1
|
Evans AC, Marrett S, Neelin P, Collins L, Worsley K, Dai W, Milot S, Meyer E, Bub D. Anatomical mapping of functional activation in stereotactic coordinate space. Neuroimage 1992; 1:43-53. [PMID: 9343556 DOI: 10.1016/1053-8119(92)90006-9] [Citation(s) in RCA: 299] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Numerous applications have been reported for the stereotactic mapping of focal changes in cerebral blood flow during sensory and cognitive activation as measured with positron emission tomography (PET) subtraction images. Since these images lack significant anatomical information, analysis of these kinds of data has been restricted to an automated search for peaks in the PET subtraction dataset and localization of the peak coordinates within a standardized stereotactic atlas. This method is designed to identify isolated foci with dimensions smaller than the image resolution. Details of activation patterns that may extend over finite distances, following the underlying anatomical structures, will not be apparent. We describe the combined mapping into stereotactic coordinate space of magnetic resonance imaging (MRI) and PET information from each of a set of subjects such that the major features of the activation pattern, particularly extended tracts of increased blood flow, can be immediately assessed within their true anatomical context as opposed to that presumed using a standard atlas alone. Near areas of high anatomical variability, e.g., central sulcus, or of sharp curvature, e.g., frontal and temporal poles, this information can be essential to the localization of a focus to the correct gyrus or for the rejection of extracerebral peaks. It also allows for the removal from further analysis of data from cognitively-normal subjects with abnormal anatomy such as enlarged ventricles. In patients with neuropathology, e.g., Alzheimer's disease, arteriovenous malformation, stroke, or neoplasm, the use of correlated MRI is mandatory for correct localization of functional activation.
Collapse
|
|
33 |
299 |
2
|
Morgan D, Turnpenny L, Goodship J, Dai W, Majumder K, Matthews L, Gardner A, Schuster G, Vien L, Harrison W, Elder FF, Penman-Splitt M, Overbeek P, Strachan T. Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat Genet 1998; 20:149-56. [PMID: 9771707 DOI: 10.1038/2450] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visceral left-right asymmetry occurs in all vertebrates, but the inversion of embryo turning (inv) mouse, which resulted following a random transgene insertion, is the only model in which these asymmetries are consistently reversed. We report positional cloning of the gene underlying this recessive phenotype. Although transgene insertion was accompanied by neighbouring deletion and duplication events, our YAC phenotype rescue studies indicate that the mutant phenotype results from the deletion. After extensively characterizing the 47-kb deleted region and flanking sequences from the wild-type mouse genome, we found evidence for only one gene sequence in the deleted region. We determined the full-length 5.5-kb cDNA sequence and identified 16 exons, of which exons 3-11 were eliminated by the deletion, causing a frameshift. The novel gene specifies a 1062-aa product with tandem ankyrin-like repeat sequences. Characterization of complementing and non-complementing YAC transgenic families revealed that correction of the inv mutant phenotype was concordant with integration and intact expression of this novel gene, which we have named inversin (Invs).
Collapse
|
|
27 |
194 |
3
|
Xie S, Wu H, Wang Q, Cogswell JP, Husain I, Conn C, Stambrook P, Jhanwar-Uniyal M, Dai W. Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J Biol Chem 2001; 276:43305-12. [PMID: 11551930 DOI: 10.1074/jbc.m106050200] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polo-like kinase 3 (Plk3, previously termed Prk) contributes to regulation of M phase of the cell cycle (Ouyang, B., Pan, H., Lu, L., Li, J., Stambrook, P., Li, B., and Dai, W. (1997) J. Biol. Chem. 272, 28646-28651). Plk3 physically interacts with Cdc25C and phosphorylates this protein phosphatase predominantly on serine 216 (Ouyang, B., Li, W., Pan, H., Meadows, J., Hoffmann, I., and Dai, W. (1999) Oncogene 18, 6029-6036), suggesting that the role of Plk3 in mitosis is mediated, at least in part, through direct regulation of Cdc25C. Here we show that ectopic expression of a kinase-active Plk3 (Plk3-A) induced apoptosis. In response to DNA damage, the kinase activity of Plk3 was rapidly increased in an ATM-dependent manner, whereas that of Plk1 was markedly inhibited. Recombinant Plk3 phosphorylated in vitro a glutathione S-transferase fusion protein containing p53, but not glutathione S-transferase alone. Recombinant Plk1 also phosphorylated p53 but on residues that differed from those targeted by Plk3. Co-immunoprecipitation and pull-down assays demonstrated that Plk3 physically interacted with p53 and that this interaction was enhanced upon DNA damage. In vitro kinase assays followed by immunoblotting showed that serine 20 of p53 was a target of Plk3. Furthermore, expression of a kinase-defective Plk3 mutant (Plk3(K52R)) resulted in significant reduction of p53 phosphorylation on serine 20, which was correlated with a decrease in the expression of p21 and with a concomitant increase in cell proliferation. These results strongly suggest that Plk3 functionally links DNA damage to cell cycle arrest and apoptosis via the p53 pathway.
Collapse
|
|
24 |
172 |
4
|
Abstract
Although microfluidics has shown exciting potential, its broad applications are significantly limited by drawbacks of the materials used to make them. In this work, we present a convenient strategy for fabricating whole-Teflon microfluidic chips with integrated valves that show outstanding inertness to various chemicals and extreme resistance against all solvents. Compared with other microfluidic materials [e.g., poly(dimethylsiloxane) (PDMS)] the whole-Teflon chip has a few more advantages, such as no absorption of small molecules, little adsorption of biomolecules onto channel walls, and no leaching of residue molecules from the material bulk into the solution in the channel. Various biological cells have been cultured in the whole-Teflon channel. Adherent cells can attach to the channel bottom, spread, and proliferate well in the channels (with similar proliferation rate to the cells in PDMS channels with the same dimensions). The moderately good gas permeability of the Teflon materials makes it suitable to culture cells inside the microchannels for a long time.
Collapse
|
research-article |
14 |
164 |
5
|
Chen B, Wang L, Dai W, Shang S, Lv Y, Gao S. Metal-Free and Solvent-Free Oxidative Coupling of Amines to Imines with Mesoporous Carbon from Macrocyclic Compounds. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00244] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
|
10 |
125 |
6
|
Xia Z, Dai W, Zhang Y, White SA, Boyd GD, Mathews FS. Determination of the gene sequence and the three-dimensional structure at 2.4 angstroms resolution of methanol dehydrogenase from Methylophilus W3A1. J Mol Biol 1996; 259:480-501. [PMID: 8676383 DOI: 10.1006/jmbi.1996.0334] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The DNA sequences for the genes encoding the heavy and light subunits of methanol dehydrogenase from Methylophilus methylotrophus W3A1 have been determined. The deduced amino acid sequence has enabled the structure of the enzyme to be refined at 2.4 angstrom resolution against X-ray data collected on a Hamlin area detector. The structure was refined using the programs PROFFT and X-PLOR with several model building step interspersed. The final model contains two heavy chains (571 amino acids), two light chains (69 amino acids), two molecules of pyrroloquinoline quinone, two Ca2+ and 521 solvent molecules. Each half molecule contains four disulfide linkages and four cis peptides. One of the disulfides is formed from two adjacent cysteine residues linked by a trans peptide which creates a novel eight-membered ring. The heavy subunit is an 8-fold beta-propeller, each "blade" of which is a four-stranded antiparallel twisted beta-sheet. The light chain is an elongated subunit stretching across the surface of the heavy subunit, with residues 1 to 32 containing four beta-turns and residues 33 to 62 forming a helix; however, it neither interacts with the active site, nor the other HL dimer and its functional role is obscure. Around the 8-fold beta-propeller there is a repeating pattern of tryptophan residues located in the outer strand of seven of the eight beta-leaflets, each packed between adjacent leaflets. Each of these tryptophan residues is centered in the beta-strand and participates in the main chain hydrogen bonding of the sheet. Five of the seven tryptophan residues have closely similar interactions with the adjacent beta-leaflet including stacking of the tryptophan indole rings against a peptide plane and formation of a hydrogen bond from NE1 of the indole ring to a main-chain carbonyl. This repeating pattern is conserved over a number of MEDH sequences. The PQQ is located on the pseudo 8-fold rotation axis of the heavy subunit, in a funnel-shaped internal cavity, sandwiched between the indole ring of Trp237 and the two sulfur atoms of the Cys103-Cys104 vicinal disulfide. A hexacoordinate Ca2+ is bound in the active site by one nitrogen and five oxygen ligands, three from the PQQ and the others from two protein side-chains. In the active site an isolated solvent molecule is bound to the O5 of PQQ and to a nearby aspartate side-chain; its position may be the binding site for methanol. The aspartate might than serve as a general base for proton abstraction from the substrate hydroxyl. The C5 atom of PQQ could be activated by electrophilic catalysis by a nearby argenine side-chain or by the calcium ion bound to PQQ.
Collapse
|
|
29 |
117 |
7
|
Li B, Ouyang B, Pan H, Reissmann PT, Slamon DJ, Arceci R, Lu L, Dai W. Prk, a cytokine-inducible human protein serine/threonine kinase whose expression appears to be down-regulated in lung carcinomas. J Biol Chem 1996; 271:19402-8. [PMID: 8702627 DOI: 10.1074/jbc.271.32.19402] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have cloned and characterized a putative protein serine/threonine kinase termed prk through a combination of polymerase chain reaction and conventional cDNA library screening approaches. There are apparently two distinct domains within prk protein deduced from its nucleotide sequences. The amino-terminal portion has the feature of the catalytic domain of a serine/threonine kinase and shows strong homology to mouse fnk and other polo family kinases including mouse snk, human and murine plk, Drosophila polo, and yeast Cdc5. The carboxyl-terminal portion, presumably the regulatory domain, shares extensive homology to mouse fnk. Northern blotting analyses reveal that prk expression is restricted to a very limited number of tissues with placenta, ovaries, and lung containing detectable amounts of prk mRNA. prk mRNA expression is also detected at a low level in the megakaryocytic cell line Dami, MO7e, and three brain glioma cell lines. In addition, refeeding of serum-deprived MO7e, Dami, and K562 cells of hematopoietic origin and GMOO637D of lung fibroblasts rapidly activates prk mRNA expression with its peak induction around 2 h after serum addition. prk gene activation by the serum requires no new protein synthesis. The recombinant cytokines such as interleukin-3 and thrombopoietin also activate prk mRNA expression in MO7e cells. Furthermore, a survey of RNAs isolated from the tumor and the uninvolved tissues from 18 lung cancer patients reveals that prk mRNA expression is significantly down-regulated in tumor tissues. Southern blotting analysis indicates that the prk gene is present in a single copy in the genome of tumors and normal cells. Taken together, these results suggest that prk expression may be restricted to proliferating cells and involved in the regulation of cell cycle progression. The molecular cloning of prk cDNA will facilitate the study of its biological role as well as its potential role in tumorigenesis.
Collapse
|
|
29 |
113 |
8
|
Xie S, Wang Q, Wu H, Cogswell J, Lu L, Jhanwar-Uniyal M, Dai W. Reactive oxygen species-induced phosphorylation of p53 on serine 20 is mediated in part by polo-like kinase-3. J Biol Chem 2001; 276:36194-9. [PMID: 11447225 DOI: 10.1074/jbc.m104157200] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Upon exposure of cells to hydrogen peroxide (H(2)O(2)) phosphorylation of p53 was rapidly induced in human fibroblast GM00637, and this phosphorylation occurred on serine 9, serine 15, serine 20, but not on serine 392. In addition, H(2)O(2)-induced phosphorylation of p53 was followed by induction of p21, suggesting functional activation of p53. Induction of phosphorylation of p53 on multiple serine residues by H(2)O(2) was caffeine-sensitive and blocked in ATM(-/-) cells. Polo-like kinase-3 (Plk3) activity was also activated upon H(2)O(2) treatment, and this activation was ATM-dependent. Recombinant His(6)-Plk3 phosphorylated glutathione S-transferase (GST)-p53 fusion protein but not GST alone. When phoshorylated in vitro by His(6)-Plk3, but not by the kinase-defective mutant His6-Plk3(K52R), GST-p53 was recognized by an antibody specifically to serine 20-phosphorylated p53, indicating that serine 20 is an in vitro target of Plk3. Also serine 20-phosphorylated p53 was coimmunoprecipitated with Plk3 in cells treated with H(2)O(2). Furthermore, although H(2)O(2) strongly induced serine 15 phosphorylation of p53, it failed to induce serine 20 phosphorylation in Plk3-dificient Daudi cells. Ectopic expression of a Plk3 dominant negative mutant, Plk3(K52R), in GM00637 cells suppressed H(2)O(2)-induced serine 20 phosphorylation. Taken together, our studies strongly suggest that the oxidative stress-induced activation of p53 is at least in part mediated by Plk3.
Collapse
|
|
24 |
112 |
9
|
Zhao Y, He G, Dai W, Chen H. High Catalytic Activity in the Phenol Hydroxylation of Magnetically Separable CuFe2O4–Reduced Graphene Oxide. Ind Eng Chem Res 2014. [DOI: 10.1021/ie501624u] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
|
11 |
97 |
10
|
Gupta SL, Carlin JM, Pyati P, Dai W, Pfefferkorn ER, Murphy MJ. Antiparasitic and antiproliferative effects of indoleamine 2,3-dioxygenase enzyme expression in human fibroblasts. Infect Immun 1994; 62:2277-84. [PMID: 8188349 PMCID: PMC186508 DOI: 10.1128/iai.62.6.2277-2284.1994] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Studies were carried out to evaluate the proposed role of indoleamine 2,3-dioxygenase (INDO) induction in the antimicrobial and antiproliferative effects of gamma interferon (IFN-gamma) in human fibroblasts. The INDO cDNA coding region was cloned in the pMEP4 expression vector, containing the metallothionein (MTII) promoter in the sense (+ve) or the antisense (-ve) orientation. Human fibroblasts (GM637) stably transfected with the sense construct expressed INDO activity after treatment with CdCl2 or ZnSO4, but cells transfected with the antisense construct did not. The growth of Chlamydia psittaci was strongly inhibited in INDO +ve cells but not in INDO -ve cells after treatment with Cd2+ or Zn2+. The inhibition correlated with the level of INDO activity induced and could be reversed by the addition of excess tryptophan to the medium. The growth of Toxoplasma gondii was also strongly inhibited in INDO +ve cells but not in INDO -ve cells after treatment with Cd2+. Expression of Cd(2+)-induced INDO activity also inhibited thymidine incorporation and led to cytotoxicity in INDO +ve cells but not in INDO -ve cells. Thus, the induction of INDO activity by IFN-gamma may be an important factor in the antimicrobial and antiproliferative effects of IFN-gamma in human fibroblasts.
Collapse
|
research-article |
31 |
94 |
11
|
Ouyang B, Pan H, Lu L, Li J, Stambrook P, Li B, Dai W. Human Prk is a conserved protein serine/threonine kinase involved in regulating M phase functions. J Biol Chem 1997; 272:28646-51. [PMID: 9353331 DOI: 10.1074/jbc.272.45.28646] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human prk encodes a novel protein serine/threonine kinase capable of strongly phosphorylating casein but not histone H1 in vitro. prk expression is tightly regulated at various levels during different stages of the cell cycle in lung fibroblasts. The Prk kinase activity is relatively low during mitosis, G1, and G1/S, and peaks during late S and G2 stages of the cell cycle. Recombinant human Prk expressed through the baculoviral vector system is capable of phosphorylating Cdc25C, a positive regulator for the G2/M transition. Human prk shares significant sequence homology with Saccharomyces cerevisiae CDC5 and Drosophila melanogaster polo, both of which are essential for mitosis and meiosis. Full-length prk transcripts greatly potentiate progesterone-induced meiotic maturation of Xenopus laevis oocytes. On the other hand, antisense prk transcripts significantly delay and reduce the rate of oocyte maturation. When expressed in a CDC5 mutant strain of S. cerevisiae, human Prk, but not a deletional mutant protein, fully rescues the temperature-sensitive phenotype of the budding yeast. Taken together, prk may represent a new protein kinase, playing an important role in regulating the onset and/or progression of mitosis in mammalian cells.
Collapse
|
|
28 |
91 |
12
|
Dai W, Ma T, Yan Q, Gao J, Tan X, Lv L, Hou H, Wei Q, Yu J, Wu J, Yao Y, Du S, Sun R, Jiang N, Wang Y, Kong J, Wong C, Maruyama S, Lin CT. Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials. ACS NANO 2019; 13:11561-11571. [PMID: 31550125 DOI: 10.1021/acsnano.9b05163] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Along with the technology evolution for dense integration of high-power, high-frequency devices in electronics, the accompanying interfacial heat transfer problem leads to urgent demands for advanced thermal interface materials (TIMs) with both high through-plane thermal conductivity and good compressibility. Most metals have satisfactory thermal conductivity but relatively high compressive modulus, and soft silicones are typically thermal insulators (0.3 W m-1 K-1). Currently, it is a great challenge to develop a soft material with the thermal conductivity up to metal level for TIM application. This study solves this problem by constructing a graphene-based microstructure composed of mainly vertical graphene and a thin cap of horizontal graphene layers on both the top and bottom sides through a mechanical machining process to manipulate the stacked architecture of conventional graphene paper. The resultant graphene monolith has an ultrahigh through-plane thermal conductivity of 143 W m-1 K-1, exceeding that of many metals, and a low compressive modulus of 0.87 MPa, comparable to that of silicones. In the actual TIM performance measurement, the system cooling efficiency with our graphene monolith as TIM is 3 times as high as that of the state-of-the-art commercial TIM, demonstrating the superior ability to solve the interfacial heat transfer issues in electronic systems.
Collapse
|
|
6 |
88 |
13
|
Shen D, Zhan Z, Liu Z, Cao Y, Zhou L, Liu Y, Dai W, Nishimura K, Li C, Lin CT, Jiang N, Yu J. Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires. Sci Rep 2017; 7:2606. [PMID: 28572604 PMCID: PMC5453999 DOI: 10.1038/s41598-017-02929-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/20/2017] [Indexed: 11/09/2022] Open
Abstract
In this study, we report a facile approach to fabricate epoxy composite incorporated with silicon carbide nanowires (SiC NWs). The thermal conductivity of epoxy/SiC NWs composites was thoroughly investigated. The thermal conductivity of epoxy/SiC NWs composites with 3.0 wt% filler reached 0.449 Wm-1 K-1, approximately a 106% enhancement as compared to neat epoxy. In contrast, the same mass fraction of silicon carbide micron particles (SiC MPs) incorporated into epoxy matrix showed less improvement on thermal conduction properties. This is attributed to the formation of effective heat conduction pathways among SiC NWs as well as a strong interaction between the nanowires and epoxy matrix. In addition, the thermal properties of epoxy/SiC NWs composites were also improved. These results demonstrate that we developed a novel approach to enhance the thermal conductivity of the polymer composites which meet the requirement for the rapid development of the electronic devices.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
87 |
14
|
Yao W, Dai W, Jiang L, Lay EYA, Zhong Z, Ritchie RO, Li X, Ke H, Lane NE. Sclerostin-antibody treatment of glucocorticoid-induced osteoporosis maintained bone mass and strength. Osteoporos Int 2016; 27:283-294. [PMID: 26384674 PMCID: PMC4958115 DOI: 10.1007/s00198-015-3308-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/25/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED This study was to determine if antibody against sclerostin (Scl-Ab) could prevent glucocorticoid (GC)-induced osteoporosis in mice. We found that Scl-Ab prevented GC-induced reduction in bone mass and bone strength and that the anabolic effects of Scl-Ab might be partially achieved through the preservation of osteoblast activity through autophagy. INTRODUCTION Glucocorticoids (GCs) inhibit bone formation by altering osteoblast and osteocyte cell activity and lifespan. A monoclonal antibody against sclerostin, Scl-Ab, increased bone mass in both preclinical animal and clinical studies in subjects with low bone mass. The objectives of this study were to determine if treatment with the Scl-Ab could prevent loss of bone mass and strength in a mouse model of GC excess and to elucidate if Scl-Ab modulated bone cell activity through autophagy. METHODS We generated reporter mice that globally expressed dsRed fused to LC3, a protein marker for autophagosomes, and evaluated the dose-dependent effects of GCs (0, 0.8, 2.8, and 4 mg/kg/day) and Scl-Ab on autophagic osteoblasts, bone mass, and bone strength. RESULTS GC treatment at 2.8 and 4 mg/kg/day of methylprednisolone significantly lowered trabecular bone volume (Tb-BV/TV) at the lumbar vertebrae and distal femurs, cortical bone mass at the mid-shaft femur (FS), and cortical bone strength compared to placebo (PL). In mice treated with GC and Scl-Ab, Tb-BV/TV increased by 60-125 %, apparent bone strength of the lumbar vertebrae by 30-70 %, FS-BV by 10-18 %, and FS-apparent strength by 13-15 %, as compared to GC vehicle-treated mice. GC treatment at 4 mg/kg/day reduced the number of autophagic osteoblasts by 70 % on the vertebral trabecular bone surface compared to the placebo group (PL, GC 0 mg), and GC + Scl-Ab treatment. CONCLUSIONS Treatment with Scl-Ab prevented GC-induced reduction in both trabecular and cortical bone mass and strength and appeared to maintain osteoblast activity through autophagy.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
83 |
15
|
Liu Z, Shen D, Yu J, Dai W, Li C, Du S, Jiang N, Li H, Lin CT. Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites. RSC Adv 2016. [DOI: 10.1039/c5ra27223h] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Three dimensional graphene foam incorporated into epoxy matrix greatly enhance its thermal conductivity (up to 1.52 W mK−1) at low graphene foam loading (5.0 wt%), over an eight-fold enhancement in comparison with that of neat epoxy.
Collapse
|
|
9 |
82 |
16
|
Zhao S, Hung FC, Colvin JS, White A, Dai W, Lovicu FJ, Ornitz DM, Overbeek PA. Patterning the optic neuroepithelium by FGF signaling and Ras activation. Development 2001; 128:5051-60. [PMID: 11748141 DOI: 10.1242/dev.128.24.5051] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During vertebrate embryogenesis, the neuroectoderm differentiates into neural tissues and also into non-neural tissues such as the choroid plexus in the brain and the retinal pigment epithelium in the eye. The molecular mechanisms that pattern neural and non-neural tissues within the neuroectoderm remain unknown. We report that FGF9 is normally expressed in the distal region of the optic vesicle that is destined to become the neural retina, suggesting a role in neural patterning in the optic neuroepithelium. Ectopic expression of FGF9 in the proximal region of the optic vesicle extends neural differentiation into the presumptive retinal pigment epithelium, resulting in a duplicate neural retina in transgenic mice. Ectopic expression of constitutively active Ras is also sufficient to convert the retinal pigment epithelium to neural retina, suggesting that Ras-mediated signaling may be involved in neural differentiation in the immature optic vesicle. The original and the duplicate neural retinae differentiate and laminate with mirror-image polarity in the absence of an RPE, suggesting that the program of neuronal differentiation in the retina is autonomously regulated. In mouse embryos lacking FGF9, the retinal pigment epithelium extends into the presumptive neural retina, indicating a role of FGF9 in defining the boundary of the neural retina.
Collapse
|
|
24 |
82 |
17
|
Gutai J, LaPorte R, Kuller L, Dai W, Falvo-Gerard L, Caggiula A. Plasma testosterone, high density lipoprotein cholesterol and other lipoprotein fractions. Am J Cardiol 1981; 48:897-902. [PMID: 7304438 DOI: 10.1016/0002-9149(81)90356-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
High density lipoprotein (HDL) cholesterol levels are strongly related to risk of heart attack. Identification of determinants of high density lipoprotein cholesterol may provide important information concerning the cause of heart disease. The relation between one possible determinant, testosterone, and high density lipoprotein cholesterol and other lipoprotein fractions was evaluated in 247 middle-aged men. The results indicate that testosterone levels (both free and total) were positively correlated with high density lipoprotein cholesterol (r = +0.24, p less than 0.01) and negatively correlated with triglycerides and very low density lipoprotein cholesterol. The association between testosterone and high density lipoprotein cholesterol could not be explained by intake of alcohol, obesity, age, smoking or physical activity. Furthermore, the relation of testosterone to HDL cholesterol was independent of the relation of testosterone to very low density lipoprotein (VLDL) cholesterol or triglycerides.
Collapse
|
|
44 |
81 |
18
|
Wang L, Xu D, Dai W, Lu L. An ultraviolet-activated K+ channel mediates apoptosis of myeloblastic leukemia cells. J Biol Chem 1999; 274:3678-85. [PMID: 9920918 DOI: 10.1074/jbc.274.6.3678] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of mammalian cells to UV light causes initial changes in the cell membrane, induces phosphorylation and clustering of growth factor/cytokine receptors, and activates the Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) signaling pathway leading to programmed cell death (apoptosis). In this study, we found that an early event in the cell membrane of myeloblastic leukemia (ML-1) cells was the vigorous activation of the voltage-gated K+ channel by UV irradiation. The strong enhancement by UV irradiation of K+ channel activity in the cell membrane subsequently activated the JNK/SAPK signaling pathway and resulted in myeloblastic leukemia cell apoptosis. Suppression of UV-induced K+ channel activation with specific channel blockers prevented UV-induced apoptosis through inhibition of UV-induced activation of the proteins SEK (SPAK kinase) and JNK. However, suppression of K+ channel activity could not protect cells from etoposide-induced apoptosis, which bypasses the membrane event. Elimination of extracellular Ca2+ had no effect on the UV-induced and K+ channel-mediated JNK/SAPK activation. Thus, we have identified a novel mechanism in which activation of K+ channels by UV-irradiation upstream of SEK and SAPK/JNK mediates UV-induced myeloblastic cell apoptosis.
Collapse
|
|
26 |
81 |
19
|
Dai W, Gupta SL. Regulation of indoleamine 2,3-dioxygenase gene expression in human fibroblasts by interferon-gamma. Upstream control region discriminates between interferon-gamma and interferon-alpha. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45453-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
|
35 |
80 |
20
|
Wen L, Mu W, Lu H, Wang X, Fang J, Jia Y, Li Q, Wang D, Wen S, Guo J, Dai W, Ren X, Cui J, Zeng G, Gao J, Wang Z, Cheng B. Porphyromonas gingivalis Promotes Oral Squamous Cell Carcinoma Progression in an Immune Microenvironment. J Dent Res 2020; 99:666-675. [PMID: 32298192 DOI: 10.1177/0022034520909312] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence has revealed a significant association between microorganisms and oral squamous cell carcinoma (OSCC). Porphyromonas gingivalis, the keystone pathogen in chronic periodontitis, is considered an important potential etiologic agent of OSCC, but the underlying immune mechanisms through which P. gingivalis mediates tumor progression of the oral cancer remain poorly understood. Our cohort study showed that the localization of P. gingivalis in tumor tissues was related to poor survival of patients with OSCC. Moreover, P. gingivalis infection increased oral lesion multiplicity and size and promoted tumor progression in a 4-nitroquinoline-1 oxide (4NQO)–induced carcinogenesis mouse model by invading the oral lesions. In addition, CD11b+ myeloid cells and myeloid-derived suppressor cells (MDSCs) showed increased infiltration of oral lesions. Furthermore, in vitro observations showed that MDSCs accumulated when human-derived dysplastic oral keratinocytes (DOKs) were exposed to P. gingivalis, and CXCL2, CCL2, interleukin (IL)–6, and IL-8 may be potential candidate genes that facilitate the recruitment of MDSCs. Taken together, our findings suggest that P. gingivalis promotes tumor progression by generating a cancer-promoting microenvironment, indicating a close relationship among P. gingivalis, tumor progression of the oral cancer, and immune responses.
Collapse
|
|
5 |
79 |
21
|
Abstract
On the basis of visual assessment of figure drawings and front/profile images, past researchers believed that the waist-hip ratio (WHR) and the body mass index (BMI) were two putative cues to female physical attractiveness. However, this view was not tested on three-dimensional (3D) female images. In the present study, 3D images of 31 Caucasian females having varying body weights (BMI ranged from 16 to 35) were shown to 29 male and 25 female viewers, who were asked to rate the physical attractiveness. The results showed that the body volume divided by the square of the height, defined as volume height index (VHI), is the most important and direct visual determinant of female physical attractiveness. In determining the female attractiveness, human observers may first use VHI as a visual cue, which is also a key indicator of health and fertility owing to its strong linear relation to BMI. To fine-tune the judgement, observers may then use body proportions, the most important of which are the ratio of waist height over the chin height (WHC) (a measure of the length of legs over total tallness) and the deviation of WHR from the ideal ratio. It also appears that the effect of the body's physical parameters on the perception of female physical attractiveness conforms to Stevens' power law of psychophysics.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
78 |
22
|
Wang L, Li K, Zhang Q, Zeng Y, Dai W, Su Y, Wang G, Tan Y, Jin Z, Yu X, Si T. Short-term effects of escitalopram on regional brain function in first-episode drug-naive patients with major depressive disorder assessed by resting-state functional magnetic resonance imaging. Psychol Med 2014; 44:1417-1426. [PMID: 23942213 DOI: 10.1017/s0033291713002031] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Most knowledge regarding the effects of antidepressant drugs is at the receptor level, distal from the nervous system effects that mediate their clinical efficacy. Using functional magnetic resonance imaging (fMRI), this study investigated the effects of escitalopram, a selective serotonin reuptake inhibitor (SSRI), on resting-state brain function in patients with major depressive disorder (MDD). METHOD Fourteen first-episode drug-naive MDD patients completed two fMRI scans before and after 8 weeks of escitalopram therapy. Scans were also acquired in 14 matched healthy subjects. Data were analyzed using the regional homogeneity (ReHo) approach. RESULTS Compared to controls, MDD patients before treatment demonstrated decreased ReHo in the frontal (right superior frontal gyrus), temporal (left middle and right inferior temporal gyri), parietal (right precuneus) and occipital (left superior occipital gyrus and right cuneus) cortices, and increased ReHo in the left dorsal medial prefrontal gyrus and left anterior lobe of the cerebellum. Compared to the unmedicated state, ReHo in the patients after treatment was decreased in the left dorsal medial prefrontal gyrus, the right insula and the bilateral thalamus, and increased in the right superior frontal gyrus. Compared to controls, patients after treatment displayed a ReHo decrease in the right precuneus and a ReHo increase in the left anterior lobe of the cerebellum. CONCLUSIONS Successful treatment with escitalopram may be associated with modulation of resting-state brain activity in regions within the fronto-limbic circuit. This study provides new insight into the effects of antidepressants on functional brain systems in MDD.
Collapse
|
|
11 |
75 |
23
|
Amin S, Desai D, Dai W, Harvey RG, Hecht SS. Tumorigenicity in newborn mice of fjord region and other sterically hindered diol epoxides of benzo[g]chrysene, dibenzo[a,l]pyrene (dibenzo[def,p]chrysene), 4H-cyclopenta[def]chrysene and fluoranthene. Carcinogenesis 1995; 16:2813-7. [PMID: 7586203 DOI: 10.1093/carcin/16.11.2813] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Diol epoxides of benzo[g]chrysene, dibenzo[a,l]pyrene (dibenzo[def,p]chrysene), 4H-cyclopenta[def]chrysene and fluoranthene were tested for tumorigenicity in newborn mice. The compounds tested were racemic trans-11,12-dihydroxy-anti-13,14-epoxy-11,12,13, 14-tetrahydrobenzo[g]-chrysene (BgCDE), trans-11, 12-dihydroxy-anti-13,14-epoxy-11,12,13,14-tetrahydrodibenzo [a,l]pyrene (DB[a,l]PDE), trans-1,2-dihydroxy-anti-3, 3a-epoxy,1,2,3,3a-tetrahydro-4H-cyclopenta[def]chrysene (C[def]C-1,3a-DE), trans-6,7-dihydroxy-anti-8,9-epoxy-10b,1, 2,3-tetrahydrofluoranthene (FDE). BgCDE and DB[a,l]PDE are fjord region diol epoxides and their tumorigenic activities were compared to those of trans-3,4-dihydroxy-anti-1, 2-epoxy-1,2,3,4-tetrahydrobenzo[c]phenanthrene (BcPDE), a fjord region diol epoxide with known high tumorigenicity and trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9, 10-tetrahydrobenzo[a]-pyrene (BPDE), a highly tumorigenic bay region diol epoxide. The protocol called for testing of each compound at a total dose of 25 nmol per mouse, administered on days 1, 7 and 15 of life, with killing at age 35 weeks. BgCDE had similar activity as BcPDE for induction of lung tumors and was more active than BcPDE for induction of liver tumors in male mice. Both compounds were significantly more tumorigenic than BPDE. DB[a,l]PDE was highly toxic. All mice died within 1 week of the first dose. It was then tested in a second study using total doses of 5 and 1 nmol per mouse. Only the first dose of the intended 5 nmol total dose was given due to toxicity. The full course of doses with a total of 1 nmol per mouse was administered; DB[a,l]PDE induced a significant incidence and multiplicity of lung tumors and, in male mice, liver tumors at both doses. These results demonstrate that fjord diol epoxides are highly active tumorigens in newborn mice, with activity greater than that of the most active unsubstituted bay region diol epoxide, BPDE. C[def]C-1-3a-DE and C[def]-6-9-DE were compared to trans-1,2-dihydroxy-anti-3, 4-epoxy-1,2,3,4-tetrahydrochrysene (CDE), at a total dose of 500 nmol per mouse. FDE was also tested at this dose. The most active compound among the chrysene derivatives was C[def]C-1-3a-DE, followed by C[def]C-6-9-DE and CDE. C[def]C-1-3a-DE has a sterically constrained bay region, in which the benzylic carbon of the tri-substituted epoxide ring is part of a fused ring system. This feature is also present in FDE, which and considerable tumorigenic activity, greater than that of CDE in lung and greater than any of the chrysene derivatives in liver.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
30 |
74 |
24
|
Dai W, Gupta SL. Molecular cloning, sequencing and expression of human interferon-gamma-inducible indoleamine 2,3-dioxygenase cDNA. Biochem Biophys Res Commun 1990; 168:1-8. [PMID: 2109605 DOI: 10.1016/0006-291x(90)91666-g] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The antiproliferative action of human interferon (HuIFN)-gamma on human cells and the inhibition of intracellular pathogens, e.g. Toxoplasma gondii and Chlamydia psittaci, is at least in part due to an induction of indoleamine 2,3-dioxygenase (IDO) enzyme which degrades tryptophan, an essential amino acid. A cDNA clone (called C42) was isolated from a cDNA library made from poly(A)+ RNA obtained from HuIFN-gamma-treated human fibroblasts. Its nucleotide sequence revealed an open reading frame coding for a polypeptide of 403 amino acids, but no homology with any known gene in GenBank database was found. Evidence was obtained indicating that this cDNA codes for IDO: (i) Hybrid selected C42 specific poly(A)+ RNA from IFN-gamma-treated human cells coded for a polypeptide in vitro of approximately 42 kD (reported size of IDO, approximately 40 kD) which was immunoprecipitated by monoclonal anti-IDO antibody but not by a control antibody; and (ii) transfection of human fibroblasts with an expression plasmid containing C42 cDNA transcribed from chicken beta-actin promoter led to constitutive expression of C42 specific RNA as well as IDO activity. This cDNA clone will be useful in studying the role of IDO in the biological effects of IFN-gamma, and the regulation of IDO gene by IFN-gamma.
Collapse
|
|
35 |
70 |
25
|
Yan Q, Dai W, Gao J, Tan X, Lv L, Ying J, Lu X, Lu J, Yao Y, Wei Q, Sun R, Yu J, Jiang N, Chen D, Wong CP, Xiang R, Maruyama S, Lin CT. Ultrahigh-Aspect-Ratio Boron Nitride Nanosheets Leading to Superhigh In-Plane Thermal Conductivity of Foldable Heat Spreader. ACS NANO 2021; 15:6489-6498. [PMID: 33734662 DOI: 10.1021/acsnano.0c09229] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The rapid development of integrated circuits and electronic devices creates a strong demand for highly thermally conductive yet electrically insulating composites to efficiently solve "hot spot" problems during device operation. On the basis of these considerations, hexagonal boron nitride nanosheets (BNNS) have been regarded as promising fillers to fabricate polymer matrix composites. However, so far an efficient approach to prepare ultrahigh-aspect-ratio BNNS with large lateral size while maintaining an atomically thin nature is still lacking, seriously restricting further improvement of the thermal conductivity for BNNS/polymer composites. Here, a rapid and high-yield method based on a microfluidization technique is developed to obtain exfoliated BNNS with a record high aspect ratio of ≈1500 and a low degree of defects. A foldable and electrically insulating film made of such a BNNS and poly(vinyl alcohol) (PVA) matrix through filtration exhibits an in-plane thermal conductivity of 67.6 W m-1 K-1 at a BNNS loading of 83 wt %, leading to a record high value of thermal conductivity enhancement (≈35 500). The composite film then acts as a heat spreader for heat dissipation of high-power LED modules and shows superior cooling efficiency compared to commercial flexible copper clad laminate. Our findings provide a practical route to produce electrically insulating polymer composites with high thermal conductivity for thermal management applications in modern electronic devices.
Collapse
|
|
4 |
70 |