101
|
Kim HD, Lee EA, Choi YH, An YH, Koh RH, Kim SL, Hwang NS. High throughput approaches for controlled stem cell differentiation. Acta Biomater 2016; 34:21-29. [PMID: 26884279 DOI: 10.1016/j.actbio.2016.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 02/13/2016] [Accepted: 02/13/2016] [Indexed: 12/19/2022]
Abstract
Stem cells have unique ability to undergo self-renewal indefinitely in culture and potential to differentiate into almost all cell types in the human body. However, the developing a method for efficiently differentiating or manipulating these stem cells for therapeutic purposes remains a challenging problem. Pluripotent stem cells, as well as adult stem cells, require biological cues for their proliferation and differentiation. These cues are largely controlled by cell-cell, cell-insoluble factors (such as extracellular matrix), and cell-soluble factors (such as cytokine or growth factors) interactions. In this review, we describe a state of research on various stem cell-based tissue engineering applications and high throughput strategies for developing synthetic or biosynthetic microenvironments to allow efficient commitments in stem cells. STATEMENT OF SIGNIFICANCE Nowadays, pluripotency of stem cells have received much attention to use therapeutic purpose. However, a major difficulty with stem cell therapy is to control its differentiation through desired cells or tissues. In other words, various microenvironment factors are involved during stem cell differentiation, including dimensionality, growth factors, cell junctions, nutritional status, matrix stiffness, matrix composition, mechanical stress, and cell-matrix adhesion. Therefore, researchers have engineered a variety of platforms to enable controlling and monitoring bioactive factors to induce stem cell commitment. In this review, we report on recent advancements in a novel technology based on high-throughput strategies for stem cell-based tissue engineering applications.
Collapse
|
102
|
Jang HL, Zheng GB, Park J, Kim HD, Baek HR, Lee HK, Lee K, Han HN, Lee CK, Hwang NS, Lee JH, Nam KT. In Vitro and In Vivo Evaluation of Whitlockite Biocompatibility: Comparative Study with Hydroxyapatite and β-Tricalcium Phosphate. Adv Healthc Mater 2016; 5:128-36. [PMID: 25963732 DOI: 10.1002/adhm.201400824] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/22/2015] [Indexed: 01/20/2023]
Abstract
Biomimicking ceramics have been developed to induce efficient recovery of damaged hard tissues. Among them, calcium phosphate-based bioceramics have been the most widely used because of their similar composition with human hard tissue and excellent biocompatibilities. However, the incomplete understanding of entire inorganic phases in natural bone has limited the recreation of complete bone compositions. In this work, broad biomedical evaluation of whitlockite (WH: Ca18Mg2(HPO4)2(PO4)12), which is the secondary inorganic phase in bone, is conducted to better understand human hard tissue and to seek potential application as a biomaterial. Based on the recently developed gram-scale method for synthesizing WH nanoparticles, the properties of WH as a material for cellular scaffolding and bone implants are assessed and compared to those of hydroxyapatite (HAP: Ca10(PO4)6(OH)2) and β-tricalcium phosphate (β-TCP: β-Ca3(PO4)2). WH-reinforced composite scaffolds facilitate bone-specific differentiation compared to HAP-reinforced composite scaffolds. Additionally, WH implants induce similar or better bone regeneration in calvarial defects in a rat model compared to HAP and β-TCP implants, with intermediate resorbability. New findings of the properties of WH that distinguish it from HAP and β-TCP are significant in understanding human hard tissue, mimicking bone tissue at the nanoscale and designing functional bioceramics.
Collapse
|
103
|
Lee ES, Kim SHL, Lee H, Hwang NS. Non-viral approaches for direct conversion into mesenchymal cell types: Potential application in tissue engineering. J Biomed Mater Res B Appl Biomater 2016; 104:686-97. [PMID: 26729213 DOI: 10.1002/jbm.b.33601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/06/2015] [Accepted: 12/03/2015] [Indexed: 12/16/2022]
Abstract
Acquiring adequate number of cells is one of the crucial factors to apply tissue engineering strategies in order to recover critical-sized defects. While the reprogramming technology used for inducing pluripotent stem cells (iPSCs) opened up a direct path for generating pluripotent stem cells, a direct conversion strategy may provide another possibility to obtain desired cells for tissue engineering. In order to convert a somatic cell into any other cell type, diverse approaches have been investigated. Conspicuously, in contrast to traditional viral transduction method, non-viral delivery of conversion factors has the merit of lowering immune responses and provides safer genetic manipulation, thus revolutionizing the generation of directly converted cells and its application in therapeutics. In addition, applying various microenvironmental modulations have potential to ameliorate the conversion of somatic cells into different lineages. In this review, we discuss the recent progress in direct conversion technologies, specifically focusing on generating mesenchymal cell types.
Collapse
|
104
|
Son B, Kim HD, Kim M, Kim JA, Lee J, Shin H, Hwang NS, Park TH. Stem Cells: Physical Stimuli-Induced Chondrogenic Differentiation of Mesenchymal Stem Cells Using Magnetic Nanoparticles (Adv. Healthcare Mater. 9/2015). Adv Healthc Mater 2015. [DOI: 10.1002/adhm.201570056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
105
|
Son B, Kim HD, Kim M, Kim JA, Lee J, Shin H, Hwang NS, Park TH. Physical Stimuli-Induced Chondrogenic Differentiation of Mesenchymal Stem Cells Using Magnetic Nanoparticles. Adv Healthc Mater 2015; 4:1339-47. [PMID: 25846518 DOI: 10.1002/adhm.201400835] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/09/2015] [Indexed: 01/14/2023]
Abstract
Chondrogenic commitments of mesenchymal stem cells (MSCs) require 3D cellular organization. Furthermore, recent progresses in bioreactor technology have contributed to the development of various biophysical stimulation platforms for efficient cartilage tissue formation. Here, an approach is reported to drive 3D cellular organization and enhance chondrogenic commitment of bone-marrow-derived human mesenchymal stem cells (BM-hMSCs) via magnetic nanoparticle (MNP)-mediated physical stimuli. MNPs isolated from Magnetospirillum sp. AMB-1 are endocytosed by the BM-hMSCs in a highly efficient manner. MNPs-incorporated BM-hMSCs are pelleted and then subjected to static magnetic field and/or magnet-derived shear stress. Magnetic-based stimuli enhance level of sulfated glycosaminoglycan (sGAG) and collagen synthesis, and facilitate the chondrogenic differentiation of BM-hMSCs. In addition, both static magnetic field and magnet-derived shear stress applied for the chondrogenic differentiation of BM-hMSCs do not show increament of hypertrophic differentiation. This MNP-mediated physical stimulation platform demonstrates a promising strategy for efficient cartilage tissue engineering.
Collapse
|
106
|
Ro H, Park J, Yang K, Kim J, Yim HG, Jung G, Lee H, Cho SW, Hwang NS. Osteogenic priming of mesenchymal stem cells by chondrocyte-conditioned factors and mineralized matrix. Cell Tissue Res 2015; 362:115-26. [DOI: 10.1007/s00441-015-2195-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/11/2015] [Indexed: 12/13/2022]
|
107
|
Song J, Lee EA, Cha S, Kim I, Choi Y, Hwang NS. Fabrication of multi-well platform with electrical stimulation for efficient myogenic commitment of C2C12 cells. ACTA ACUST UNITED AC 2015. [DOI: 10.12989/bme.2015.2.1.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
108
|
Kim SJ, Cho HR, Cho KW, Qiao S, Rhim JS, Soh M, Kim T, Choi MK, Choi C, Park I, Hwang NS, Hyeon T, Choi SH, Lu N, Kim DH. Multifunctional cell-culture platform for aligned cell sheet monitoring, transfer printing, and therapy. ACS NANO 2015; 9:2677-88. [PMID: 25687418 DOI: 10.1021/nn5064634] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
While several functional platforms for cell culturing have been proposed for cell sheet engineering, a soft integrated system enabling in vitro physiological monitoring of aligned cells prior to their in vivo applications in tissue regeneration has not been reported. Here, we present a multifunctional, soft cell-culture platform equipped with ultrathin stretchable nanomembrane sensors and graphene-nanoribbon cell aligners, whose system modulus is matched with target tissues. This multifunctional platform is capable of aligning plated cells and in situ monitoring of cellular physiological characteristics during proliferation and differentiation. In addition, it is successfully applied as an in vitro muscle-on-a-chip testing platform. Finally, a simple but high-yield transfer printing mechanism is proposed to deliver cell sheets for scaffold-free, localized cell therapy in vivo. The muscle-mimicking stiffness of the platform allows the high-yield transfer printing of multiple cell sheets and results in successful therapies in diseased animal models. Expansion of current results to stem cells will provide unique opportunities for emerging classes of tissue engineering and cell therapy technologies.
Collapse
|
109
|
Hong J, Lee EA, Lee ES, Jung G, Jeong H, Lee H, Lee H, Hwang NS. Induced myogenic commitment of human chondrocytes via non-viral delivery of minicircle DNA. J Control Release 2015; 200:212-21. [DOI: 10.1016/j.jconrel.2014.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/03/2014] [Accepted: 12/24/2014] [Indexed: 01/01/2023]
|
110
|
Kim HD, Heo J, Hwang Y, Kwak SY, Park OK, Kim H, Varghese S, Hwang NS. Extracellular-matrix-based and Arg-Gly-Asp-modified photopolymerizing hydrogels for cartilage tissue engineering. Tissue Eng Part A 2014; 21:757-66. [PMID: 25266634 DOI: 10.1089/ten.tea.2014.0233] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Articular cartilage damage is a persistent and increasing problem with the aging population. Strategies to achieve complete repair or functional restoration remain a challenge. Photopolymerizing-based hydrogels have long received an attention in the cartilage tissue engineering, due to their unique bioactivities, flexible method of synthesis, range of constituents, and desirable physical characteristics. In the present study, we have introduced unique bioactivity within the photopolymerizing-based hydrogels by copolymerizing polyethylene glycol (PEG) macromers with methacrylated extracellular matrix (ECM) molecules (hyaluronic acid and chondroitin sulfate [CS]) and integrin binding peptides (RGD peptide). Results indicate that cellular morphology, as observed by the actin cytoskeleton structures, was strongly dependent on the type of ECM component as well as the presence of integrin binding moieties. Further, CS-based hydrogel with integrin binding RGD moieties increased the lubricin (or known as superficial zone protein [SZP]) gene expression of the encapsulated chondrocytes. Additionally, CS-based hydrogel displayed cell-responsive degradation and resulted in increased DNA, GAG, and collagen accumulation compared with other hydrogels. This study demonstrates that integrin-mediated interactions within CS microenvironment provide an optimal hydrogel scaffold for cartilage tissue engineering application.
Collapse
|
111
|
Lee EA, Jung G, Im SG, Hwang NS. Extracellular matrix-immobilized nanotopographical substrates for enhanced myogenic differentiation. J Biomed Mater Res B Appl Biomater 2014; 103:1258-66. [DOI: 10.1002/jbm.b.33308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 09/01/2014] [Accepted: 10/01/2014] [Indexed: 01/26/2023]
|
112
|
Lee EA, Im SG, Hwang NS. Efficient myogenic commitment of human mesenchymal stem cells on biomimetic materials replicating myoblast topography. Biotechnol J 2014; 9:1604-12. [DOI: 10.1002/biot.201400020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/08/2014] [Accepted: 09/12/2014] [Indexed: 12/28/2022]
|
113
|
Kim PH, Yim HG, Choi YJ, Kang BJ, Kim J, Kwon SM, Kim BS, Hwang NS, Cho JY. Injectable multifunctional microgel encapsulating outgrowth endothelial cells and growth factors for enhanced neovascularization. J Control Release 2014; 187:1-13. [DOI: 10.1016/j.jconrel.2014.05.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/15/2014] [Accepted: 05/08/2014] [Indexed: 12/16/2022]
|
114
|
Kang BJ, Kim H, Lee SK, Kim J, Shen Y, Jung S, Kang KS, Im SG, Lee SY, Choi M, Hwang NS, Cho JY. Umbilical-cord-blood-derived mesenchymal stem cells seeded onto fibronectin-immobilized polycaprolactone nanofiber improve cardiac function. Acta Biomater 2014; 10:3007-17. [PMID: 24657671 DOI: 10.1016/j.actbio.2014.03.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/08/2014] [Accepted: 03/10/2014] [Indexed: 12/28/2022]
Abstract
Stem cells seeded onto biofunctional materials have greater potency for therapeutic applications. We investigated whether umbilical-cord-blood-derived mesenchymal stem cell (UCB-MSC)-seeded fibronectin (FN)-immobilized polycaprolactone (PCL) nanofibers could improve cardiac function and inhibit left ventricle (LV) remodeling in a rat model of myocardial infarction (MI). Aligned nanofibers were uniformly coated with poly(glycidyl methacrylate) by initiated chemical vapor deposition followed by covalent immobilization of FN proteins. The degree of cell elongation and adhesion efficacy were improved by FN immobilization. Furthermore, genes related to angiogenesis and mesenchymal differentiations were up-regulated in the FN-immobilized PCL nanofibers in comparison to control PCL nanofibers in vitro. 4 weeks after the transplantation in the rat MI model, the echocardiogram showed that the UCB-MSC-seeded FN-immobilized PCL nanofiber group increased LV ejection fraction and fraction shortening as compared to the non-treated control and acellular FN-immobilized PCL nanofiber groups. Histological analysis indicated that the implantation of UCB-MSCs with FN-immobilized PCL nanofibers induced a decrease in MI size and fibrosis, and an increase in scar thickness. This study indicates that FN-immobilized biofunctional PCL nanofibers could be an effective carrier for UCB-MSC transplantation for the treatment of MI.
Collapse
|
115
|
Lee EA, Yim H, Heo J, Kim H, Jung G, Hwang NS. Application of magnetic nanoparticle for controlled tissue assembly and tissue engineering. Arch Pharm Res 2013; 37:120-8. [DOI: 10.1007/s12272-013-0303-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 11/14/2013] [Indexed: 12/17/2022]
|
116
|
Hwang NS, Varghese S, Lee HJ, Zhang Z, Elisseeff J. Biomaterials directed in vivo osteogenic differentiation of mesenchymal cells derived from human embryonic stem cells. Tissue Eng Part A 2013; 19:1723-32. [PMID: 23510052 DOI: 10.1089/ten.tea.2013.0064] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Spontaneous differentiation of human embryonic stem cells (hESCs) is generally inefficient and leads to a heterogeneous population of differentiated and undifferentiated cells, limiting the potential use of hESCs for cell-based therapy and studies of specific differentiation programs. Here, we demonstrate biomaterial-dependent commitment of a mesenchymal cell population derived from hESCs toward the osteogenic lineage in vivo. In skeletal development, bone formation from condensing mesenchymal cells involves two distinct pathways: endochondral and intramembraneous bone formation. In this study, we demonstrate that the hESC-derived mesenchymal cells differentiate and regenerate in vivo bone tissues through two different pathways depending upon the local cues present in a scaffold microenvironment. Hydroxyapatite (HA) was incorporated into biodegradable poly(lactic-co-glycolic acid)/poly(l-lactic acid) (PLGA/PLLA) scaffolds to enhance bone formation. The HA microenvironment stabilized the β-catenin and upregulated Runx2, resulting in faster bone formation through intramembraneous ossification. hESC-derived mesenchymal cells seeded on the PLGA/PLLA scaffold without HA, however, showed minimal levels Runx2, and differentiated via endochondral ossification, as evidenced by formation of cartilaginous tissue, followed by calcification and increased blood vessel invasion. These results indicate that the ossification mechanisms of the hESC-derived mesenchymal stem cells can be regulated by the scaffold-mediated microenvironments, and bone tissue can be formed.
Collapse
|
117
|
Kim HN, Jiao A, Hwang NS, Kim MS, Kang DH, Kim DH, Suh KY. Nanotopography-guided tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2013; 65:536-58. [PMID: 22921841 PMCID: PMC5444877 DOI: 10.1016/j.addr.2012.07.014] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 12/14/2022]
Abstract
Human tissues are intricate ensembles of multiple cell types embedded in complex and well-defined structures of the extracellular matrix (ECM). The organization of ECM is frequently hierarchical from nano to macro, with many proteins forming large scale structures with feature sizes up to several hundred microns. Inspired from these natural designs of ECM, nanotopography-guided approaches have been increasingly investigated for the last several decades. Results demonstrate that the nanotopography itself can activate tissue-specific function in vitro as well as promote tissue regeneration in vivo upon transplantation. In this review, we provide an extensive analysis of recent efforts to mimic functional nanostructures in vitro for improved tissue engineering and regeneration of injured and damaged tissues. We first characterize the role of various nanostructures in human tissues with respect to each tissue-specific function. Then, we describe various fabrication methods in terms of patterning principles and material characteristics. Finally, we summarize the applications of nanotopography to various tissues, which are classified into four types depending on their functions: protective, mechano-sensitive, electro-active, and shear stress-sensitive tissues. Some limitations and future challenges are briefly discussed at the end.
Collapse
|
118
|
Kwon SH, Lee TJ, Park J, Hwang JE, Jin M, Jang HK, Hwang NS, Kim BS. Modulation of BMP-2-induced chondrogenic versus osteogenic differentiation of human mesenchymal stem cells by cell-specific extracellular matrices. Tissue Eng Part A 2012; 19:49-58. [PMID: 23088504 DOI: 10.1089/ten.tea.2012.0245] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) is known to induce both osteogenic and chondrogenic commitment of human mesenchymal stem cells (hMSCs). However, factors influencing BMP-2-dependent chondrogenic and osteogenic differentiation have not been investigated. In this study, we demonstrated that extracellular microenvironments, in the form of cell-derived matrices, play important roles in determining the specific lineage commitment of hMSCs in the presence of BMP-2. Extracellular matrices (ECMs) derived from osteoblasts and chondrocytes were utilized to regulate cell differentiation. Osteogenic and chondrogenic differentiation of hMSCs cultured on the two different cell-derived ECMs were assessed by quantitative real-time-polymerase chain reaction, immunocytochemistry, and western blot analysis. To minimize the effects of the cell-adhesion proteins contained in serum on the ECMs, hMSCs were cultured in serum-free osteogenic or chondrogenic differentiation medium. Fibronectin-, collagen type I-, or collagen type II-coated substrates were utilized as ECM controls. The ECM specific to each cell type promoted lineage-specific commitment of hMSCs in the presence of BMP-2, that is, osteoblast- and chondrocyte-derived ECM promoted osteogenic and chondrogenic commitment, respectively. Therefore, cell-specific ECMs are capable of modulating the BMP-2-induced osteogenic and chondrogenic differentiation of hMSCs.
Collapse
|
119
|
Vacanti NM, Cheng H, Hill PS, Guerreiro JDT, Dang TT, Ma M, Watson S, Hwang NS, Langer R, Anderson DG. Localized delivery of dexamethasone from electrospun fibers reduces the foreign body response. Biomacromolecules 2012; 13:3031-8. [PMID: 22920794 PMCID: PMC3466020 DOI: 10.1021/bm300520u] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/09/2012] [Indexed: 01/08/2023]
Abstract
Synthetic scaffolds are crucial to applications in regenerative medicine; however, the foreign body response can impede regeneration and may lead to failure of the implant. Herein we report the development of a tissue engineering scaffold that allows attachment and proliferation of regenerating cells while reducing the foreign body response by localized delivery of an anti-inflammatory agent. Electrospun fibers composed of poly(l-lactic) acid (PLLA) and poly(ε-caprolactone) (PCL) were prepared with and without the steroid anti-inflammatory drug, dexamethasone. Analysis of subcutaneous implants demonstrated that the PLLA fibers encapsulating dexamethasone evoked a less severe inflammatory response than the other fibers examined. They also displayed a controlled release of dexamethasone over a period of time conducive to tissue regeneration and allowed human mesenchymal stem cells to adhere to and proliferate on them in vitro. These observations demonstrate their potential as a building block for tissue engineering scaffolds.
Collapse
|
120
|
Kang SM, Hwang NS, Yeom J, Park SY, Messersmith PB, Choi IS, Langer R, Anderson DG, Lee H. One-Step Multipurpose Surface Functionalization by Adhesive Catecholamine. ADVANCED FUNCTIONAL MATERIALS 2012; 22:2949-2955. [PMID: 23580891 PMCID: PMC3619432 DOI: 10.1002/adfm.201200177] [Citation(s) in RCA: 311] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Surface modification is one of the most important techniques in modern science and engineering. The facile introduction of a wide variety of desired properties onto virtually any material surface is an ultimate goal in surface chemistry. To achieve this goal, the incorporation of structurally diverse molecules onto any material surface is an essential capability for ideal surface modification. Here, we present a general strategy of surface modification, in which many diverse surfaces can be functionalized by immobilizing a wide variety of molecules. This strategy functionalizes surfaces by a one-step immersion of substrates in a one-pot mixture of a molecule and a catecholamine surface modification agent. This one-step procedure for surface modification represents a standard protocol to control interfacial properties.
Collapse
|
121
|
Cheng H, Byrska-Bishop M, Zhang CT, Kastrup CJ, Hwang NS, Tai AK, Lee WW, Xu X, Nahrendorf M, Langer R, Anderson DG. Stem cell membrane engineering for cell rolling using peptide conjugation and tuning of cell-selectin interaction kinetics. Biomaterials 2012; 33:5004-12. [PMID: 22494889 DOI: 10.1016/j.biomaterials.2012.03.065] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/18/2012] [Indexed: 12/13/2022]
Abstract
Dynamic cell-microenvironment interactions regulate many biological events and play a critical role in tissue regeneration. Cell homing to targeted tissues requires well balanced interactions between cells and adhesion molecules on blood vessel walls. However, many stem cells lack affinity with adhesion molecules. It is challenging and clinically important to engineer these stem cells to modulate their dynamic interactions with blood vessels. In this study, a new chemical strategy was developed to engineer cell-microenvironment interactions. This method allowed the conjugation of peptides onto stem cell membranes without affecting cell viability, proliferation or multipotency. Mesenchymal stem cells (MSCs) engineered in this manner showed controlled firm adhesion and rolling on E-selectin under physiological shear stresses. For the first time, these biomechanical responses were achieved by tuning the binding kinetics of the peptide-selectin interaction. Rolling of engineered MSCs on E-selectin is mediated by a Ca(2+) independent interaction, a mechanism that differs from the Ca(2+) dependent physiological process. This further illustrates the ability of this approach to manipulate cell-microenvironment interactions, in particular for the application of delivering cells to targeted tissues. It also provides a new platform to engineer cells with multiple functionalities.
Collapse
|
122
|
Hwang NS, Varghese S, Li H, Elisseeff J. Regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in PEG-ECM hydrogels. Cell Tissue Res 2011; 344:499-509. [PMID: 21503601 DOI: 10.1007/s00441-011-1153-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 02/25/2011] [Indexed: 12/13/2022]
Abstract
Bone-marrow-derived mesenchymal stem cells (MSCs) are candidates for regeneration applications in musculoskeletal tissue such as cartilage and bone. Various soluble factors in the form of growth factors and cytokines have been widely studied for directing the chondrogenic and osteogenic differentiation of MSCs, but little is known about the way that the composition of extracellular matrix (ECM) components in three-dimensional microenvironments plays a role in regulating the differentiation of MSCs. To define whether ECM components influence the regulation of osteogenic and chondrogenic differentiation by MSCs, we encapsulated MSCs in poly-(ethylene glycol)-based (PEG-based) hydrogels containing exogenous type I collagen, type II collagen, or hyaluronic acids (HA) and cultured them for up to 6 weeks in chondrogenic medium containing transforming growth factor-β1 (10 ng/ml) or osteogenic medium. Actin cytoskeleton organization and cellular morphology were strongly dependent on which ECM components were added to the PEG-based hydrogels. Additionally, chondrogenic differentiation of MSCs was marginally enhanced in collagen-matrix-based hydrogels, whereas osteogenic differentiation, as measured by calcium accumulation, was induced in HA-containing hydrogels. Thus, the microenvironments created by exogenous ECM components seem to modulate the fate of MSC differentiation.
Collapse
|
123
|
Hwang NS, Zhang C, Hwang YS, Varghese S. Mesenchymal stem cell differentiation and roles in regenerative medicine. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 1:97-106. [PMID: 20835984 DOI: 10.1002/wsbm.26] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adult stem cells with multi or unipotent differentiation potential are present in almost all tissues of adult organisms. The main function of these stem cells is to support normal repair and rejuvenation of diseased and aging tissues. Mesenchymal stem cells (MSCs) isolated from the bone marrow have the potential to differentiate into multiple connective tissues. Advancements in understanding tissue specific differentiation of MSCs in conjunction with global genomic and proteomic profiling of MSCs have not only provided insights into their biology but also made MSC based clinical trials a reality for treating various debilitating diseases and genetic disorders. The emerging evidence that MSCs are immunosuppressive makes them an even more attractive candidate for regenerative medicine as rejections of transplants by the recipient could be a limiting step for moving the stem cells based therapies from "bedside to bed side." To a large extent the therapeutic potential of MSCs is attributed to their differentiation ability. The fate and commitment of MSCs are regulated by various instructive signals from their immediate vicinity or microenvironment, which comprises many biological molecules (soluble and insoluble) and biomechanical forces. These biochemical and biophysical factors play a pivotal role in determining the efficacy of MSC differentiation and their contribution to the repair process. In this review, we discuss the characteristics of MSCs, their differentiation potential toward different skeletal tissues (cartilage and bone), and their emerging role in regenerative medicine.
Collapse
|
124
|
Varghese S, Hwang NS, Ferran A, Hillel A, Theprungsirikul P, Canver AC, Zhang Z, Gearhart J, Elisseeff J. Engineering musculoskeletal tissues with human embryonic germ cell derivatives. Stem Cells 2010; 28:765-74. [PMID: 20178108 DOI: 10.1002/stem.325] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cells derived from differentiating embryoid bodies of human embryonic germ (hEG) cells express a broad spectrum of gene markers and have been induced toward ecto- and endodermal lineages. We describe here in vitro and in vivo differentiation of hEG-derived cells (LVEC line) toward mesenchymal tissues. The LVEC cells express many surface marker proteins characteristic of mesenchymal stem cells and differentiated into cartilage, bone, and fat. Homogenous hyaline cartilage was generated from cells after 63 population doublings. In vivo results demonstrate cell survival, differentiation, and tissue formation. The high proliferative capacity of hEG-derived cells and their ability to differentiate and form three-dimensional mesenchymal tissues without teratoma formation underscores their significant potential for regenerative medicine. The adopted coculture system also provides new insights into how a microenvironment comprised of extracellular and cellular components may be harnessed to generate hierarchically complex tissues from pluripotent cells.
Collapse
|
125
|
Bichara DA, Zhao X, Hwang NS, Bodugoz-Senturk H, Yaremchuk MJ, Randolph MA, Muratoglu OK. Porous poly(vinyl alcohol)-alginate gel hybrid construct for neocartilage formation using human nasoseptal cells. J Surg Res 2010; 163:331-6. [PMID: 20538292 DOI: 10.1016/j.jss.2010.03.070] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/24/2010] [Accepted: 03/30/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND Limited options exist for the restoration of craniofacial cartilage. Autologous tissue or porous polyethylene is currently used for nasal and auricular reconstruction. Both options are associated with drawbacks, including donor site morbidity and implant extrusion. Poly(vinyl alcohol) (PVA) is a non-degradable flexible biocompatible polymer than can be engineered to mimic the properties of cartilage. The goal of this study was to engineer a biosynthetic hybrid construct using a combination of PVA-alginate hydrogels and human nasal septum chondrocytes. MATERIALS AND METHODS Chondrocytes isolated from human nasal septum cartilage were expanded and mixed with 2% sodium alginate hydrogel. The chondrocyte-alginate mix was injected into a non-degradable porous PVA hydrogel, creating biosynthetic constructs. A group of these constructs were implanted into the subcutaneous environment of nude mice, while the other group was cultured in a spinner flask bioreactor system for 10 d and then implanted. After 6 wk in vivo, the histologic, biochemical, and biomechanical properties were examined. RESULTS Histological analysis demonstrated sulfated glycosaminoglycans and deposition of collagen type II in constructs from both groups. Constructs cultured in the bioreactor system prior in vivo implantation demonstrated higher levels of DNA, glycosaminoglycans, and hydroxyproline. An increase of 22% in the compressive strength of the engineered constructs exposed to the bioreactor was also observed. CONCLUSION A novel porous PVA-alginate gel hybrid was used to successfully engineer human cartilage in vivo. A 10-d period of bioreactor culturing increased levels of DNA, glycosaminoglycans, hydroxyproline, and the compressive modulus of the constructs.
Collapse
|