Jou WM, Verhoeyen M, Devos R, Saman E, Fang R, Huylebroeck D, Fiers W, Threlfall G, Barber C, Carey N, Emtage S. Complete structure of the hemagglutinin gene from the human influenza A/Victoria/3/75 (H3N2) strain as determined from cloned DNA.
Cell 1980;
19:683-96. [PMID:
6153930 DOI:
10.1016/s0092-8674(80)80045-6]
[Citation(s) in RCA: 197] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The complete sequence of a hemagglutinin (HA) gene of a recent human influenza A strain, A/Victoria/3/75, is 1768 nucleotides long and contains the information for 567 amino acids. It codes for a signal peptide of 16 amino acids, the HA1 chain of the mature hemagglutinin of 329 amino acids, a connecting region between HA1 and HA2 consisting of a single arginine residue and the HA2 portion of 221 amiino acids. The sequence is compared with the hemagglutinin of two members of other subtypes, the human H2 strain A/Jap/305/57 and the avian Hav1 strain A/FPV/Rostock/34, and with one of the same H3 subtype, A/Memphis/3/72. To align the HA1 chain of different major subtypes several deletions/insertions of single amino acids must be invoked, but two more extensive differences are found at both ends, one leading to an extension of the amino terminal sequence of HA1 and the other (four residues) occurring in the region processed away between HA1 and HA2. Comparison of the HA1 of two H3 strains suggests that drift probably depends on single base mutations, some of which change antigenic determinants. The HA2 region, which apparently is not involved in the immune response, is highly conserved even between different subtypes, and single base substitutions account for all the observed diversity. A hydrophobic segment of 24 residues is present in the same position close to the carboxyl terminus of HA2 in both Victoria and FPV, and presumably functions in implantation into the lipid bilayer. The many conserved features not only in HA2 but also in HA1 suggest a rather rigid architecture for the whole hemagglutinin molecule.
Collapse