrest. At the permissive temperature, the orc5-1 mutation caused an elevated plasmid loss rate that could be suppressed by additional tandem origins of DNA replication. The sequence of ORC5 revealed a potential ATP binding site, making Orc5p a candidate for a subunit that mediates the ATP-dependent binding of ORC to origins. Genetic interactions among orc2-1 and orc5-1 and other cell cycle genes provided further evidence for a role for the origin recognition complex (ORC) in DNA replication. The silencing defect caused by orc5-1 strengthened previous connections between ORC and silencing, and combined with the phenotypes caused by orc2 mutations, suggested that the complex itself functions in both processes.
Collapse
|
121
|
Abstract
Although there are several compelling pieces of evidence suggesting that transcription can promote DNA replication, there are few studies that indicate a role for DNA replication in controlling transcription. Here, we discuss the role of the HMR-E silencer, an origin of replication that plays a crucial role in the regulation of expression of mating-type genes in the yeast Saccharomyces cerevisiae.
Collapse
|
122
|
Fox CA, Loo S, Dillin A, Rine J. The origin recognition complex has essential functions in transcriptional silencing and chromosomal replication. Genes Dev 1995; 9:911-24. [PMID: 7774809 DOI: 10.1101/gad.9.8.911] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The role of the origin recognition complex (ORC) was investigated in replication initiation and in silencing. Temperature-sensitive mutations in ORC genes caused defects in replication initiation at chromosomal origins of replication, as measured by two-dimensional (2-D) origin-mapping gels, fork migration analysis, and plasmid replication studies. These data were consistent with ORC functioning as a eukaryotic replication initiator. Some origins displayed greater replication initiation deficiencies in orc mutants than did others, revealing functional differences between origins. Alleles of ORC5 were isolated that were defective for silencing but not replication, indicating that ORC's role in silencing could be separated from its role in replication. In temperature-sensitive orc mutants arrested in mitosis, temperature-shift experiments caused a loss of silencing, indicating both that ORC had functions outside of the S phase of the cell cycle and that ORC was required for the maintenance of the silenced state.
Collapse
|
123
|
Kamb A, Wang C, Thomas A, DeHoff BS, Norris FH, Richardson K, Rine J, Skolnick MH, Rosteck PR. Software trapping: a strategy for finding genes in large genomic regions. COMPUTERS AND BIOMEDICAL RESEARCH, AN INTERNATIONAL JOURNAL 1995; 28:140-53. [PMID: 7656550 DOI: 10.1006/cbmr.1995.1010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We present an approach to the gene identification phase of positional cloning that combines sparse sampling of DNA sequences from large genomic regions with computational analysis. We call the method "software trapping." The goal is to find coding exons while avoiding massive DNA sequence determination and contig assembly. Instead, rapid sequence sampling is combined with exon screening software such as a newly developed package called XPOUND to identify coding sequences. We have tested the approach using a set of model genomic sequences with known intron/exon structures as well as with bona fide P1 genomic clones. The results suggest that the strategy is a useful complement to other methods for finding genes in poorly characterized regions of genomes.
Collapse
|
124
|
Ostrander EA, Mapa FA, Yee M, Rine J. One hundred and one new simple sequence repeat-based markers for the canine genome. Mamm Genome 1995; 6:192-5. [PMID: 7749226 DOI: 10.1007/bf00293011] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
One hundred and one new dinucleotide repeat polymorphisms specific for the canine genome have been identified and characterized. Screening of both primary libraries and marker-selected libraries enriched for simple sequence repeats led to the isolation of large numbers of genomic clones that contained (CA)n repeats. Over 200 of these clones were sequenced, and PCR primers that bracket the repeat were developed for those that contained ten or more continuous (CA)n units. This effort led to the production of 101 polymorphic markers, which were assigned to one of four categories depending on their degree of polymorphism. Fifty-four markers were found to be highly or very highly polymorphic as they had four or more alleles when tested on a panel of unrelated dogs. This group of markers will be useful for following inheritance of traits in crosses between dogs.
Collapse
|
125
|
Abstract
We have described several quantitative and qualitative assays that have been utilized to learn the basic properties of RACE and amphibian and mammalian counterparts. Owing to powerful genetic tractability, high specific activity, and an apparently well-conserved substrate specificity, yeast is an attractive organism in which to study RACE. Efforts are currently in progress to characterize the functional role of the endoproteolytic processing step of many essential proteins.
Collapse
|