101
|
Murphy WJ, Pearks Wilkerson AJ, Raudsepp T, Agarwala R, Schäffer AA, Stanyon R, Chowdhary BP. Novel gene acquisition on carnivore Y chromosomes. PLoS Genet 2006; 2:e43. [PMID: 16596168 PMCID: PMC1420679 DOI: 10.1371/journal.pgen.0020043] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 02/08/2006] [Indexed: 11/19/2022] Open
Abstract
Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we used direct cDNA selection to isolate and evaluate the extent of novel Y chromosome gene acquisition in the genome of the domestic cat, a species from a different mammalian superorder than human, chimpanzee, and mouse (currently being sequenced). We discovered four novel Y chromosome genes that do not have functional copies in the finished human male-specific region of the Y or on other mammalian Y chromosomes explored thus far. Two genes are derived from putative autosomal progenitors, and the other two have X chromosome homologs from different evolutionary strata. All four genes were shown to be multicopy and expressed predominantly or exclusively in testes, suggesting that their duplication and specialization for testis function were selected for because they enhance spermatogenesis. Two of these genes have testis-expressed, Y-borne copies in the dog genome as well. The absence of the four newly described genes on other characterized mammalian Y chromosomes demonstrates the gene novelty on this chromosome between mammalian orders, suggesting it harbors many lineage-specific genes that may go undetected by traditional comparative genomic approaches. Specific plans to identify the male-specific genes encoded in the Y chromosome of mammals should be a priority. Y chromosomes are typically gene poor and enriched with repetitive elements, making them difficult to sequence by standard methods. Hence, the Y chromosome gene repertoire in mammalian species other than human has not been explored until very recently. Here the authors used a directed approach to isolate Y chromosome genes of the domestic cat, an evolutionary divergent species from human and mouse. They found that the feline Y chromosome harbors its own unique set of genes that are expressed specifically in the testes, presumably where they play an important role in spermatogenesis. Paralleling the discoveries seen from the full human Y chromosome sequence, the feline Y chromosome has acquired and remodeled some genes from autosomes, while other genes have a shared ancestry with the X chromosome. However, none of the four new genes are found on the Y chromosomes of human or mouse, although two are shared with the canine Y chromosome. This work highlights the Y chromosome as a source of potential gene novelty in different species and suggests that more directed efforts at characterizing this hitherto understudied chromosome will further enrich our understanding of the types of genes found there and the roles they may play in mammalian spermatogenesis.
Collapse
|
102
|
Wagner ML, Raudsepp T, Goh G, Agarwala R, Schaffer AA, Dranchak PK, Brinkmeyer-Langford C, Skow LC, Chowdhary BP, Mickelson JR. A 1.3-Mb interval map of equine homologs of HSA2. Cytogenet Genome Res 2006; 112:227-34. [PMID: 16484777 DOI: 10.1159/000089875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 08/21/2005] [Indexed: 11/19/2022] Open
Abstract
A comparative approach that utilizes information from more densely mapped or sequenced genomes is a proven and efficient means to increase our knowledge of the structure of the horse genome. Human chromosome 2 (HSA2), the second largest human chromosome, comprising 243 Mb, and containing 1246 known genes, corresponds to all or parts of three equine chromosomes. This report describes the assignment of 140 new markers (78 genes and 62 microsatellites) to the equine radiation hybrid (RH) map, and the anchoring of 24 of these markers to horse chromosomes by FISH. The updated equine RH maps for ECA6p, ECA15, and ECA18 resulting from this work have one, two, and three RH linkage groups, respectively, per chromosome/chromosome-arm. These maps have a three-fold increase in the number of mapped markers compared to previous maps of these chromosomes, and an increase in the average marker density to one marker per 1.3 Mb. Comparative maps of ECA6p, ECA15, and ECA18 with human, chimpanzee, dog, mouse, rat, and chicken genomes reveal blocks of conserved synteny across mammals and vertebrates.
Collapse
|
103
|
Abstract
Despite a late start, analysis of the horse genome has progressed rapidly during the past ten years. With synteny, genetic linkage, radiation hybrid, cytogenetic and comparative maps presently generated for all equine chromosomes including the Y chromosome, the map of the equine genome contains approximately 4,000 markers. The average resolution of the mapped markers is approximately 700 kb, which makes the horse gene map the densest among the domestic animal species hitherto not sequenced. This map is currently used by researchers worldwide to discover genes associated with various traits of significance in the horse including overall health, disease resistance, reproduction, fertility, athletic performance, phenotypic characteristics like coat color, etc. Efforts are currently underway to initiate functional studies of the equine genome. Despite in its infancy, the expression based analysis of the equine genome using cDNA or oligoarrays is expected to be an integral part of genome analysis in the horse. More recently, a physical map of approximately 150,000 overlapping bacterial artificial chromosome (BAC) clones is being generated by end-sequencing and subsequent assembly of the BACs. Collectively, the wide range of genomic tools/resources presently available in the horse makes it the next ideal candidate for whole genome sequencing. The motivation and support of the ultimate benefactors - the equine industry - from this huge endeavor will however be pivotal.
Collapse
|
104
|
Momozawa Y, Takeuchi Y, Tozaki T, Kikusui T, Hasegawa T, Raudsepp T, Chowdhary BP, Kusunose R, Mori Y. Polymorphism Identification, RH Mapping, and Association Analysis with the Anxiety Trait of the Equine serotonin transporter (SLC6A4) Gene. J Vet Med Sci 2006; 68:619-21. [PMID: 16820721 DOI: 10.1292/jvms.68.619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Equine anxiety trait is considered an important temperament in various situations, including riding, training, and daily care. This study examined the polymorphism of the equine serotonin transporter (SLC6A4) gene as a candidate genetic element influencing equine anxiety trait. The sequence of the coding region of this gene was highly homologous with those of other mammals, and four single nucleotide polymorphisms were found by comparing the sequences of ten genetically unrelated thoroughbred horses. Radiation hybrid mapping revealed that this gene was located 26.92 cR from neurofibromin 1 on ECA 11. Using two-year-old thoroughbred horses (n=67), the association of these polymorphisms with the anxiety trait was examined, but no significant association was identified between each haplotype of the serotonin transporter gene and the anxiety score.
Collapse
|
105
|
Swinburne JE, Boursnell M, Hill G, Pettitt L, Allen T, Chowdhary B, Hasegawa T, Kurosawa M, Leeb T, Mashima S, Mickelson JR, Raudsepp T, Tozaki T, Binns M. Single linkage group per chromosome genetic linkage map for the horse, based on two three-generation, full-sibling, crossbred horse reference families. Genomics 2005; 87:1-29. [PMID: 16314071 DOI: 10.1016/j.ygeno.2005.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 08/19/2005] [Accepted: 09/03/2005] [Indexed: 11/30/2022]
Abstract
A genetic linkage map of the horse consisting of 742 markers, which comprises a single linkage group for each of the autosomes and the X chromosome, is presented. The map has been generated from two three-generation full-sibling reference families, sired by the same stallion, in which there are 61 individuals in the F2 generation. Each linkage group has been assigned to a chromosome and oriented with reference to markers mapped by fluorescence in situ hybridization. The average interval between markers is 3.7 cM and the linkage groups collectively span 2772 cM. The 742 markers comprise 734 microsatellite and 8 gene-based markers. The utility of the microsatellite markers for comparative mapping has been significantly enhanced by comparing their flanking sequences with the human genome sequence; this enabled conserved segments between human and horse to be identified. The new map provides a valuable resource for genetically mapping traits of interest in the horse.
Collapse
|
106
|
Brinkmeyer-Langford C, Raudsepp T, Lee EJ, Goh G, Schäffer AA, Agarwala R, Wagner ML, Tozaki T, Skow LC, Womack JE, Mickelson JR, Chowdhary BP. A high-resolution physical map of equine homologs of HSA19 shows divergent evolution compared with other mammals. Mamm Genome 2005; 16:631-49. [PMID: 16180145 DOI: 10.1007/s00335-005-0023-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 04/28/2005] [Indexed: 11/25/2022]
Abstract
A high-resolution (1 marker/700 kb) physically ordered radiation hybrid (RH) and comparative map of 122 loci on equine homologs of human Chromosome 19 (HSA19) shows a variant evolution of these segments in equids/Perissodactyls compared with other mammals. The segments include parts of both the long and the short arm of horse Chromosome 7 (ECA7), the proximal part of ECA21, and the entire short arm of ECA10. The map includes 93 new markers, of which 89 (64 gene-specific and 25 microsatellite) were genotyped on a 5000-rad horse x hamster RH panel, and 4 were mapped exclusively by FISH. The orientation and alignment of the map was strengthened by 21 new FISH localizations, of which 15 represent genes. The approximately sevenfold-improved map resolution attained in this study will prove extremely useful for candidate gene discovery in the targeted equine chromosomal regions. The highlight of the comparative map is the fine definition of homology between the four equine chromosomal segments and corresponding HSA19 regions specified by physical coordinates (bp) in the human genome sequence. Of particular interest are the regions on ECA7 and ECA21 that correspond to the short arm of HSA19-a genomic rearrangement discovered to date only in equids/Perissodactyls as evidenced through comparative Zoo-FISH analysis of the evolution of ancestral HSA19 segments in eight mammalian orders involving about 50 species.
Collapse
|
107
|
Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G, Auvil L, Beever JE, Chowdhary BP, Galibert F, Gatzke L, Hitte C, Meyers SN, Milan D, Ostrander EA, Pape G, Parker HG, Raudsepp T, Rogatcheva MB, Schook LB, Skow LC, Welge M, Womack JE, O'brien SJ, Pevzner PA, Lewin HA. Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 2005; 309:613-7. [PMID: 16040707 DOI: 10.1126/science.1111387] [Citation(s) in RCA: 392] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The genome organizations of eight phylogenetically distinct species from five mammalian orders were compared in order to address fundamental questions relating to mammalian chromosomal evolution. Rates of chromosome evolution within mammalian orders were found to increase since the Cretaceous-Tertiary boundary. Nearly 20% of chromosome breakpoint regions were reused during mammalian evolution; these reuse sites are also enriched for centromeres. Analysis of gene content in and around evolutionary breakpoint regions revealed increased gene density relative to the genome-wide average. We found that segmental duplications populate the majority of primate-specific breakpoints and often flank inverted chromosome segments, implicating their role in chromosomal rearrangement.
Collapse
|
108
|
Lagerström MC, Fredriksson R, Bjarnadóttir TK, Fridmanis D, Holmquist T, Andersson J, Yan YL, Raudsepp T, Zoorob R, Kukkonen JP, Lundin LG, Klovins J, Chowdhary BP, Postlethwait JH, Schiöth HB. Origin of the prolactin-releasing hormone (PRLH) receptors: Evidence of coevolution between PRLH and a redundant neuropeptide Y receptor during vertebrate evolution. Genomics 2005; 85:688-703. [PMID: 15885496 DOI: 10.1016/j.ygeno.2005.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 02/10/2005] [Accepted: 02/15/2005] [Indexed: 11/29/2022]
Abstract
We present seven new vertebrate homologs of the prolactin-releasing hormone receptor (PRLHR) and show that these are found as two separate subtypes, PRLHR1 and PRLHR2. Analysis of a number of vertebrate sequences using phylogeny, pharmacology, and paralogon analysis indicates that the PRLHRs are likely to share a common ancestry with the neuropeptide Y (NPY) receptors. Moreover, a micromolar level of NPY was able to bind and inhibit completely the PRLH-evoked response in PRLHR1-expressing cells. We suggest that an ancestral PRLH peptide started coevolving with a redundant NPY binding receptor, which then became PRLHR, approximately 500 million years ago. The PRLHR1 subtype was shown to have a relatively high evolutionary rate compared to receptors with fixed peptide preference, which could indicate a drastic change in binding preference, thus supporting this hypothesis. This report suggests how gene duplication events can lead to novel peptide ligand/receptor interactions and hence spur the evolution of new physiological functions.
Collapse
|
109
|
Momozawa Y, Takeuchi Y, Tozaki T, Kikusui T, Hasegawa T, Raudsepp T, Chowdhary BP, Kusunose R, Mori Y. Sequence, detection of polymorphisms and radiation hybrid mapping of the equine catechol-o-methyltransferase gene. Anim Genet 2005; 36:190. [PMID: 15771748 DOI: 10.1111/j.1365-2052.2005.01265.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
110
|
Mickelson JR, Wagner ML, Goh G, Wu JT, Morrison LY, Alexander LJ, Raudsepp T, Skow LC, Chowdhary BP, Swinburne JE, Binns MM. Thirty-five new equine microsatellite loci assigned to genetic linkage and radiation hybrid maps. Anim Genet 2005; 35:481-4. [PMID: 15566482 DOI: 10.1111/j.1365-2052.2004.01206.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
111
|
Wagner ML, Goh G, Wu JT, Morrison LY, Alexander LJ, Raudsepp T, Skow LC, Chowdhary BP, Mickelson JR. Sixty-seven new equine microsatellite loci assigned to the equine radiation hybrid map. Anim Genet 2005; 35:484-6. [PMID: 15566483 DOI: 10.1111/j.1365-2052.2004.01205.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
112
|
Gustafson-Seabury A, Raudsepp T, Goh G, Kata SR, Wagner ML, Tozaki T, Mickelson JR, Womack JE, Skow LC, Chowdhary BP. High-resolution RH map of horse chromosome 22 reveals a putative ancestral vertebrate chromosome. Genomics 2005; 85:188-200. [PMID: 15676277 DOI: 10.1016/j.ygeno.2004.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 10/22/2004] [Indexed: 11/28/2022]
Abstract
High-resolution gene maps of individual equine chromosomes are essential to identify genes governing traits of economic importance in the horse. In pursuit of this goal we herein report the generation of a dense map of horse chromosome 22 (ECA22) comprising 83 markers, of which 52 represent specific genes and 31 are microsatellites. The map spans 831 cR over an estimated 64 Mb of physical length of the chromosome, thus providing markers at approximately 770 kb or 10 cR intervals. Overall, the resolution of the map is to date the densest in the horse and is the highest for any of the domesticated animal species for which annotated sequence data are not yet available. Comparative analysis showed that ECA22 shares remarkable conservation of gene order along the entire length of dog chromosome 24, something not yet found for an autosome in evolutionarily diverged species. Comparison with human, mouse, and rat homologues shows that ECA22 can be traced as two conserved linkage blocks, each related to individual arms of the human homologue-HSA20. Extending the comparison to the chicken genome showed that one of the ECA22 blocks that corresponds to HSA20q shares synteny conservation with chicken chromosome 20, suggesting the segment to be ancestral in mammals and birds.
Collapse
|
113
|
Lee EJ, Raudsepp T, Kata SR, Adelson D, Womack JE, Skow LC, Chowdhary BP. A 1.4-Mb interval RH map of horse chromosome 17 provides detailed comparison with human and mouse homologues. Genomics 2004; 83:203-15. [PMID: 14706449 DOI: 10.1016/j.ygeno.2003.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Comparative genomics has served as a backbone for the rapid development of gene maps in domesticated animals. The integration of this approach with radiation hybrid (RH) analysis provides one of the most direct ways to obtain physically ordered comparative maps across evolutionarily diverged species. We herein report the development of a detailed RH and comparative map for horse chromosome 17 (ECA17). With markers distributed at an average interval of every 1.4 Mb, the map is currently the most informative among the equine chromosomes. It comprises 75 markers (56 genes and 19 microsatellites), of which 50 gene specific and 5 microsatellite markers were generated in this study and typed to our 5000-rad horse x hamster whole genome RH panel. The markers are dispersed over six RH linkage groups and span 825 cR(5000). The map is among the most comprehensive whole chromosome comparative maps currently available for domesticated animals. It finely aligns ECA17 to human and mouse homologues (HSA13 and MMU1, 3, 5, 8, and 14, respectively) and homologues in other domesticated animals. Comparisons provide insight into their relative organization and help to identify evolutionarily conserved segments. The new ECA17 map will serve as a template for the development of clusters of BAC contigs in regions containing genes of interest. Sequencing of these regions will help to initiate studies aimed at understanding the molecular mechanisms for various diseases and inherited disorders in horse as well as human.
Collapse
|
114
|
Halbert ND, Raudsepp T, Chowdhary BP, Derr JN. CONSERVATION GENETIC ANALYSIS OF THE TEXAS STATE BISON HERD. J Mammal 2004. [DOI: 10.1644/ber-029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
115
|
Raudsepp T, Santani A, Wallner B, Kata SR, Ren C, Zhang HB, Womack JE, Skow LC, Chowdhary BP. A detailed physical map of the horse Y chromosome. Proc Natl Acad Sci U S A 2004; 101:9321-6. [PMID: 15197257 PMCID: PMC438975 DOI: 10.1073/pnas.0403011101] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We herein report a detailed physical map of the horse Y chromosome. The euchromatic region of the chromosome comprises approximately 15 megabases (Mb) of the total 45- to 50-Mb size and lies in the distal one-third of the long arm, where the pseudoautosomal region (PAR) is located terminally. The rest of the chromosome is predominantly heterochromatic. Because of the unusual organization of the chromosome (common to all mammalian Y chromosomes), a number of approaches were used to crossvalidate the results. Analysis of the 5,000-rad horse x hamster radiation hybrid panel produced a map spanning 88 centirays with 8 genes and 15 sequence-tagged site (STS) markers. The map was verified by several fluorescence in situ hybridization approaches. Isolation of bacterial artificial chromosome (BAC) clones for the radiation hybrid-mapped markers, end sequencing of the BACs, STS development, and bidirectional chromosome walking yielded 109 markers (100 STS and 9 genes) contained in 73 BACs. STS content mapping grouped the BACs into seven physically ordered contigs (of which one is predominantly ampliconic) that were verified by metaphase-, interphase-, and fiber-fluorescence in situ hybridization and also BAC fingerprinting. The map spans almost the entire euchromatic region of the chromosome, of which 20-25% (approximately 4 Mb) is covered by isolated BACs. The map is presently the most informative among Y chromosome maps in domesticated species, third only to the human and mouse maps. The foundation laid through the map will be critical in obtaining complete sequence of the euchromatic region of the horse Y chromosome, with an aim to identify Y specific factors governing male infertility and phenotypic sex variation.
Collapse
|
116
|
Jørgensen CB, Cirera S, Anderson SI, Archibald AL, Raudsepp T, Chowdhary B, Edfors-Lilja I, Andersson L, Fredholm M. Linkage and comparative mapping of the locus controlling susceptibility towards E. COLI F4ab/ac diarrhoea in pigs. Cytogenet Genome Res 2004; 102:157-62. [PMID: 14970696 DOI: 10.1159/000075742] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Accepted: 07/30/2003] [Indexed: 11/19/2022] Open
Abstract
In 1995, Edfors-Lilja and coworkers mapped the locus for the E. COLI K88ab (F4ab) and K88ac (F4ac) intestinal receptor to pig chromosome 13 (SSC13). Using the same family material we have refined the map position to a region between the microsatellite markers Sw207 and Sw225. Primers from these markers were used to screen a pig BAC library and the positive clones were used for fluorescent in situ hybridization (FISH) analysis. The results of the FISH analysis helped to propose a candidate gene region in the SSC13q41-->q44 interval. Shotgun sequencing of the FISH-mapped BAC clones revealed that the candidate region contains an evolutionary breakpoint between human and pig. In order to further characterise the rearrangements between SSC13 and human chromosome 3 (HSA3), detailed gene mapping of SSC13 was carried out. Based on this mapping data we have constructed a detailed comparative map between SSC13 and HSA3. Two candidate regions on human chromosome 3 have been identified that are likely to harbour the human homologue of the gene responsible for susceptibility towards E. COLI F4ab/ac diarrhoea in pigs.
Collapse
|
117
|
Wagner ML, Goh G, Wu JT, Raudsepp T, Morrison LY, Alexander LJ, Skow LC, Chowdhary BP, Mickelson JR. Radiation hybrid mapping of 63 previously unreported equine microsatellite loci. Anim Genet 2004; 35:159-62. [PMID: 15025590 DOI: 10.1111/j.1365-2052.2004.01109.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
118
|
Takahashi T, Yawata M, Raudsepp T, Lear TL, Chowdhary BP, Antczak DF, Kasahara M. Natural killer cell receptors in the horse: evidence for the existence of multiple transcribed LY49 genes. Eur J Immunol 2004; 34:773-784. [PMID: 14991607 DOI: 10.1002/eji.200324695] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In rodents, the Ly49 family encodes natural killer (NK) receptors interacting with classical MHC class I molecules, whereas the corresponding receptors in primates are members of the killer cell immunoglobulin-like receptor (KIR) family. Recent evidence indicates that the cattle, domestic cat, dog, and pig have a single LY49 and multiple KIR genes, suggesting that predominant NK receptors in most non-rodent mammals might be KIR. Here, we show that the horse has at least six LY49 genes, five with an immunoreceptor tyrosine-based inhibition motif (ITIM) and one with arginine in the transmembrane region. Interestingly, none of the horse KIR-like cDNA clones isolated by library screening encoded molecules likely to function asNK receptors; four types of clones were KIR-Ig-like transcript (KIR-ILT) hybrids and contained premature stop codons and/or frameshift mutations, and two putative allelic sequences predicting KIR3DL molecules had mutated ITIM. To our knowledge, this is the first report suggesting that non-rodent mammals may use LY49 as NK receptors for classical MHC class I. We also show that horse spleen expresses ILT-like genes with unique domain organizations. Radiation hybrid mapping and fluorescence in situ hybridization localized horse LY49 and KIR/ILT genes to chromosomes 6q13 and 10p12, respectively.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Ly/classification
- Antigens, Ly/genetics
- Chromosome Mapping
- DNA, Complementary/isolation & purification
- Horses/immunology
- Killer Cells, Natural/immunology
- Lectins, C-Type
- Molecular Sequence Data
- Phylogeny
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Immunologic/classification
- Receptors, Immunologic/genetics
- Receptors, KIR
- Receptors, NK Cell Lectin-Like
- Sequence Alignment
- Transcription, Genetic
Collapse
|
119
|
Wagner ML, Goh G, Wu JT, Raudsepp T, Morrison LY, Alexander LJ, Skow LS, Chowdhary BP, Mickelson JR. Radiation hybrid mapping of 75 previously unreported equine microsatellite loci. Anim Genet 2004; 35:68-71. [PMID: 14731236 DOI: 10.1046/j.1365-2052.2003.01070.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
120
|
Gustafson AL, Tallmadge RL, Ramlachan N, Miller D, Bird H, Antczak DF, Raudsepp T, Chowdhary BP, Skow LC. An ordered BAC contig map of the equine major histocompatibility complex. Cytogenet Genome Res 2004; 102:189-95. [PMID: 14970701 DOI: 10.1159/000075747] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2003] [Accepted: 07/30/2003] [Indexed: 11/19/2022] Open
Abstract
A physical map of ordered bacterial artificial chromosome (BAC) clones was constructed to determine the genetic organization of the horse major histocompatibility complex. Human, cattle, pig, mouse, and rat MHC gene sequences were compared to identify highly conserved regions which served as source templates for the design of overgo primers. Thirty-five overgo probes were designed from 24 genes and used for hybridization screening of the equine USDA CHORI 241 BAC library. Two hundred thirty-eight BAC clones were assembled into two contigs spanning the horse MHC region. The first contig contains the MHC class II region and was reduced to a minimum tiling path of nine BAC clones that span approximately 800 kb and contain at least 20 genes. A minimum tiling path of a second contig containing the class III/I region is comprised of 14 BAC clones that span approximately 1.6 Mb and contain at least 34 genes. Fluorescence in situ hybridization (FISH) using representative clones from each of the three regions of the MHC localized the contigs onto ECA20q21 and oriented the regions relative to one another and the centromere. Dual-colored FISH revealed that the class I region is proximal to the centromere, the class II region is distal, and the class III region is located between class I and II. These data indicate that the equine MHC is a single gene-dense region similar in structure and organization to the human MHC and is not disrupted as in ruminants and pigs.
Collapse
|
121
|
Ward TL, Valberg SJ, Lear TL, Guérin G, Milenkovic D, Swinburne JE, Binns MM, Raudsepp T, Skow L, Chowdhary BP, Mickelson JR. Genetic mapping of GBE1 and its association with glycogen storage disease IV in American Quarter horses. Cytogenet Genome Res 2004; 102:201-6. [PMID: 14970703 DOI: 10.1159/000075749] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Accepted: 08/01/2003] [Indexed: 11/19/2022] Open
Abstract
Comparative biochemical and histopathological data suggest that a deficiency in the glycogen branching enzyme (GBE) is responsible for a fatal neonatal disease in Quarter Horse foals that closely resembles human glycogen storage disease type IV (GSD IV). Identification of DNA markers closely linked to the equine GBE1 gene would assist us in determining whether a mutation in this gene leads to the GSD IV-like condition. FISH using BAC clones as probes assigned the equine GBE1 gene to a marker deficient region of ECA26q12-->q13. Four other genes, ROBO2, ROBO1, POU1F1, and HTR1F, that flank GBE1 within a 10-Mb segment of HSA3p12-->p11, were tightly linked to equine GBE1 when analyzed on the Texas A&M University 5000 rad equine radiation hybrid panel, while the GLB1, MITF, RYBP, and PROS1 genes that flank this 10-Mb interval were not linked with markers in the GBE1 group. A polymorphic microsatellite (GBEms1) in a GBE1 BAC clone was then identified and genetically mapped to ECA26 on the Animal Health Trust full-sibling equine reference family. All Quarter Horse foals affected with GSD IV were homozygous for an allele of GBEms1, as well as an allele of the most closely linked microsatellite marker, while a control horse population showed significant allelic variation with these markers. This data provides strong molecular genetic support for the candidacy of the GBE1 locus in equine GSD IV.
Collapse
|
122
|
Raudsepp T, Lee EJ, Kata SR, Brinkmeyer C, Mickelson JR, Skow LC, Womack JE, Chowdhary BP. Exceptional conservation of horse-human gene order on X chromosome revealed by high-resolution radiation hybrid mapping. Proc Natl Acad Sci U S A 2004; 101:2386-91. [PMID: 14983019 PMCID: PMC356960 DOI: 10.1073/pnas.0308513100] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development of a dense map of the horse genome is key to efforts aimed at identifying genes controlling health, reproduction, and performance. We herein report a high-resolution gene map of the horse (Equus caballus) X chromosome (ECAX) generated by developing and typing 116 gene-specific and 12 short tandem repeat markers on the 5,000-rad horse x hamster whole-genome radiation hybrid panel and mapping 29 gene loci by fluorescence in situ hybridization. The human X chromosome sequence was used as a template to select genes at 1-Mb intervals to develop equine orthologs. Coupled with our previous data, the new map comprises a total of 175 markers (139 genes and 36 short tandem repeats, of which 53 are fluorescence in situ hybridization mapped) distributed on average at approximately 880-kb intervals along the chromosome. This is the densest and most uniformly distributed chromosomal map presently available in any mammalian species other than humans and rodents. Comparison of the horse and human X chromosome maps shows remarkable conservation of gene order along the entire span of the chromosomes, including the location of the centromere. An overview of the status of the horse map in relation to mouse, livestock, and companion animal species is also provided. The map will be instrumental for analysis of X linked health and fertility traits in horses by facilitating identification of targeted chromosomal regions for isolation of polymorphic markers, building bacterial artificial chromosome contigs, or sequencing.
Collapse
|
123
|
Santani A, Raudsepp T, Chowdhary BP. Interstitial telomeric sites and NORs in Hartmann's zebra (Equus zebra hartmannae) chromosomes. Chromosome Res 2003; 10:527-34. [PMID: 12498342 DOI: 10.1023/a:1020945400949] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interstitial telomeric sites (ITSs) are considered as signatures of chromosomal rearrangements that take place during karyotype evolution. Understanding that equids have undergone rapid karyotype evolution compared with the average in other mammals, a search of these signatures was carried out in the Hartmann's mountain zebra (Equus zebra hartmannae; EZH) chromosomes. Six consistent ITSs were identified on five of the zebra chromosomes (EZH1p, 1q, 2q, 5q, 6q and 11q). The location of these ITSs coincided with fusion points of some of the evolutionarily conserved human-Hartmann's zebra chromosomal segments suggesting that the sequences are remnants of fusion events between ancestral chromosomes. Incidentally, three of the ITSs also matched with the presence of constitutive heterochromatin. Further, ribosomal gene clusters were localized on five zebra chromosomes and the data were compared with those in other equid species. The findings offer preliminary evidence on the likely evolution of some of the Hartmann's zebra chromosomes and add to the current search for clues that lead to the ancestral chromosomal configuration in equids.
Collapse
|
124
|
Cirera S, Jørgensen CB, Sawera M, Raudsepp T, Chowdhary BP, Fredholm M. Comparative mapping in the pig: localization of 214 expressed sequence tags. Mamm Genome 2003; 14:405-26. [PMID: 12879363 DOI: 10.1007/s00335-002-2242-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2002] [Accepted: 02/10/2003] [Indexed: 11/30/2022]
Abstract
In total, 214 ESTs (Expressed Sequence Tags) were assigned to the porcine gene map by using somatic cell hybrid mapping, radiation hybrid mapping, and FISH. The ESTs were isolated from a porcine small intestine cDNA library on the basis of significant sequence identity with human annotated genes. In total, 390 primer pairs were designed primarily in the 3' UTR of the sequences. Overall, 58.6% of the ESTs were successfully mapped by this approach. In total, 191 of the localizations are in agreement with the human comparative map, strongly indicating that these represent true orthologous genes. The remaining 23 ESTs provide new comparative mapping data, which should be considered as preliminary until confirmed by other studies. Our mapping efforts provide a significant contribution to the porcine map as well as to the comparative map for human and pig.
Collapse
|
125
|
Schiöth HB, Raudsepp T, Ringholm A, Fredriksson R, Takeuchi S, Larhammar D, Chowdhary BP. Remarkable synteny conservation of melanocortin receptors in chicken, human, and other vertebrates. Genomics 2003; 81:504-9. [PMID: 12706108 DOI: 10.1016/s0888-7543(03)00028-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The melanocortin receptors (MCR) belong to the superfamily of G-protein-coupled receptors that participate in both peripheral and central functions, including regulation of energy balance. Genomic clones of the five chicken (GGA) MCRs were isolated and used to find the chromosomal location of each of the loci. The genes encoding MC2R and MC5R mapped to the middle part of the long arm of chromosome 2 (GGA2q22-q26) and MC4R proximally on the same chromosome arm, close to the centromere (2q12). This arrangement seems to be conserved on chromosome 18 in the human (HSA18). The MC1R and MC3R genes mapped to different microchromosomes that also appear to share homology with the respective human localization. The conserved synteny of the MC2R, MC5R, and MC4R cluster in chicken (GGA2), human (HSA18), and other mammals suggests that this cluster is ancient and was formed by local gene duplications that most likely occurred early in vertebrate evolution. Analysis of conserved synteny with mammalian genomes and paralogon segments prompted us to predict an ancestral gene organization that may explain how this family was formed through both local duplication and tetraploidization processes.
Collapse
|