101
|
Patharkar OR, Cushman JC. A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:679-91. [PMID: 11123806 DOI: 10.1046/j.1365-313x.2000.00912.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
McCDPK1 is a salinity- and drought-induced calcium-dependent protein kinase (CDPK) isolated from the common ice plant, Mesembryanthemum crystallinum. A yeast two-hybrid experiment was performed, using full-length McCDPK1 and truncated forms of McCDPK1 as baits, to identify interacting proteins. A catalytically impaired bait isolated a cDNA clone encoding a novel protein, CDPK substrate protein 1 (CSP1). CSP1 interacted with McCDPK1 in a substrate-like fashion in both yeast two-hybrid assays and wheat germ interaction assays. Furthermore, McCDPK1 was capable of phosphorylating CSP1 in vitro in a calcium-dependent manner. Our results demonstrate that the use of catalytically impaired and unregulated CDPKs with the yeast two-hybrid system can accelerate the discovery of CDPK substrates. The deduced CSP1 amino acid sequence indicated that it is a novel member of a class of pseudo-response regulator-like proteins that have a highly conserved helix-loop-helix DNA binding domain and a C-terminal activation domain. McCDPK1 and CSP1 co-localized to nuclei of NaCl-stressed ice plants. Csp1 transcript accumulation was not regulated by NaCl or dehydration stress. Our results strongly suggest that McCDPK1 may regulate the function of CSP1 by reversible phosphorylation.
Collapse
|
102
|
Taybi T, Patil S, Chollet R, Cushman JC. A minimal serine/threonine protein kinase circadianly regulates phosphoenolpyruvate carboxylase activity in crassulacean acid metabolism-induced leaves of the common ice plant. PLANT PHYSIOLOGY 2000; 123:1471-82. [PMID: 10938363 PMCID: PMC59103 DOI: 10.1104/pp.123.4.1471] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2000] [Accepted: 04/22/2000] [Indexed: 05/17/2023]
Abstract
Plant phosphoenolpyruvate carboxylase (PEPc) activity and allosteric properties are regulated by PEPc kinase (PPcK) through reversible phosphorylation of a specific serine (Ser) residue near the N terminus. We report the molecular cloning of PPcK from the facultative Crassulacean acid metabolism (CAM) common ice plant (Mesembryanthemum crystallinum), using a protein-kinase-targeted differential display reverse transcriptase-polymerase chain reaction approach. M. crystallinum PPcK encodes a minimal, Ca(2+)-independent Ser/threonine protein kinase that is most closely related to calcium-dependent protein kinases, yet lacks both the calmodulin-like and auto-inhibitory domains typical of plant calcium-dependent protein kinase. In the common ice plant PPcK belongs to a small gene family containing two members. McPPcK transcript accumulation is controlled by a circadian oscillator in a light-dependent manner. McPPcK encodes a 31.8-kD polypeptide (279 amino acids), making it among the smallest protein kinases characterized to date. Initial biochemical analysis of the purified, recombinant McPPcK gene product documented that this protein kinase specifically phosphorylates PEPc from CAM and C(4) species at a single, N-terminal Ser (threonine) residue but fails to phosphorylate mutated forms of C(4) PEPc in which this specific site has been changed to tyrosine or aspartate. McPPcK activity was specific for PEPc, Ca(2+)-insensitive, and displayed an alkaline pH optimum. Furthermore, recombinant McPPcK was shown to reverse the sensitivity of PEPc activity to L-malate inhibition in CAM-leaf extracts prepared during the day, but not at night, documenting that PPcK contributes to the circadian regulation of photosynthetic carbon flux in CAM plants.
Collapse
|
103
|
Cushman JC, Wulan T, Kuscuoglu N, Spatz MD. Efficient plant regeneration of Mesembryanthemum crystallinum via somatic embryogenesis. PLANT CELL REPORTS 2000; 19:459-463. [PMID: 30754883 DOI: 10.1007/s002990050756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An efficient plant regeneration procedure has been established from hypocotyl explants of the common ice plant, Mesembryanthemum crystallinum L, a halophytic leaf succulent that exhibits a stress-induced switch from C3 photosynthesis to crassulacean acid metabolism (CAM). Somatic embryos were initiated and developed up to globular and heart stages in Murashige and Skoog (MS) media supplemented with 3% sucrose, 0.6% bacto-agar, 80 mM NaCl, 5 μM 2,4-D and 1 μM kinetin. High frequency regeneration occurred when somatic embryos were germinated on media that lacked 2,4-D. High cytokinin treatment suppressed normal growth of embryos and favored abnormal embryo proliferation. Without growth regulators, regenerated plants rooted on MS medium with 100% efficiency. Mature, regenerated plants were fertile and morphologically identical to seed-derived plants.
Collapse
|
104
|
Cushman JC, Bohnert HJ. Genomic approaches to plant stress tolerance. CURRENT OPINION IN PLANT BIOLOGY 2000; 3:117-24. [PMID: 10712956 DOI: 10.1016/s1369-5266(99)00052-7] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Past efforts to improve plant tolerance to drought, high salinity and low-temperature through breeding and genetic engineering have had limited success owing to the genetic complexity of stress responses. Progress is now anticipated through comparative genomics studies of an evolutionarily diverse set of model organisms, and through the use of techniques such as high-throughput analysis of expressed sequence tags, large-scale parallel analysis of gene expression, targeted or random mutagenesis, and gain-of-function or mutant complementation. The discovery of novel genes, determination of their expression patterns in response to abiotic stress, and an improved understanding of their roles in stress adaptation (obtained by the use of functional genomics) will provide the basis of effective engineering strategies leading to greater stress tolerance.
Collapse
|
105
|
Taybi T, Cushman JC. Signaling events leading to crassulacean acid metabolism induction in the common ice plant. PLANT PHYSIOLOGY 1999; 121:545-56. [PMID: 10517846 PMCID: PMC59417 DOI: 10.1104/pp.121.2.545] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/1999] [Accepted: 06/22/1999] [Indexed: 05/22/2023]
Abstract
A rapid, semiquantitative reverse transcriptase-polymerase chain reaction assay was developed to investigate signal transduction events involved in the induction of Crassulacean acid metabolism (CAM) in detached common ice plant (Mesembryanthemum crystallinum) leaves. Transcript abundance of Ppc1, a gene encoding the CAM-specific isoform of phosphoenolpyruvate carboxylase, increased rapidly in response to osmotic stress (dehydration and mannitol), ionic stress (NaCl), and exogenous abscisic acid treatment, but failed to accumulate in response to exogenous cytokinin or methyl jasmonate. Stress-induced accumulation of Ppc1, GapC1, and Mdh1 transcripts was inhibited by pretreating leaves with the calcium chelator ethyleneglycol-bis(aminoethyl ether)-N,N'-tetraacetic acid, suggesting that extracellular calcium participates in signaling events leading to CAM induction. Treatment of unstressed detached leaves with ionomycin, a Ca(2+) ionophore, and thapsigargin, a Ca(2+)-ATPase inhibitor, enhanced Ppc1 transcript accumulation, indicating that elevations in cytosolic [Ca(2+)] are likely to participate in signaling CAM induction. Inhibitors of Ca(2+)- or calmodulin-dependent protein kinases (N-[6-aminohexyl]-5-chloro-1-napthalenesulfonamide, Lavendustin C) and protein phosphatase 1 and 2A (okadaic acid) activity suppressed Ppc1 transcript accumulation in response to ionic and osmotic stresses, as well as abscisic acid treatment. These results suggest that both protein phosphorylation and dephosphorylation events participate in signaling during CAM induction. In contrast, pretreatment with cyclosporin A or ascomycin, inhibitors of protein phosphatase 2B activity, stimulated Ppc1 gene expression either directly or indirectly through promoting water loss.
Collapse
|
106
|
Abstract
▪ Abstract Crassulacean acid metabolism (CAM) is an adaptation of photosynthesis to limited availability of water or CO2. CAM is characterized by nocturnal CO2 fixation via the cytosolic enzyme PEP carboxylase (PEPC), formation of PEP by glycolysis, malic acid accumulation in the vacuole, daytime decarboxylation of malate and CO2 re-assimilation via ribulose-1,5-bisphosphate carboxylase (RUBISCO), and regeneration of storage carbohydrates from pyruvate and/or PEP by gluconeogenesis. Within this basic framework, the pathway exhibits an extraordinary range of metabolic plasticity governed by environmental, developmental, tissue-specific, hormonal, and circadian cues. Characterization of genes encoding key CAM enzymes has shown that a combination of transcriptional, posttranscriptional, translational, and posttranslational regulatory events govern the expression of the pathway. Recently, this information has improved our ability to dissect the regulatory and signaling events that mediate the expression and operation of the pathway. Molecular analysis and sequence information have also provided new ways of assessing the evolutionary origins of CAM. Genetic and physiological analysis of transgenic plants currently under development will improve our further understanding of the molecular genetics of CAM.
Collapse
|
107
|
Cruz-Ortega R, Cushman JC, Ownby JD. cDNA clones encoding 1,3-beta-glucanase and a fimbrin-like cytoskeletal protein are induced by Al toxicity in wheat roots. PLANT PHYSIOLOGY 1997; 114:1453-60. [PMID: 9276954 PMCID: PMC158438 DOI: 10.1104/pp.114.4.1453] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A cDNA library made from mRNA of Al-treated roots of an Al-sensitive wheat (Triticum aestivum cv Victory) cultivar was screened with a degenerate oligonucleotide probe derived from the partial amino acid sequence of the Al-induced protein TAI-18. Of seven clones that initially hybridized with the probe, one encoded a novel 1,3-beta-glucanase having a calculated molecular weight of 46.3 and an isoelectric point of 6.0. Like the A6 1,3-beta-glucanase gene products from Brassica napus and Arabidopsis thaliana, the predicted wheat protein had a C-terminal extension with three potential glycosylation sites. Northern analysis revealed that wheat 1,3-beta-glucanase mRNA was up-regulated in Al-intoxicated roots, with highest expression after 12 h. The antibody to A6 1,3-beta-glucanase from B. napus cross-reacted with a 56-kD protein that was induced after 24 h. A second partial cDNA clone showed similarity to genes encoding cytoskeletal fimbrin-like (actin-bundling) proteins. Although well studied in animals and fungi, fimbrins have not previously been described in plants. Fimbrin-like transcripts were up-regulated after 24 h of Al treatment in the Al-sensitive wheat cv Victory. In the Al-tolerant cv Atlas 66, fimbrin-like mRNA was up-regulated within 12 h by Al concentrations that did not inhibit root growth. Cellular stress associated with Al toxicity therefore causes up-regulation of a defense-related gene and a gene involved in the maintenance of cytoskeletal function.
Collapse
|
108
|
Forsthoefel NR, Vernon DM, Cushman JC. A salinity-induced gene from the halophyte M. crystallinum encodes a glycolytic enzyme, cofactor-independent phosphoglyceromutase. PLANT MOLECULAR BIOLOGY 1995; 29:213-26. [PMID: 7579174 DOI: 10.1007/bf00043647] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the facultative halophyte Mesembryanthemum crystallinum (ice plant), salinity stress triggers significant changes in gene expression, including increased expression of mRNAs encoding enzymes involved with osmotic adaptation to water stress and the crassulacean acid metabolism (CAM) photosynthetic pathway. To investigate adaptive stress responses in the ice plant at the molecular level, we generated a subtracted cDNA library from stressed plants and identified mRNAs that increase in expression upon salt stress. One full-length cDNA clone was found to encode cofactor-independent phosphoglyceromutase (PGM), an enzyme involved in glycolysis and gluconeogenesis. Pgm1 expression increased in leaves of plants exposed to either saline or drought conditions, whereas levels of the mRNA remained unchanged in roots of hydroponically grown plants. Pgm1 mRNA was also induced in response to treatment with either abscisic acid or cytokinin. Transcription run-on experiments confirmed that Pgm1 mRNA accumulation in leaves was due primarily to increased transcription rates. Immunoblot analysis indicated that Pgm1 mRNA accumulation was accompanied by a modest but reproductible increase in the level of PGM protein. The isolation of a salinity-induced gene encoding a basic enzyme of glycolysis and gluconeogenesis indicates that adaptation to salt stress in the ice plant involves adjustments in fundamental pathways of carbon metabolism and that these adjustments are controlled at the level of gene expression. We propose that the leaf-specific expression of Pgm1 contributes to the maintenance of efficient carbon flux through glycolysis/gluconeogenesis in conjunction with the stress-induced shift to CAM photosynthesis.
Collapse
|
109
|
Forsthoefel NR, Cushman MA, Cushman JC. Posttranscriptional and posttranslational control of enolase expression in the facultative Crassulacean acid metabolism plant Mesembryanthemum Crystallinum L. PLANT PHYSIOLOGY 1995; 108:1185-95. [PMID: 7630941 PMCID: PMC157472 DOI: 10.1104/pp.108.3.1185] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
During the induction of Crassulacean acid and metabolism by environmental stresses in the common ice plant (Mesembryanthemum crystallinum L.), enzyme activities involved in glycolysis and gluconeogenesis, including enolase (2-phospho-D-glycerate hydrolase), increase significantly. In this study, we describe two nearly identical cDNA clones (Pgh1a and Pgh1b) encoding enolase from the common ice plant. This cytoplasmically localized enzyme is encoded by a gene family of at least two members. The polypeptides encoded by these cDNAs share a high degree of amino acid sequence identity (86.7-88.3%) with other higher plant enolases. Enolase activity increased more than 4-fold in leaves during salt stress. This increase was accompanied by a dramatic increase in Pgh1 transcription rate and the accumulation of enolase transcripts in leaves. Pgh1 transcript levels also increased in leaves in response to low temperature, drought, and anaerobic stress conditions and upon treatment of unstressed plants with the plant growth regulators abscisic acid and 6-benzylaminopurine. In roots, enolase transcripts increased in abundance in response to salt, low and high temperature, and anaerobic stresses. Surprisingly, we observed no increase in enolase protein levels, despite the increased levels of mRNA and enzyme activity during salt stress. The stress-induced increase in enolase activity is therefore due to posttranslational regulation of steady-state enzyme pools. Our results demonstrate that the stress-induced shift to Crassulacean acid metabolism in the ice plant involves complex regulatory control mechanisms that operate at the transcriptional, posttranscriptional, and postranslational levels.
Collapse
|
110
|
Schaeffer HJ, Forstheoefel NR, Cushman JC. Identification of enhancer and silencer regions involved in salt-responsive expression of Crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. PLANT MOLECULAR BIOLOGY 1995; 28:205-18. [PMID: 7599307 DOI: 10.1007/bf00020241] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In response to salinity or drought stress, the facultative halophyte Mesembryanthemum crystallinum will switch from C3 photosynthesis to Crassulacean acid metabolism (CAM). During this switch, the transcription rates of many genes encoding glycolytic, gluconeoagenic, and malate metabolism enzymes are increased. In particular, transcription of the Ppc1 and Gap1 genes encoding a CAM-specific isozyme of phosphoenolpyruvate carboxylase and NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, respectively, is increased by salinity stress. To investigate the molecular basis of salt-induced gene regulation, we examined the Ppc1 and Gap1 promoters for cis-elements and trans-acting factors that may participate in their expression. Ppc1 or Gap1 promoter-beta-glucuronidase chimeric gene constructs containing various deletions were introduced into intact, detached M. crystallinum leaves by microprojectile bombardmen. The Ppc1 5'-flanking region contains several salt-responsive enhancer regions and one silencer region reflecting the complex regulation patterns exhibited by this promoter in vivo. A region localized between nucleotides -977 and -487 relative to the transcriptional start site appears to regulate the magnitude of salt-inducibility. In contrast, the Gap1 promoter contains a single region from -735 to -549 that confers salt-responsive gene expression. Alignment of these 5'-flanking regions reveals several common sequence motifs that resemble consensus binding sites for the Myb class of transcription factors. Electrophoretic gel mobility shift assays indicate that both the -877 to -679 region of Ppc1 and the -735 to -549 region of Gap1 form a DNA-protein complex unique to nuclear extracts from salt-stressed plants. The appearance of this DNA-protein complex upon salt stress suggests that it may participate in salt-induced transcriptional activation of Ppc1 and Gap1.
Collapse
|
111
|
|
112
|
Maitra N, Cushman JC. Isolation and characterization of a drought-induced soybean cDNA encoding a D95 family late-embryogenesis-abundant protein. PLANT PHYSIOLOGY 1994; 106:805-6. [PMID: 7991700 PMCID: PMC159598 DOI: 10.1104/pp.106.2.805] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|
113
|
Forsthoefel NR, Cushman JC. Characterization and expression of photosystem II genes (psbE, psbF, and psbL) from the facultative crassulacean acid metabolism plant Mesembryanthemum crystallinum. PLANT PHYSIOLOGY 1994; 105:761-2. [PMID: 8066140 PMCID: PMC159423 DOI: 10.1104/pp.105.2.761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|
114
|
Cushman JC, Meiners MS, Bohnert HJ. Expression of a phosphoenolpyruvate carboxylase promoter from Mesembryanthemum crystallinum is not salt-inducible in mature transgenic tobacco. PLANT MOLECULAR BIOLOGY 1993; 21:561-6. [PMID: 8443349 DOI: 10.1007/bf00028814] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The 5' flanking region of a salt-stress-inducible, CAM-specific phosphoenolpyruvate carboxylase (PEPC) gene from the facultative halophyte Mesembryanthemum crystallinum, was fused to the beta-glucuronidase (GUS) reporter gene and introduced into Nicotiana tabacum SR1. The Ppc1 promoter displayed high levels of expression in transgenic tobacco quantitatively and qualitatively similar to a full-length 35S CaMV-GUS construct. Histochemical assays revealed that the full-length Ppc1-GUS fusions expressed GUS activity in all tissues except in root tips. While tobacco is capable of utilizing the Ppc1 cis-acting regulatory regions from M. crystallinum to yield high levels of constitutive expression, this glycophyte fails to direct a stress-inducible pattern of gene expression typical of this promoter in its native, facultative halophytic host.
Collapse
|
115
|
Cushman JC. Molecular cloning and expression of chloroplast NADP-malate dehydrogenase during Crassulacean acid metabolism induction by salt stress. PHOTOSYNTHESIS RESEARCH 1993; 35:15-27. [PMID: 24318617 DOI: 10.1007/bf02185408] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/1992] [Accepted: 06/22/1992] [Indexed: 05/28/2023]
Abstract
A full-length cDNA clone for NADP(+)-dependent malate dehydrogenase (NADP-MDH; EC 1.1.1.82) from the facultative CAM plant,Mesembryanthemum crystallinum has been isolated and characterized. NADP-MDH is responsible for the reduction of oxaloacetate to malate in the chloroplasts of higher plants. The cDNA clone is 1747 bp in size and contains a single open reading frame encoding a 441 amino acid long precursor polypeptide with a predicted molecular weight of 47 949. The predicted, mature NADP-MDH polypeptide sequence fromM. crystallinum shares 82.7% to 84% amino acid identity with other known higher plant sequences. Genomic Southern blot analysis ofM. crystallinum DNA indicates that MDH is encoded by a small gene family. Steady-state transcript levels for chloroplast NADP-MDH decrease transiently in the leaves after salt stress and then increase to levels greater than two-fold higher than in unstressed plants. Transcript levels in roots are extremely low and are unaffected by salt-stress treatment. In vitro transcription run-on experiments using isolated nuclei from leaf tissue confirm that the accumulation of NADP-MDH transcripts is, at least in part, the result of increased transcription of this gene during salt stress. The salt-stress-induced expression pattern of this enzyme suggests that it may participate in the CO2 fixation pathway during CAM.
Collapse
|
116
|
Cushman JC. Characterization and expression of a NADP-malic enzyme cDNA induced by salt stress from the facultative crassulacean acid metabolism plant, Mesembryanthemum crystallinum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 208:259-66. [PMID: 1521524 DOI: 10.1111/j.1432-1033.1992.tb17181.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The facultative halophyte and crassulacean acid-metabolism plant, Mesembryanthemum crystallium shifts from C3 photosynthesis to crassulacean acid metabolism when exposed to high-salt or drought conditions. To study the molecular basis of this metabolic transition, the expression of NADP(+)-dependent malic enzyme (NADP-ME), which catalyzes the decarboxylation of malate to release pyruvate and CO2, has been investigated. The complete nucleotide sequence of a full-length cDNA clone was determined and found to contain a single open reading frame encoding a 585-amino-acid polypeptide of 64284 Da. The ice plant (M. crystallinum) NADP-ME shares amino acid identities in the range 72.5-79.0% when compared to other higher-plant enzymes and is more closely related to C3 rather than C4 forms of the enzyme. Genomic Southern-blot analysis of ice-plant DNA indicates that NADP-ME is encoded by a small gene family. Steady-state transcript levels increase 8-10-fold in response to salt stress in the leaves. Transcript levels in roots are extremely low and are unaffected by salt-stress treatment. Nuclear run-on experiments, using isolated nuclei from leaf tissue, confirm that the accumulation of NADP-ME transcripts is, in part, the result of increased transcription of this gene during salt stress.
Collapse
|
117
|
Meiners MS, Thomas JC, Bohnert HJ, Cushman JC. Regeneration of multiple shoots and plants from Mesembryanthemum crystallinum. PLANT CELL REPORTS 1991; 9:563-566. [PMID: 24220712 DOI: 10.1007/bf00232332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/1990] [Revised: 11/26/1990] [Indexed: 06/02/2023]
Abstract
Mesembryanthemum crystallinum plants have been regenerated via organogenesis from hypocotyl, cotyledonary node, and leaf expiants with varying frequencies. The highest regeneration frequencies were obtained from either hypocotyls (23-34%) or cotyledonary nodes (21-41%). Leaf expiants yielded very poor regeneration frequencies (0-11%). Expiants were placed on Murashige and Skoog (MS) media supplemented with 3% sucrose, 0.8% bacto-agar and either, 10.8×10(-6)M NAA and 8.8×10(-6)M BA (MSmsh), 1×10(-5)M BA and 1×10(-6)M IAA, (MS4) or 1×10(-6)M BA and 1×10(-6)M IAA (MS5). Shoot formation frequencies were greater on MS4 and MS5 and lower on MSmsh, however, overall differences of regeneration frequency among media tested were not statistically significant. Regenerated plantlets were rooted on MS medium without growth regulators. Mature, regenerated plants were fertile and exhibited DNA content and ploidy profiles that were identical to wild type plants.
Collapse
|
118
|
Cushman JC, Michalowski CB, Bohnert HJ. Developmental control of crassulacean Acid metabolism inducibility by salt stress in the common ice plant. PLANT PHYSIOLOGY 1990; 94:1137-42. [PMID: 16667808 PMCID: PMC1077353 DOI: 10.1104/pp.94.3.1137] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ice plant (Mesembryanthemum crystallinum) is a facultative halophyte that responds to water stress in the form of drought or high salinity by switching from C(3) photosynthesis to Crassulacean acid metabolism (CAM), a physiological adaptation that increases water conservation. Although CAM is clearly environmentally controlled, and reversible upon removal of water stress, the competence to switch is developmentally determined. We have demonstrated this by measuring three parameters in the expression of a gene encoding a stress-specific isoform of a key enzyme of CAM, phosphoenolpyruvate carboxylase (PEPCase, Ppc1): (a) protein accumulation; (b) steady-state amounts of mRNA; and (3) transcriptional activity in isolated nuclei. Young plants (3 weeks of age) show little induction of PEPCase protein, mRNA, or transcription when stressed. In contrast, salt stress elicits a strong induction at all three levels of expression at 6 weeks of age. By 9 weeks of age, plants have already accumulated PEPCase protein and mRNA without being stressed. More importantly, transcriptional activation of Ppc1 by salt stress in 9-week-old plants is no longer observed despite an increase of both Ppc1 mRNA and protein. From these results we suggest that a developmental program exists that regulates PEPCase transcription and mRNA stability. This program appears to be synchronized with the climatic conditions in the plant's native environment.
Collapse
|
119
|
Cushman JC, Bohnert HJ. Nucleotide sequence of the gene encoding a CAM specific isoform of phosphoenolpyruvate carboxylase from Mesembryanthemum crystallinum. Nucleic Acids Res 1989; 17:6745-6. [PMID: 2780306 PMCID: PMC318384 DOI: 10.1093/nar/17.16.6745] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
120
|
Cushman JC, Bohnert HJ. Nucleotide sequence of the Ppc2 gene encoding a housekeeping isoform of phosphoenolpyruvate carboxylase from Mesembryanthemum crystallinum. Nucleic Acids Res 1989; 17:6743-4. [PMID: 2780305 PMCID: PMC318383 DOI: 10.1093/nar/17.16.6743] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
121
|
Cushman JC, Meyer G, Michalowski CB, Schmitt JM, Bohnert HJ. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. THE PLANT CELL 1989; 1:715-25. [PMID: 2535520 PMCID: PMC159808 DOI: 10.1105/tpc.1.7.715] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The common ice plant is a facultative halophyte in which Crassulacean acid metabolism, a metabolic adaptation to arid environments, can be induced by irrigating plants with high levels of NaCl or by drought. This stress-induced metabolic transition is accompanied by up to a 50-fold increase in the activity of phosphoenolpyruvate carboxylase (PEPCase). To analyze the molecular basis of this plant response to water stress, we have isolated and characterized two members of the PEPCase gene family from the common ice plant. The PEPCase isogenes, designated Ppc1 and Ppc2, have conserved intron-exon organizations, are 76.4% identical at the nucleotide sequence level within exons, and encode predicted polypeptides with 83% amino acid identity. Steady-state levels of mRNAs from the two genes differ dramatically when plants are salt-stressed. Transcripts of Ppc1 increase about 30-fold in leaves within 5 days of salt stress. In contrast, steady-state levels of Ppc2 transcripts decrease slightly in leaf tissue over the same stress period. Steady-state levels of transcripts of both genes decrease in roots over 5 days of salt stress. We have used in vitro transcription assays with nuclei isolated from leaves to demonstrate that the increased expression of Ppc1 caused by water stress occurs in part at the transcriptional level.
Collapse
|
122
|
Cushman JC, Meyer G, Michalowski CB, Schmitt JM, Bohnert HJ. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. THE PLANT CELL 1989; 1:715-725. [PMID: 2535520 DOI: 10.2307/3868962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The common ice plant is a facultative halophyte in which Crassulacean acid metabolism, a metabolic adaptation to arid environments, can be induced by irrigating plants with high levels of NaCl or by drought. This stress-induced metabolic transition is accompanied by up to a 50-fold increase in the activity of phosphoenolpyruvate carboxylase (PEPCase). To analyze the molecular basis of this plant response to water stress, we have isolated and characterized two members of the PEPCase gene family from the common ice plant. The PEPCase isogenes, designated Ppc1 and Ppc2, have conserved intron-exon organizations, are 76.4% identical at the nucleotide sequence level within exons, and encode predicted polypeptides with 83% amino acid identity. Steady-state levels of mRNAs from the two genes differ dramatically when plants are salt-stressed. Transcripts of Ppc1 increase about 30-fold in leaves within 5 days of salt stress. In contrast, steady-state levels of Ppc2 transcripts decrease slightly in leaf tissue over the same stress period. Steady-state levels of transcripts of both genes decrease in roots over 5 days of salt stress. We have used in vitro transcription assays with nuclei isolated from leaves to demonstrate that the increased expression of Ppc1 caused by water stress occurs in part at the transcriptional level.
Collapse
|
123
|
Rickers J, Cushman JC, Michalowski CB, Schmitt JM, Bohnert HJ. Expression of the CAM-form of phospho(enol)pyruvate carboxylase and nucleotide sequence of a full length cDNA from Mesembryanthemum crystallinum. MOLECULAR & GENERAL GENETICS : MGG 1989; 215:447-54. [PMID: 2710107 DOI: 10.1007/bf00427042] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have determined the complete nucleotide sequence of a full length cDNA encoding the Crassulacean acid metabolism (CAM) isogene of phospho(enol)pyruvate carboxylase (PEPCase). The cDNA clone, 3348 bp in length, was obtained from mRNA isolated from Mesembryanthemum crystallinum (common ice plant) which had undergone salt stress and subsequent induction of CAM. The long open reading frame encodes PEPCase (EC 4.1.1.31) with a predicted molecular mass of 110533 daltons. The deduced amino acid sequence of the ice plant PEPCase is most similar to that from maize having an amino acid identity of 74.9%. Sequence identity in corresponding regions of the PEPCase proteins from Escherichia coli and the cyanobacterium Anacystis nidulans are 41.4% and 33.5%, respectively. A compilation of the four amino acid sequences permitted the identification of phylogenetically conserved regions within the proteins which may play a role in the function of this important enzyme in plant metabolism. Gene specific probes from 3' coding and noncoding regions of the cDNA clone used to probe genomic Southern blots established that this PEPCase gene is present in one copy in the nuclear genome of M. crystallinum. Transcripts arising from this gene increase dramatically when M. crystallinum is irrigated with 0.5 M NaCl, a stress which induces this plant to switch the primary fixation of CO2 from C3 (Calvin cycle) to CAM mode. The salt-induced mRNA encodes a PEPCase isoform which is undetectable in plants in the C3 mode as demonstrated by Northern hybridization.
Collapse
|
124
|
Christopher DA, Cushman JC, Price CA, Hallick RB. Organization of ribosomal protein genes rpl23, rpl2, rps19, rpl22 and rps3 on the Euglena gracilis chloroplast genome. Curr Genet 1988; 14:275-85. [PMID: 3143485 DOI: 10.1007/bf00376748] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The nucleotide sequence (4,814 bp) was determined for a cluster of five ribosomal protein genes and their DNA flanking regions from the chloroplast genome of Euglena gracilis. The genes are organized as rpl23-150 bp spacer-rpl2-59 bp spacer-rps19-110 bp spacer-rpl22-630 bp spacer-rps3. The genes are all of the same polarity and reside 148 bp downstream from an operon for two genes of photosystem I and four genes of photosystem II. The Euglena ribosomal protein gene cluster resembles the S-10 ribosomal protein operon of Escherichia coli in gene organization and follows the exact linear order of the analogous genes in the tobacco and liverwort chloroplast genomes. The number and positions of introns in the Euglena ribosomal protein loci are different from their higher plant counterparts. The Euglena rpl23, rps19 and rps3 loci are unique in that they contain three, two and two introns, respectively, whereas rpl2 and rpl22 lack introns. The introns found in rpl23 (106, 99 and 103 bp), rps19 (103 and 97 bp) and rps3 intron 2 (102 bp) appear to represent either a new class of chloroplast intron found only in constitutively expressed genes, or possibly a degenerate version of Euglena chloroplast group II introns. They are deficient in bases C and G and extremely rich in base T, with a base composition of 53-76% T, 25-34% A, 3-10% G and 2-7% C in the mRNA-like strand. These six introns show minimal resemblance to group II chloroplast introns. They have a degenerate version of the group II intron conserved boundary sequences at their 5' and 3' ends. No conserved internal secondary structures are apparent. By contrast, rps3 intron 1 (409 bp) has a potential group II core secondary structure. The five genes, rpl23 (101 codons), rpl2 (278 codons), rps19 (95 codons), rpl22 (114 codons) and rps3 (220 codons) encode lysine-rich polypeptides with predicted molecular weights of 12,152, 31,029, 10,880, 12,819, and 25,238, respectively. The Euglena gene products are 18-50%, and 29-58% identical in primary structure to their E. coli and higher plant counterparts, respectively. Oligonucleotide sequences corresponding to Euglena chloroplast ribosome binding sites are not apparent in the intergenic regions. Inverted repeat sequences are found in the upstream flanking region of rpl23 and downstream from rps3.
Collapse
|
125
|
Cushman JC, Christopher DA, Little MC, Hallick RB, Price CA. Organization of the psbE, psbF, orf38, and orf42 gene loci on the Euglena gracilis chloroplast genome. Curr Genet 1988; 13:173-80. [PMID: 3131027 DOI: 10.1007/bf00365652] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The genes for cytochrome b559, designated psbE and psbF, and two highly conserved open reading frames of 38 and 42 codons have been located and characterized on the chloroplast genome of Euglena gracilis. The organization of the genes is psbE - 8 bp spacer - psbF - 110 bp spacer - orf38 - 87 bp spacer - orf42. All genes are of the same polarity. The psbE gene contains two introns of 350 and 326 bp. The psbF gene contains a single large intron of 1,042 bp. The orf38 and orf42 loci lack introns. The introns are extremely AT rich with a pronounced base composition bias of T greater than A greater than G greater than C in the mRNA-like strand and group II-like boundary sequences at their 3' and 5' ends having the consensus 5'-GTGTG .. INTRON .. TTAATTTNAT-3'. The psbE gene consists of 82 codons and encodes a polypeptide with a predicted molecular weight of 9,212. The psbF gene consists of 42 codons, which specify a polypeptide with a predicted molecular weight of 4,785. The highly conserved open reading frames of 38 and 42 codons code for polypeptides with predicted molecular weights of 4,405 and 4,426, respectively. The gene products of psbE, psbF, orf38 and orf42 are, respectively, 69.5%, 70% and 61.5% identical to those found in higher plants. The predicted secondary structure of the proteins from hydropathy plots is consistent with each containing a single membrane-spanning domain of at least 20 amino acids. Each of the genes is preceded by sequences which may serve as ribosome binding sites. All four genes are transcribed.
Collapse
|