101
|
Fairlie WD, Perugini MA, Kvansakul M, Chen L, Huang DCS, Colman PM. CED-4 forms a 2 : 2 heterotetrameric complex with CED-9 until specifically displaced by EGL-1 or CED-13. Cell Death Differ 2005; 13:426-34. [PMID: 16167070 DOI: 10.1038/sj.cdd.4401762] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The pathway to cell death in Caenorhabditis elegans is well established. In cells undergoing apoptosis, the Bcl-2 homology domain 3 (BH3)-only protein EGL-1 binds to CED-9 at the mitochondrial membrane to cause the release of CED-4, which oligomerises and facilitates the activation of the caspase CED-3. However, despite many studies, the biophysical features of the CED-4/CED-9 complex have not been fully characterised. Here, we report the purification of a soluble and stable 2 : 2 heterotetrameric complex formed by recombinant CED-4 and CED-9 coexpressed in bacteria. Consistent with previous studies, synthetic peptides corresponding to the BH3 domains of worm BH3-only proteins (EGL-1, CED-13) dissociate CED-4 from CED-9, but not from the gain-of-function CED-9 (G169E) mutant. Surprisingly, the ability of worm BH3 domains to dissociate CED-4 was specific since mammalian BH3-only proteins could not do so.
Collapse
|
102
|
Clayton AHA, Perugini MA, Weinstock J, Rothacker J, Watson KG, Burgess AW, Nice EC. Fluorescence and analytical ultracentrifugation analyses of the interaction of the tyrosine kinase inhibitor, tyrphostin AG1478-mesylate, with albumin. Anal Biochem 2005; 342:292-9. [PMID: 15913535 DOI: 10.1016/j.ab.2005.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 03/24/2005] [Accepted: 04/04/2005] [Indexed: 11/17/2022]
Abstract
Quantifying the interaction of drugs with carrier proteins in plasma is of importance for understanding effective drug delivery to disease-affected tissues. In this study, we employed analytical ultracentrifugation and steady-state fluorescence spectroscopy to characterize the interaction of a potential new anticancer drug, AG 1478-mesylate, with plasma proteins in a suspension of normal serum albumin (NSA). We found that mesylate salt of AG 1478, an epidermal growth factor receptor kinase inhibitor, sediments in 0.1%(w/v) NSA as a complex with a sedimentation coefficient of 3.8 S. This is consistent with the size of human serum albumin. This interaction was quantitated by meniscus depletion sedimentation and fluorescence titration analyses. AG 1478-mesylate binds to albumin with an apparent single-site affinity (K(d)) of 120 microM. In this article, we show that the cyclodextrin carrier molecule, Captisol, increases the apparent affinity of the hydrophobic AG 1478-mesylate for albumin (K(d)=4-6 microM), and we propose that the AG 1478-mesylate-Captisol (1:1) complex binds to albumin with at least 10-fold higher affinity than does AG 1478-mesylate ligand alone. A fluorenylmethoxycarbonyl-sulfonic acid (FMS) derivative of the 6-aminoquinazoline analog of AG 1478, which was designed to have improved serum-binding properties, was shown by fluorescence analysis to bind with approximately 100-fold greater affinity than the parent compound. This has significant implications in the effective delivery of therapeutic agents in vivo.
Collapse
|
103
|
Perugini MA, Griffin MDW, Smith BJ, Webb LE, Davis AJ, Handman E, Gerrard JA. Insight into the self-association of key enzymes from pathogenic species. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 34:469-76. [PMID: 15981001 DOI: 10.1007/s00249-005-0491-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
Self-association of protein monomers to higher-order oligomers plays an important role in a plethora of biological phenomena. The classical biophysical technique of analytical ultracentrifugation is a key method used to measure protein oligomerisation. Recent advances in sedimentation data analysis have enabled the effects of diffusion to be deconvoluted from sample heterogeneity, permitting the direct identification of oligomeric species in self-associating systems. Two such systems are described and reviewed in this study. First, we examine the enzyme dihydrodipicolinate synthase (DHDPS), which crystallises as a tetramer. Wild-type DHDPS plays a critical role in lysine biosynthesis in microbes and is therefore an important antibiotic target. To confirm the state of association of DHDPS in solution, we employed sedimentation velocity and sedimentation equilibrium studies in an analytical ultracentrifuge to show that DHDPS exists in a slow dimer-tetramer equilibrium with a dissociation constant of 76 nM. Second, we review works describing the hexamerisation of GDP-mannose pyrophosphorylase (GDP-MP), an enzyme that plays a critical role in mannose metabolism in Leishmania species. Although the structure of the GDP-MP hexamer has not yet been determined, we describe a three-dimensional model of the hexamer based largely on homology with the uridyltransferase enzyme, Glmu. GDP-MP is a novel drug target for the treatment of leishmaniasis, a devastating parasitic disease that infects more than 12 million people worldwide. Given that both GDP-MP and DHDPS are only active in their oligomeric states, we propose that inhibition of the self-association of critical enzymes in disease is an emerging paradigm for therapeutic intervention.
Collapse
|
104
|
Wilmann PG, Petersen J, Pettikiriarachchi A, Buckle AM, Smith SC, Olsen S, Perugini MA, Devenish RJ, Prescott M, Rossjohn J. The 2.1A crystal structure of the far-red fluorescent protein HcRed: inherent conformational flexibility of the chromophore. J Mol Biol 2005; 349:223-37. [PMID: 15876379 DOI: 10.1016/j.jmb.2005.03.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 03/01/2005] [Accepted: 03/05/2005] [Indexed: 11/24/2022]
Abstract
We have determined the crystal structure of HcRed, a far-red fluorescent protein isolated from Heteractis crispa, to 2.1A resolution. HcRed was observed to form a dimer, in contrast to the monomeric form of green fluorescent protein (GFP) or the tetrameric forms of the GFP-like proteins (eqFP611, Rtms5 and DsRed). Unlike the well-defined chromophore conformation observed in GFP and the GFP-like proteins, the HcRed chromophore was observed to be considerably mobile. Within the HcRed structure, the cyclic tripeptide chromophore, Glu(64)-Tyr(65)-Gly(66), was observed to adopt both a cis coplanar and a trans non-coplanar conformation. As a result of these two conformations, the hydroxyphenyl moiety of the chromophore makes distinct interactions within the interior of the beta-can. These data together with a quantum chemical model of the chromophore, suggest the cis coplanar conformation to be consistent with the fluorescent properties of HcRed, and the trans non-coplanar conformation to be consistent with non-fluorescent properties of hcCP, the chromoprotein parent of HcRed. Moreover, within the GFP-like family, it appears that where conformational freedom is permissible then flexibility in the chromophore conformation is possible.
Collapse
|
105
|
Beddoe T, Bushell SR, Perugini MA, Lithgow T, Mulhern TD, Bottomley SP, Rossjohn J. A Biophysical Analysis of the Tetratricopeptide Repeat-rich Mitochondrial Import Receptor, Tom70, Reveals an Elongated Monomer That Is Inherently Flexible, Unstable, and Unfolds via a Multistate Pathway. J Biol Chem 2004; 279:46448-54. [PMID: 15316022 DOI: 10.1074/jbc.m405639200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins destined for all submitochondrial compartments are translocated across the outer mitochondrial membrane by the TOM (translocase of the outer membrane) complex, which consists of a number of specialized receptor subunits that bind mitochondrial precursor proteins for delivery into the translocation channel. One receptor, Tom70, binds large, hydrophobic mitochondrial precursors. The current model of Tom70-mediated import involves multiple dimers of the receptor recognizing a single molecule of substrate. Here we show via a battery of biophysical and spectroscopic techniques that the cytosolic domain of Tom70 is an elongated monomer. Thermal and urea-induced denaturation revealed that the receptor, which unfolds via a multistate pathway, is a relatively unstable molecule undergoing major conformational change at physiological temperatures. The data suggest that the malleability of the monomeric Tom70 receptor is an important factor in mitochondrial import.
Collapse
|
106
|
Sharp RJ, Perugini MA, Marcovina SM, McCormick SPA. Structural features of apolipoprotein B synthetic peptides that inhibit lipoprotein(a) assembly. J Lipid Res 2004; 45:2227-34. [PMID: 15375179 DOI: 10.1194/jlr.m400163-jlr200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipoprotein(a) [Lp(a)] is assembled via an initial noncovalent interaction between apolipoprotein B100 (apoB) and apolipoprotein(a) [apo(a)] that facilitates the formation of a disulfide bond between the two proteins. We previously reported that a lysine-rich, alpha-helical peptide spanning human apoB amino acids 4372-4392 was an effective inhibitor of Lp(a) assembly in vitro. To identify the important structural features required for inhibitory action, new variants of the apoB4372-4392 peptide were investigated. Introduction of a central leucine to proline substitution abolished the alpha-helical structure of the peptide and disrupted apo(a) binding and inhibition of Lp(a) formation. Substitution of hydrophobic residues in the apoB4372-4392 peptide disrupted apo(a) binding and inhibition of Lp(a) assembly without disrupting the alpha-helical structure. Substitution of all four lysine residues in the peptide with arginine decreased the IC50 from 40 microM to 5 microM . Complexing of the arginine-substituted peptide to dimyristoylphosphatidylcholine improved its activity further, yielding an IC50 of 1 microM. We conclude that the alpha-helical structure of apoB4372-4392, in combination with hydrophobic residues at the lipid/water interface, is crucial for its interaction with apo(a). Furthermore, the interaction of apoB4372-4392 with apo(a) is not lysine specific, because substitutions with arginine result in a more effective inhibitor.
Collapse
|
107
|
MacRaild CA, Stewart CR, Mok YF, Gunzburg MJ, Perugini MA, Lawrence LJ, Tirtaatmadja V, Cooper-White JJ, Howlett GJ. Non-fibrillar Components of Amyloid Deposits Mediate the Self-association and Tangling of Amyloid Fibrils. J Biol Chem 2004; 279:21038-45. [PMID: 15031287 DOI: 10.1074/jbc.m314008200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid deposits are proteinaceous extra-cellular aggregates associated with a diverse range of disease states. These deposits are composed predominantly of amyloid fibrils, the unbranched, beta-sheet rich structures that result from the misfolding and subsequent aggregation of many proteins. In addition, amyloid deposits contain a number of non-fibrillar components that interact with amyloid fibrils and are incorporated into the deposits in their native folded state. The influence of a number of the non-fibrillar components in amyloid-related diseases is well established; however, the mechanisms underlying these effects are poorly understood. Here we describe the effect of two of the most important non-fibrillar components, serum amyloid P component and apolipoprotein E, upon the solution behavior of amyloid fibrils in an in vitro model system. Using analytical ultracentrifugation, electron microscopy, and rheological measurements, we demonstrate that these non-fibrillar components cause soluble fibrils to condense into localized fibrillar aggregates with a greatly enhanced local density of fibril entanglements. These results suggest a possible mechanism for the observed role of non-fibrillar components as mediators of amyloid deposition and deposit stability.
Collapse
|
108
|
Davis AJ, Perugini MA, Smith BJ, Stewart JD, Ilg T, Hodder AN, Handman E. Properties of GDP-mannose Pyrophosphorylase, a Critical Enzyme and Drug Target in Leishmania mexicana. J Biol Chem 2004; 279:12462-8. [PMID: 14718535 DOI: 10.1074/jbc.m312365200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leishmania parasites synthesize a range of mannose-containing glycoconjugates thought to be essential for virulence in the mammalian host and sandfly vector. A prerequisite for the synthesis of these molecules is the availability of the activated mannose donor, GDP-Man, the product of the catalysis of mannose-1-phosphate and GTP by GDP-mannose pyrophosphorylase (GDP-MP). In contrast to the lethal phenotype in fungi, the deletion of the gene in Leishmania mexicana did not affect parasite viability but led to a total loss of virulence, making GDP-MP an ideal target for anti-Leishmania drug development. We show by immunofluorescence and subcellular fractionation that GDP-MP is a cytoplasmic protein, and we describe a colorimetric activity assay suitable for the high throughput screening of small molecule inhibitors. We expressed recombinant GDP-MP as a fusion with maltose-binding protein and separated the enzyme from maltose-binding protein by thrombin cleavage, ion-exchange, and size exclusion chromatography. Size exclusion chromatography and analytical ultracentrifugation studies demonstrate that GDP-MP self-associates to form an enzymatically active and stable hexamer. However, sedimentation studies show that the GDP-MP hexamer dissociates to trimers and monomers in a time-dependent manner, at low protein concentrations, at low ionic strength, and at alkaline pH. Circular dichroism spectroscopy reveals that GDP-MP is comprised of mixed alpha/beta structure, similar to its closest related homologue, N-acetyl-glucoseamine-1-phosphate uridyltransferase (Glmu) from Streptococcus pneumoniae. Our studies provide insight into the structure of a novel target for the development of anti-Leishmania drugs.
Collapse
|
109
|
Clements CS, Reid HH, Beddoe T, Tynan FE, Perugini MA, Johns TG, Bernard CCA, Rossjohn J. The crystal structure of myelin oligodendrocyte glycoprotein, a key autoantigen in multiple sclerosis. Proc Natl Acad Sci U S A 2003; 100:11059-64. [PMID: 12960396 PMCID: PMC196926 DOI: 10.1073/pnas.1833158100] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2003] [Indexed: 11/18/2022] Open
Abstract
Myelin oligodendrocyte glycoprotein (MOG) is a key CNS-specific autoantigen for primary demyelination in multiple sclerosis. Although the disease-inducing role of MOG has been established, its precise function in the CNS remains obscure. To gain new insights into the physiological and immunopathological role of MOG, we determined the 1.8-A crystal structure of the MOG extracellular domain (MOGED). MOGED adopts a classical Ig (Ig variable domain) fold that was observed to form an antiparallel head-to-tail dimer. A dimeric form of native MOG was observed, and MOGED was also shown to dimerize in solution, consistent with the view of MOG acting as a homophilic adhesion receptor. The MOG35-55 peptide, a major encephalitogenic determinant recognized by both T cells and demyelinating autoantibodies, is partly occluded within the dimer interface. The structure of this key autoantigen suggests a relationship between the dimeric form of MOG within the myelin sheath and a breakdown of immunological tolerance to MOG that is observed in multiple sclerosis.
Collapse
|
110
|
Sharp RJ, Perugini MA, Marcovina SM, McCormick SPA. A synthetic peptide that inhibits lipoprotein(a) assembly. Arterioscler Thromb Vasc Biol 2003; 23:502-7. [PMID: 12615683 DOI: 10.1161/01.atv.0000055741.13940.15] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We previously reported that human apolipoprotein B100 (apoB) amino acids 4330-4397 were important for the initial noncovalent binding to apolipoprotein(a) [apo(a)] that facilitates lipoprotein(a) [Lp(a)] assembly. In this study, we aimed to further define the apoB sequences within the 4330-4397 region that were important for the noncovalent binding to apo(a). METHODS AND RESULTS Alignment of the human apoB4330-4397 sequence with mouse apoB, which also noncovalently binds apo(a), revealed stretches of similar sequence, including a lysine-rich sequence spanning apoB amino acids 4372-4392. Structural analysis of the apoB4372-4392 sequence using the WHEEL program predicted an amphipathic alpha-helix. Circular dichroism studies of a synthetic peptide spanning human apoB amino acids 4372-4392, both in the absence and presence of dimyristoylphosphatidylcholine, confirmed the alpha-helical nature of the sequence. We tested the ability of the apoB4372-4392 peptide to bind to apo(a) and found that the peptide bound to apo(a) with high affinity but not to Lp(a). The apoB4372-4392 peptide inhibited Lp(a) assembly in Lp(a) formation assays far more effectively than the lysine analogue, epsilon-amino-n-caproic acid (IC50=40 micromol/L versus 10 mmol/L, respectively). Incorporation of the apoB4372-4392 peptide onto dimyristoylphosphatidylcholine vesicles yielded an even more effective inhibitor (IC50=4 micromol/L). CONCLUSIONS Our study shows that the apoB4372-4392 sequence mediates the initial noncovalent binding to apo(a) and has demonstrated that the apoB4372-4392 peptide is a novel and effective inhibitor of Lp(a) assembly.
Collapse
|
111
|
Perugini MA, Schuck P, Howlett GJ. Differences in the binding capacity of human apolipoprotein E3 and E4 to size-fractionated lipid emulsions. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5939-49. [PMID: 12444983 DOI: 10.1046/j.1432-1033.2002.03319.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe sensitive new approaches for detecting and quantitating protein-lipid interactions using analytical ultracentrifugation and continuous size-distribution analysis [Schuck (2000) Biophys. J.78, 1606-1619]. The new methods were developed to investigate the binding of human apolipoprotein E (apoE) isoforms to size-fractionated lipid emulsions, and demonstrate that apoE3 binds preferentially to small lipid emulsions, whereas apoE4 exhibits a preference for large lipid particles. Although the apparent binding affinity for large emulsions is similar (Kd approximately 0.5 micro m), the maximum binding capacity for apoE4 is significantly higher than for apoE3 (3.0 and 1.8 amino acids per phospholipid, respectively). This indicates that apoE4 has a smaller binding footprint at saturation. We propose that apoE isoforms differentiate between lipid surfaces on the basis of size, and that these differences in lipid binding are due to a greater propensity of apoE4 to adopt a more compact closed conformation. Implications for the role of apoE4 in blood lipid transport and disease are discussed.
Collapse
|
112
|
Schuck P, Perugini MA, Gonzales NR, Howlett GJ, Schubert D. Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys J 2002; 82:1096-111. [PMID: 11806949 PMCID: PMC1301916 DOI: 10.1016/s0006-3495(02)75469-6] [Citation(s) in RCA: 577] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Strategies for the deconvolution of diffusion in the determination of size-distributions from sedimentation velocity experiments were examined and developed. On the basis of four different model systems, we studied the differential apparent sedimentation coefficient distributions by the time-derivative method, g(s*), and by least-squares direct boundary modeling, ls-g*(s), the integral sedimentation coefficient distribution by the van Holde-Weischet method, G(s), and the previously introduced differential distribution of Lamm equation solutions, c(s). It is shown that the least-squares approach ls-g*(s) can be extrapolated to infinite time by considering area divisions analogous to boundary divisions in the van Holde-Weischet method, thus allowing the transformation of interference optical data into an integral sedimentation coefficient distribution G(s). However, despite the model-free approach of G(s), for the systems considered, the direct boundary modeling with a distribution of Lamm equation solutions c(s) exhibited the highest resolution and sensitivity. The c(s) approach requires an estimate for the size-dependent diffusion coefficients D(s), which is usually incorporated in the form of a weight-average frictional ratio of all species, or in the form of prior knowledge of the molar mass of the main species. We studied the influence of the weight-average frictional ratio on the quality of the fit, and found that it is well-determined by the data. As a direct boundary model, the calculated c(s) distribution can be combined with a nonlinear regression to optimize distribution parameters, such as the exact meniscus position, and the weight-average frictional ratio. Although c(s) is computationally the most complex, it has the potential for the highest resolution and sensitivity of the methods described.
Collapse
|
113
|
Perugini MA, Schuck P, Howlett GJ. Self-association of human apolipoprotein E3 and E4 in the presence and absence of phospholipid. J Biol Chem 2000; 275:36758-65. [PMID: 10970893 DOI: 10.1074/jbc.m005565200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human apolipoprotein E (apoE) exists as three main isoforms, differing by single amino acid substitutions, with the apoE4 isoform strongly linked to the incidence of late onset Alzheimer's disease. We have expressed and purified apoE3 and apoE4 from Escherichia coli and compared their hydrodynamic properties by gel permeation liquid chromatography, capillary electrophoresis, circular dichroism, and sedimentation methods. Sedimentation velocity experiments, employing a new method for determining the size distribution of polydisperse macromolecules in solution (Schuck, P. (2000) Biophys. J. 78, 1606-1619), provide direct evidence for the heterogeneous solution structures of apoE3 and apoE4. In a lipid-free environment, apoE3 and apoE4 exist as a slow equilibrium mixture of monomer, tetramer, octamer, and a small proportion of higher oligomers. Both sedimentation velocity and equilibrium experiments indicate that apoE4 has a greater propensity to self-associate. We also demonstrate that apoE3 and apoE4 oligomers dissociate significantly in the presence of dihexanoylphosphatidylcholine micelles (20 mm) and to a lesser extent at submicellar concentrations (4 mm). The alpha-helical content for both isoforms was almost identical (50%) in the presence and absence of dihexanoylphosphatidylcholine. These results reveal that apoE oligomers undergo phospholipid-induced dissociation to folded monomers, suggesting the monomeric form prevails on the lipoprotein surface in vivo.
Collapse
|
114
|
MacPhee CE, Perugini MA, Sawyer WH, Howlett GJ. Trifluoroethanol induces the self-association of specific amphipathic peptides. FEBS Lett 1997; 416:265-8. [PMID: 9373166 DOI: 10.1016/s0014-5793(97)01224-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have examined the effect of trifluoroethanol (TFE) on the solution behaviour of three amphipathic peptides. One of the peptides, containing three heptad repeat units (Ac-YS-(AKEAAKE)3GAR-NH2), remained monomeric under conditions where TFE induced a two-state transition from a random coil to an alpha-helix. In contrast, the TFE-induced alpha-helical formation of two peptides derived from human apolipoproteins C-II and E was accompanied by the formation of discrete dimers and trimers, respectively. The apolipoprotein C-II peptide further aggregated to form beta-sheet at higher concentrations of TFE (50% v/v). The results suggest a class of peptides capable of discrete self-association in the presence of cosolvents which favour intramolecular hydrogen bonding.
Collapse
|
115
|
Panichi G, Nardone G, Di Mizio M, Perugini MA, Mari S, Zepponi E, Ranieri M. [Determination of the anti-O-streptolysin titer in a school population of the March district: use of the rapid method of Dean and Webb and evaluation of positivity]. QUADERNI SCLAVO DI DIAGNOSTICA CLINICA E DI LABORATORIO 1979; 15:74-7. [PMID: 542595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|