101
|
Liu XY, Fan N. [Lamina cribrosa defect and progress of glaucoma]. [ZHONGHUA YAN KE ZA ZHI] CHINESE JOURNAL OF OPHTHALMOLOGY 2020; 56:17-20. [PMID: 31937059 DOI: 10.3760/cma.j.issn.0412-4081.2020.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lamina cribrosa (LC) is considered as the original site of glaucomatous damage of axons of retinal ganglion cells, and therefore understanding the morphological changes in the LC will help to uncover the pathogenesis of glaucoma. Previous studies have indicated that the progress of glaucomatous optic neuropathy may be associated with the LC defects. Based on imaging by swept source optical coherence tomography B-Scan of the optic discs of patients with glaucoma, for the first time the spontaneous local LC defects have been found to balance the gradient between intraocular and cerebrospinal fluid pressures, which in turn can slow down the progress of glaucomatous optic neuropathy. This article provides the direct evidence supporting the role of intraocular and cerebrospinal fluid pressure gradient in the pathogenesis of glaucoma. This finding will increase our understanding of the mechanisms underlying glaucoma and help to develop novel strategies for its treatment and prognosis analysis. (Chin J Ophthalmol, 2020, 56: 17-20).
Collapse
|
102
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Ferroli RB, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dou ZL, Du SX, Fan JZ, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang XZ, Huesken N, Hussain T, Andersson WI, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XH, Li XL, Li XN, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Lin YJ, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu LY, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales CM, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi HR, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Richter M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang RM, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YF, Wang YQ, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Weidner F, Wen HW, Wen SP, Wiedner U, Wilkinson G, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yu T, Yuan CZ, Yuan XQ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Measurement of the Cross Section for e^{+}e^{-}→Ξ^{-}Ξ[over ¯]^{+} and Observation of an Excited Ξ Baryon. PHYSICAL REVIEW LETTERS 2020; 124:032002. [PMID: 32031834 DOI: 10.1103/physrevlett.124.032002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Using a total of 11.0 fb^{-1} of e^{+}e^{-} collision data with center-of-mass energies between 4.009 and 4.6 GeV and collected with the BESIII detector at BEPCII, we measure fifteen exclusive cross sections and effective form factors for the process e^{+}e^{-}→Ξ^{-}Ξ[over ¯]^{+} by means of a single baryon-tag method. After performing a fit to the dressed cross section of e^{+}e^{-}→Ξ^{-}Ξ[over ¯]^{+}, no significant ψ(4230) or ψ(4260) resonance is observed in the Ξ^{-}Ξ[over ¯]^{+} final states, and upper limits at the 90% confidence level on Γ_{ee}B for the processes ψ(4230)/ψ(4260)→Ξ^{-}Ξ[over ¯]^{+} are determined. In addition, an excited Ξ baryon at 1820 MeV/c^{2} is observed with a statistical significance of 6.2-6.5σ by including the systematic uncertainty, and the mass and width are measured to be M=(1825.5±4.7±4.7) MeV/c^{2} and Γ=(17.0±15.0±7.9) MeV, which confirms the existence of the J^{P}=3/2^{-} state Ξ(1820).
Collapse
|
103
|
Wang NL, Liu XY. [Changes and development of glaucoma in China in the past 70 years]. [ZHONGHUA YAN KE ZA ZHI] CHINESE JOURNAL OF OPHTHALMOLOGY 2020; 56:3-8. [PMID: 31937056 DOI: 10.3760/cma.j.issn.0412-4081.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glaucoma is a major irreversible blindness-causing disease. Traditional Chinese Medicine literature have mentioned glaucoma since Qin and Han Dynasties. Progress has been made since 1949, especially in these 50 years. Since 1990, rapid progress has been achieved in the field of glaucoma, including the research of pathogenesis, education, training and establishment of diagnosis and treatment standard for glaucoma. Nowadays, Chinese glaucoma specialists are giving out more and more voice in the international platform. Though the outcome is delightful, we realize that we are still lack of original innovations. After all, the road is still long and rugged, more efforts should be put into the fight against glaucoma.(Chin J Ophthalmol, 2020, 56: 3-8).
Collapse
|
104
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dou ZL, Du SX, Fan JZ, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang XZ, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XH, Li XL, Li XN, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Lin YJ, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu KY, Liu K, Liu LY, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales Morales C, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi HR, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Richter M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang RM, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YF, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Wen HW, Wen SP, Wiedner U, Wilkinson G, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yu T, Yuan CZ, Yuan XQ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Observation of the Semileptonic D^{+} Decay into the K[over ¯]_{1}(1270)^{0} Axial-Vector Meson. PHYSICAL REVIEW LETTERS 2019; 123:231801. [PMID: 31868427 DOI: 10.1103/physrevlett.123.231801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Indexed: 06/10/2023]
Abstract
By analyzing a 2.93 fb^{-1} data sample of e^{+}e^{-} collisions, recorded at a center-of-mass energy of 3.773 GeV with the BESIII detector operated at the BEPCII collider, we report the first observation of the semileptonic D^{+} transition into the axial-vector meson D^{+}→K[over ¯]_{1}(1270)^{0}e^{+}ν_{e} with a statistical significance greater than 10σ. Its decay branching fraction is determined to be B[D^{+}→K[over ¯]_{1}(1270)^{0}e^{+}ν_{e}]=(2.30±0.26_{-0.21}^{+0.18}±0.25)×10^{-3}, where the first and second uncertainties are statistical and systematic, respectively, and the third originates from the input branching fraction of K[over ¯]_{1}(1270)^{0}→K^{-}π^{+}π^{0}.
Collapse
|
105
|
Liu XY, Xiao HJ. [Progress of levamisole in the treatment of children with nephrotic syndrome]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2019; 57:978-981. [PMID: 31795571 DOI: 10.3760/cma.j.issn.0578-1310.2019.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
106
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Ferroli RB, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dou ZL, Du SX, Fan JZ, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang XZ, Huesken N, Hussain T, Andersson WI, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XH, Li XL, Li XN, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Lin YJ, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu KY, Liu K, Liu LY, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales CM, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi HR, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Richter M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang RM, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YF, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Wen HW, Wen SP, Wiedner U, Wilkinson G, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yu T, Yuan CZ, Yuan XQ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Observation of the Leptonic Decay D^{+}→τ^{+}ν_{τ}. PHYSICAL REVIEW LETTERS 2019; 123:211802. [PMID: 31809130 DOI: 10.1103/physrevlett.123.211802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Indexed: 06/10/2023]
Abstract
We report the first observation of D^{+}→τ^{+}ν_{τ} with a significance of 5.1σ. We measure B(D^{+}→τ^{+}ν_{τ})=(1.20±0.24_{stat}±0.12_{syst})×10^{-3}. Taking the world average B(D^{+}→μ^{+}ν_{μ})=(3.74±0.17)×10^{-4}, we obtain R_{τ/μ}=Γ(D^{+}→τ^{+}ν_{τ})/Γ(D^{+}→μ^{+}ν_{μ})=3.21±0.64_{stat}±0.43_{syst}., which is consistent with the standard model expectation of lepton flavor universality. Using external inputs, our results give values for the D^{+} decay constant f_{D^{+}} and the Cabibbo-Kobayashi-Maskawa matrix element |V_{cd}| that are consistent with, but less precise than, other determinations.
Collapse
|
107
|
Zheng XJ, Liu XZ, Kou JQ, Sun YL, Liu XY, Guo JW, Wang T. [Resection of lumbar nerve sheath tumors via muscle-pedicle open-door laminoplasty approach]. ZHONGHUA YI XUE ZA ZHI 2019; 99:3000-3004. [PMID: 31607032 DOI: 10.3760/cma.j.issn.0376-2491.2019.38.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To evaluate the efficacy and safety of resection of lumbar nerve sheath tumors via muscle-pedicle open-door laminoplasty approach. Methods: From March 2016 to June 2018, 6 patients (4 males and 2 females, average age (45±14) years) with lumbar spinal nerve sheath tumors received surgical treatment via muscle-pedicleopen-door laminoplasty approach in the Department of Spinal Surgery, the Affiliated Hospital of Qingdao University. The operation time, blood loss, cerebral spinal fluid (CSF) leakage, and pre- and post-operative Oswestry Disability Index (ODI) and low back and leg pain visual analogue scale (VAS) were recorded for all patients. Cobb angle of lumbar lordosis was measured on the standing lateral X-ray before and 6 months after surgery. Bone fusion was observed in computed tomography at six months after surgery. Results: Total tumor resection was achieved in all the 6 patients. The operation time was from 76 to 117 minutes (average, (102±15) minutes). The blood loss was from 160 to 280 ml (average, (256±24) ml). No CSF leakage was observed in this cohort.All patients were followed up for more than 6 months. ODI and VAS for low back and leg pain were much better at one month after operation than those before the operation(t=7.70, 8.63,11.31, all P<0.05). The Cobb angle of lumbar lordosis before operation and at six months after the operation were comparable in all six patients(t=0.70, P>0.05). Bone fusion was observed in computed tomography at six months after surgery. No bone necrosis or absorption, no lamina dislodgement or spinal stenosis was occurred. Conclusions: The muscle-pedicle open-door laminoplasty approach is proved effective and safe to incise nerve sheath tumors in the lumbar spine. Some blood supply of lamina can be kept intact to accelerate bone fusion.
Collapse
|
108
|
Luo X, Wei YQ, Hai L, Hu YC, Zhao ZJ, Ma WL, Ma LN, Liu XY, Ding XC. [A preliminary study of serum marker alpha-enolase in the diagnosis of hepatocellular carcinoma]. ZHONGHUA GAN ZANG BING ZA ZHI = ZHONGHUA GANZANGBING ZAZHI = CHINESE JOURNAL OF HEPATOLOGY 2019; 27:505-510. [PMID: 31357775 DOI: 10.3760/cma.j.issn.1007-3418.2019.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To investigate the diagnostic value of serum α-enolase (ENO1) in the primary hepatocellular carcinoma. Methods: From May 2012 to March 2017, 163 cases with liver diseases who met the inclusion and exclusion criteria were admitted to the Infectious Diseases Department of the General Hospital of Ningxia Medical University. Among them, 28 cases were of chronic hepatitis B (CHB), 31 cases with liver cirrhosis (LC), 104 cases with hepatocellular carcinoma (HCC), and 18 healthy volunteers (NC). Patient data and serum samples were collected and liver disease related indicators were measured to detect ENO1 levels with enzyme-linked immunosorbent assay (ELISA). The measured indicators were expressed in median. Mann-Whitney U nonparametric test was used to analyze the differences between the data. A Spearman's correlation analysis was used for bivariate correlation analysis. The sensitivity and specificity of ENO1 and alpha-fetoprotein in the diagnosis of liver cancer were analyzed by ROC curve. Results: Serum level of ENO1 in CHB group, LC group and HCC group was significantly higher than normal group. Serum level of ENO1 in HCC group was higher than CHB group (P = 0.001) and LC group (P < 0.01). Area under the curve (AUC) for serum ENO1 and alpha-fetoprotein were 0.782 (cut-off value 75.96, P = 0.000 1) and 0.800 (cut-off value 27.02, P = 0.000 1), respectively. There was a positive correlation between ENO1 and AFP (P = 0.001). The combined detection had significantly improved the detection efficiency (AUC = 0.835). Serum ENO1 was statistically significant (P < 0.05) in HCC tumor size (AUC = 0.663), tumor metastasis (AUC = 0.681), TNM stage (AUC = 0.710, stage I vs. II), and Edmondson grade (AUC = 0.685) (P < 0.05) and the elevated levels of ENO1 had significantly reduced (P < 0.05) the survival time. Conclusion: ENO1 can be a new candidate marker for the diagnosis of early stage HCC and its progression.
Collapse
|
109
|
Liu XY, Meng LK, Yuan W, Zheng ML, Chi HJ, Yang XC, Li J, Zhong JC. P6013Evidence for ANTXR2 as a therapeutic target on systemic-to-pulmonary shunt induced pulmonary arterial hypertension. Eur Heart J 2019. [DOI: 10.1093/eurheartj/ehz746.0733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Introduction
Pulmonary arterial hypertension secondary to congenital heart disease (CHD-PAH) with systemic-to-pulmonary shunt is characterized by proliferative vascular remodeling. Excessive proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) are the primary cellular bases of vascular remodeling. Anthrax toxin receptor 2 (ANTXR2) exhibits anti-proliferative properties. The effects of ANTXR2 on vascular remodeling and systemic-to-pulmonary shunt induced PAH remain unexplored.
Purpose
The purpose of this study was to determine the possible roles of ANTXR2 in the pathogenesis of systemic-to-pulmonary shunt induced PAH and explore its possible mechanisms.
Methods
Lung tissue sections from CHD-PAH patients, systemic-to-pulmonary shunt induced PAH rat model, ANTXR2−/− rats, and PASMCs were used. Immunohistochemistry, real time polymerase chain reaction, Western blot, proliferation, apoptosis, and next generation sequencing (NGS) were performed in this study.
Results
ANTXR2 expression was reduced in severe CHD-PAH patient lung tissue and pulmonary arterioles, as well as in lung tissues from rats with systemic-to-pulmonary shunt induced PAH. Over-expression of ANTXR2 in cultured PASMCs inhibited cell proliferation and promoted apoptosis, while knockdown of ANTXR2 promoted cell proliferation and inhibited apoptosis. Male ANTXR2−/− rats showed more severe percent medial thickness and muscularization of pulmonary arterioles than wild type (WT) rats in basal conditions, and exhibited heavier PAH following exposure to systemic-to-pulmonary shunt. To further determine the underling mechanism, NGS was performed in ANTXR2−/− rat lungs and that of WT littermates. A total of 1319 genes were found to be dysregulated, and biological processes influenced by these differentially expressed genes include negative regulation of blood vessel diameter,vasoconstriction, regulation of blood vessel diameter, regulation of blood vessel size, vascular process in circulatory system, etc.
Conclusion
Our work identifies a novel role for ANTXR2 in systemic-to-pulmonary shunt induced PAH based on the findings that ANTXR2 deficiency could exacerbate systemic-to- pulmonary shunt induced vascular remodeling in the development of PAH. ANTXR2 may be a potential target for CHD-PAH treatment.
Acknowledgement/Funding
Beijing Natural Science Foundation (7172078 and 7172182), the National Major Research Plan Training Program of China (91849111)
Collapse
|
110
|
Liao ZC, Zhang C, Liu XY, Ren ZW, Xu J, Zhang CZ, Yang Y, Zhu Z, Yang JL. [Targeted therapy for malignant peripheral nerve sheath tumor: translational research and clinical application]. ZHONGHUA ZHONG LIU ZA ZHI [CHINESE JOURNAL OF ONCOLOGY] 2019; 41:648-653. [PMID: 31550853 DOI: 10.3760/cma.j.issn.0253-3766.2019.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a rare invasive soft tissue sarcoma that originates from peripheral nerve branches and peripheral nerve sheaths. Early radical surgery is an effective treatment for MPNST. Since it is insensitive to radiotherapy and chemotherapy, the disease manifests a rapid progression, poor prognosis and high mortality. In recent years, the translational researches on the driving factors and therapeutic targets of MPNST have been rapidly developed, including the pathways of NF1-Ras, Raf-MEK-ERK, PI3K-AKT-mTOR, Wnt signaling, and abnormal expressions of apoptotic proteins, the general loss of polycomb repressive complex 2 (PRC2), upregulation of the HDAC family, abnormal expressions of receptor tyrosine kinases, expressions of programmed cell death ligand (PD-L1), aurora kinase and various microRNAs.This review summarizes the current translational researches on potential therapeutic targets of MPNST, and the clinical trials which provide helpful information for MPNST targeted therapy.
Collapse
|
111
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Baldini Ferroli R, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dou ZL, Du SX, Fan JZ, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang XZ, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khan T, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XH, Li XL, Li XN, Li XQ, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Lin YJ, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu KY, Liu K, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales Morales C, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Redmer CF, Richter M, Ripka M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HH, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang RM, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YF, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Wen HW, Wen SP, Wiedner U, Wilkinson G, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yuan CZ, Yuan XQ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Complete Measurement of the Λ Electromagnetic Form Factors. PHYSICAL REVIEW LETTERS 2019; 123:122003. [PMID: 31633986 DOI: 10.1103/physrevlett.123.122003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/26/2019] [Indexed: 06/10/2023]
Abstract
The exclusive process e^{+}e^{-}→ΛΛ[over ¯], with Λ→pπ^{-} and Λ[over ¯]→p[over ¯]π^{+}, has been studied at sqrt[s]=2.396 GeV for measurement of the timelike Λ electric and magnetic form factors, G_{E} and G_{M}. A data sample, corresponding to an integrated luminosity of 66.9 pb^{-1}, was collected with the BESIII detector for this purpose. A multidimensional analysis with a complete decomposition of the spin structure of the reaction enables a determination of the modulus of the ratio R=|G_{E}/G_{M}| and, for the first time for any baryon, the relative phase ΔΦ=Φ_{E}-Φ_{M}. The resulting values are R=0.96±0.14(stat)±0.02(syst) and ΔΦ=37°±12°(stat)±6°(syst), respectively. These are obtained using the recently established and most precise value of the asymmetry parameter α_{Λ}=0.750±0.010 measured by BESIII. In addition, the cross section is measured with unprecedented precision to be σ=118.7±5.3(stat)±5.1(syst) pb, which corresponds to an effective form factor of |G|=0.123±0.003(stat)±0.003(syst). The contribution from two-photon exchange is found to be negligible. Our result enables the first complete determination of baryon timelike electromagnetic form factors.
Collapse
|
112
|
Nie L, Yuan XL, Liu XY, Jiang L, Ma RJ, Yang SW, Zhu ZM. [Chemotherapy bridged hematopoietic stem cell transplantation for the treatment of interdigitating dendritic cell sarcoma: a case report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:771-773. [PMID: 31648482 PMCID: PMC7342445 DOI: 10.3760/cma.j.issn.0253-2727.2019.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 11/05/2022]
|
113
|
Ablikim M, Achasov MN, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai JZ, Bai Y, Bakina O, Baldini Ferroli R, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Boger E, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chelkov G, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng W, Chu XK, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu MH, Gu YT, Guo AQ, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, He XQ, Heinsius FH, Held T, Heng YK, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang ZL, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khan T, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li J, Li KJ, Li K, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XL, Li XN, Li XQ, Li ZB, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu KY, Liu K, Liu LD, Liu Q, Liu SB, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma T, Ma XN, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Mitchell RE, Mo XH, Mo YJ, Morales Morales C, Muchnoi NY, Muramatsu H, Mustafa A, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Niu XY, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Pellegrino J, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Redmer CF, Richter M, Ripka M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Sarantsev A, Savrié M, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Song JJ, Song XY, Sosio S, Sowa C, Spataro S, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Tsednee B, Uman I, Wang B, Wang D, Wang DY, Wang K, Wang LL, Wang LS, Wang M, Wang M, Wang P, Wang PL, Wang WP, Wang XL, Wang Y, Wang YF, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Wen SP, Wiedner U, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yu JS, Yuan CZ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng YH, Zhong B, Zhou L, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Amplitude Analysis of D_{s}^{+}→π^{+}π^{0}η and First Observation of the W-Annihilation Dominant Decays D_{s}^{+}→a_{0}(980)^{+}π^{0} and D_{s}^{+}→a_{0}(980)^{0}π^{+}. PHYSICAL REVIEW LETTERS 2019; 123:112001. [PMID: 31573268 DOI: 10.1103/physrevlett.123.112001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/25/2019] [Indexed: 06/10/2023]
Abstract
We present the first amplitude analysis of the decay D_{s}^{+}→π^{+}π^{0}η. We use an e^{+}e^{-} collision data sample corresponding to an integrated luminosity of 3.19 fb^{-1} collected with the BESIII detector at a center-of-mass energy of 4.178 GeV. We observe for the first time the W-annihilation dominant decays D_{s}^{+}→a_{0}(980)^{+}π^{0} and D_{s}^{+}→a_{0}(980)^{0}π^{+}. We measure the absolute branching fraction B(D_{s}^{+}→a_{0}(980)^{+(0)}π^{0^{(}+)},a_{0}(980)^{+(0)}→π^{+(0)}η)=(1.46±0.15_{stat}±0.23_{sys})%, which is larger than the branching fractions of other measured pure W-annihilation decays by at least one order of magnitude. In addition, we measure the branching fraction of D_{s}^{+}→π^{+}π^{0}η with significantly improved precision.
Collapse
|
114
|
Pan YP, Wang SY, Liu XY, Lin YS, Ma LX, Feng Y, Wang Z, Chen L, Wang YH. 3D nano-bridge-based SQUID susceptometers for scanning magnetic imaging of quantum materials. NANOTECHNOLOGY 2019; 30:305303. [PMID: 30965292 DOI: 10.1088/1361-6528/ab1792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We designed and fabricated a new type of superconducting quantum interference device (SQUID) susceptometers for magnetic imaging of quantum materials. The 2-junction SQUID sensors employ 3D Nb nano-bridges fabricated using electron-beam lithography. The two counter-wound balanced pickup loops of the SQUID enable gradiometric measurement and they are surrounded by a one-turn field coil for susceptibility measurements. The smallest pickup loop of the SQUIDs were 1 μm in diameter and the flux noise was around 1 μФ0/√Hz at 100 Hz. We demonstrate scanning magnetometry, susceptometry and current magnetometry on some test samples using these nano-SQUIDs.
Collapse
|
115
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Ferroli RB, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dou ZL, Du SX, Fan JZ, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang XZ, Huesken N, Hussain T, Andersson WI, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khan T, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XH, Li XL, Li XN, Li XQ, Li ZB, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Lin YJ, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu KY, Liu K, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales CM, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Richter M, Ripka M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savri M, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HH, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang RM, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang YF, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Wen HW, Wen SP, Wiedner U, Wilkinson G, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yuan CZ, Yuan XQ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Study of e^{+}e^{-}→γωJ/ψ and Observation of X(3872)→ωJ/ψ. PHYSICAL REVIEW LETTERS 2019; 122:232002. [PMID: 31298909 DOI: 10.1103/physrevlett.122.232002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/25/2019] [Indexed: 06/10/2023]
Abstract
We study the e^{+}e^{-}→γωJ/ψ process using 11.6 fb^{-1} e^{+}e^{-} annihilation data taken at center-of-mass energies from sqrt[s]=4.008 GeV to 4.600 GeV with the BESIII detector at the BEPCII storage ring. The X(3872) resonance is observed for the first time in the ωJ/ψ system with a significance of more than 5σ. The relative decay ratio of X(3872)→ωJ/ψ and π^{+}π^{-}J/ψ is measured to be R=1.6_{-0.3}^{+0.4}±0.2, where the first uncertainty is statistical and the second systematic (the same hereafter). The sqrt[s]-dependent cross section of e^{+}e^{-}→γX(3872) is also measured and investigated, and it can be described by a single Breit-Wigner resonance, referred to as the Y(4200), with a mass of 4200.6_{-13.3}^{+7.9}±3.0 MeV/c^{2} and a width of 115_{-26}^{+38}±12 MeV. In addition, to describe the ωJ/ψ mass distribution above 3.9 GeV/c^{2}, we need at least one additional Breit-Wigner resonance, labeled as X(3915), in the fit. The mass and width of the X(3915) are determined. The resonant parameters of the X(3915) agree with those of the Y(3940) in B→KωJ/ψ and of the X(3915) in γγ→ωJ/ψ observed by the Belle and BABAR experiments within errors.
Collapse
|
116
|
Zhi CX, Liu XY, Pan HW, Li GF, Li ZH, Zhao YZ, Li HB, Guo XY, Yao SQ. [Association between dust exposure and the risk of hypertension of male coal miners in Henan Province]. ZHONGHUA YU FANG YI XUE ZA ZHI [CHINESE JOURNAL OF PREVENTIVE MEDICINE] 2019; 53:597-602. [PMID: 31177757 DOI: 10.3760/cma.j.issn.0253-9624.2019.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To explore the association between dust exposure and the incidence of hypertension in male coal miners. Methods: Using the method of retrospective cohort study,a hypertension cohort of colliery in Henan Province was established in January 2006. From 2006 to 2017,all the male coal miners in a colliery who were exposed to dust were selected into the exposure group including tunneling, mining,auxiliary and combining workers, and workers from administrative logistics departments who were not exposed to dust were selected into the control group. The eligible participants should satisfy following conditions: working more than one year, with clear and complete record of occupation change, and with complete archives and reliable diagnosis of occupational health surveillance. The exclusion criteria of participants were with hypertension at the baseline of study or with heart,liver,kidney diseases and malignant tumors. A total of 12 647 participants were enrolled in this study (11 663 in the exposure group and 984 in the control group). The follow-up period was from January 2006 to December 2017,with a total follow-up of 89 259.75 person-years. Questionnaires and physical measurements were used to collect general demographic characteristics, occupational exposure history and occupational health surveillance data of all participants. The Cox proportional hazards regression model was used to estimate the association between the dust exposure and the incidence of hypertension. Results: During the follow-up period, 2 549 new-onset hypertension patients were identified with an incidence density of hypertension about 2 855.71 per 100 000 person-years. The incidence density of hypertension was 2 967.58 per 100 000 person-years in the exposure group, and 1 643.85 per 100 000 person-years in the control group. The results of multivariate Cox proportional hazards regression model showed that after the adjustment of marriage, age, smoking, alcohol drinking and body mass index,the risk of hypertension was higher in the exposure group compared with the control group (HR=1.692, 95%CI: 1.410-2.032). Further analysis showed that compared with workers from administrative logistics departments,the risk of hypertension in tunneling,mining and auxiliary working was 1.629(1.345-1.973),1.677(1.374-2.046) and 1.782(1.475-2.151),respectively. Conclusion: Dust exposure may increase the risk of hypertension in male coal miners.
Collapse
|
117
|
Liu JF, Wen DH, Li XJ, Liu XY, Xue G. [Diagnostic performance of ultrasound-based risk stratification systems for indeterminate thyroid nodules: comparison of the 2015ATA guidelines with the 2016 KTA/KSThR and 2017ACR guidelines]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2019; 33:388-392;397. [PMID: 31163542 DOI: 10.13201/j.issn.1001-1781.2019.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Indexed: 11/12/2022]
Abstract
Objective: To evaluate the diagnostic value of the 2015ATA, 2017ACR and 2016KTA/KSThR ultrasound model for indeterminate thyroids nodules. Method: Four hundred and sixty-four patients with thyroid nodules that were initially diagnosed as indeterminate thyroids nodules by fine needle aspiration(FNA) cytology were included in this study. The clinical data and two-dimensional ultrasonographic features were compared between the benign and malignant nodules. The two-dimensional ultrasound images of all nodules were sorted by the 2015ATA, 2017ACR and 2016KTA/KSThR guideline ultrasound model grading criteria, and the malignant risk of different grading were calculated. In order to calculate the diagnosis and other indicators, the optimal threshold drawing from ROC curve was drawn to obtain the cut-off value of 2015ATA, 2017ACR and 2016KTA/KSThR. Result: ①There was no significant difference in age, sex and nodule size between benign and malignant nodules(P>0.05), and there also was no significant difference in irregular margin, microcalcification between benign and malignant nodules.②The sensitivity of the 2015ATA ultrasound model was 87.9%, slightly lower than that of the 2016KTA/KSThR and 2017ACR guidelines(P>0.05).The specificity of 2015ATA was 63.9%, which was significantly higher than that of 2016KTA/KSThR and 2017ACR guidelines(P<0.05). There was no significant difference between 2015ATA ultrasound model and 2016KTA/KSThR guide ultrasound for the accuracy(P>0.05), but the accuracy of 2015ATA ultrasound model was significantly higher than that of 2017ACR guide(P<0.05).③The area under the curve of 2015ATA was slightly lower than that of 2016KTA/KSThR(0.889 VS 0.902, P>0.05) and significantly higher than that of 2017ACR(0.889 VS 0.854, P<0.05). Conclusion: 2015ATA has high specificity and accuracy and moderate sensitivity for the diagnosis of benign and malignant indeterminate thyroids nodules, which is helpful for the clinical evaluation and management of such nodules.
Collapse
|
118
|
Ablikim M, Achasov MN, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Baldini Ferroli R, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dou ZL, Du SX, Fan JZ, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang XZ, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khan T, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XH, Li XL, Li XN, Li XQ, Li ZB, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Lin YJ, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu KY, Liu K, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales Morales C, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Redmer CF, Richter M, Ripka M, Rivetti A, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HH, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang P, Wang PL, Wang RM, Wang WP, Wang X, Wang XF, Wang Y, Wang YF, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Wen HW, Wen SP, Wiedner U, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yuan CZ, Yuan XQ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Observation of the Decay X(3872)→π^{0}χ_{c1}(1P). PHYSICAL REVIEW LETTERS 2019; 122:202001. [PMID: 31172749 DOI: 10.1103/physrevlett.122.202001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Using a total of 9.0 fb^{-1} of e^{+}e^{-} collision data with center-of-mass energies between 4.15 and 4.30 GeV collected by the BESIII detector, we search for the processes e^{+}e^{-}→γX(3872) with X(3872)→π^{0}χ_{cJ} for J=0, 1, 2. We report the first observation of X(3872)→π^{0}χ_{c1}, a new decay mode of the X(3872), with a statistical significance of more than 5σ for all systematic fit variations. Normalizing to the previously established process e^{+}e^{-}→γX(3872) with X(3872)→π^{+}π^{-}J/ψ, we find B(X(3872)→π^{0}χ_{c1})/B(X(3872)→π^{+}π^{-}J/ψ)=0.88_{-0.27}^{+0.33}±0.10, where the first error is statistical and the second is systematic. We set 90% confidence level upper limits on the corresponding ratios for the decays to π^{0}χ_{c0} and π^{0}χ_{c2} of 19 and 1.1, respectively.
Collapse
|
119
|
Nie L, Pang XH, Zhang Z, Ma JX, Liu XY, Qiu Q, Liang Y, Li Q, Zhang W. [Effectiveness of rapid hepatitis B vaccination with different vaccine dosages and types in adults]. ZHONGHUA LIU XING BING XUE ZA ZHI = ZHONGHUA LIUXINGBINGXUE ZAZHI 2019; 38:1151-1155. [PMID: 28910921 DOI: 10.3760/cma.j.issn.0254-6450.2017.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To evaluate the effectiveness of rapid hepatitis B vaccination with different vaccine dosages and types in adults. Methods: Adults who were aged ≥20 years, negative in the detections of 5 HBV serum markers or only anti-HBc positive were selected from Chaoyang district of Beijing. They were divided into 4 community-based specific groups and given three doses of 10 μg HepB-SCY vaccine, 20 μg HepB-SCY vaccine, 20 μg HepB-CHO vaccine and 10 μg HepB-HPY vaccine respectively at month 0, 1, and 2. Their blood samples were collected within 1-2 months after completing the three dose vaccination to test anti-HBs level by using chemiluminesent microparticle immunoassay. A face to face questionnaire survey was conducted, and χ(2) test, Mantel- Haensel χ(2) test, Kruskal-Wallis rank test and multiple logistic regression analysis were performed. Results: A total of 1 772 participants completed vaccination and observation. Their average age was 48.5 years, and 62.75% of them were females. The anti-HBs positive rates in the groups of 10 μg HepB-SCY, 20 μg HepB-SCY, 20 μg HepB-CHO and 10 μg HepB-HPY vaccines were 79.49%, 84.34%, 82.50% and 74.15%, respectively (P=0.005), and the geometric mean titers (GMT) were39.53 mIU/ml, 62.37 mIU/ml, 48.18 mIU/ml and 33.64 mIU/ml respectively (P=0.025). The overall anti-HBs positive rate and GMT were 79.01% and 41.18 mIU/ml. The anti-HBs GMT of 4 groups declined with age. The differences in anti-HBs GMT among 4 groups minimized with age. The result of logistic modeling indicated that vaccine type and dosage, age and smoking were associated with anti-HBs statistically after controlling the variables of"only anti-HBc positive or not"and"history of hepatitis B vaccination". Conclusion: Hepatitis B vaccination at dosage of 20 μg based on 0-1-2 month rapid schedule could achieved anti-HBs positive rates>80% in middle aged and old people, which can be used as supplement of 0-1-6 month routine schedule.
Collapse
|
120
|
Zeng Q, Zhang YH, Yang XL, Zhang J, Liu AJ, Liu XY, Jiang YW, Wu XR. [Phenotype study of SCN2A gene related epilepsy]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2019; 56:518-523. [PMID: 29996185 DOI: 10.3760/cma.j.issn.0578-1310.2018.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To summarize the phenotype of epileptic children with SCN2A mutations. Methods: Epileptic patients who were treated in the Pediatric Department of Peking University First Hospital from September 2006 to October 2017 and detected with SCN2A mutations by targeted next-generation sequencing were enrolled. Clinical manifestations of all patients were analyzed retrospectively. Results: A total of 21 patients (16 boys and 5 girls) with SCN2A mutations were collected. Twenty-one SCN2A mutations were identified. Ten patients had mutations inherited from one of their parents and 11 patients had de novo mutations. The age of epilepsy onset was from 2 days to 2 years and 6 months: six patients with seizure onset in neonates (29%) , six patients with seizure onset between 1 month and 3 months of age (29%), three patients with seizure onset between 4 months and 6 months of age, two patients with seizure onset between 7 months and one year of age, and four patients with seizure onset beyond one year of age. Multiple seizure types were observed. The focal seizure was the most common seizure type which was observed in 18 patients (86%) . Spasm seizure was observed in 6 patients (29%) . Other seizure types were rare. In 19 patients, seizures manifested in clusters (90%) . In 3 patients, seizures manifested fever-sensitive. Nine of ten patients with inherited SCN2A mutations had normal development. However, all patients with de novo SCN2A mutations had mild or severer development delay. In 21 patients with SCN2A mutations, five were diagnosed with benign familial infantile epilepsy, 3 with benign familial neonatal-infantile epilepsy, 3 with Ohtahara syndrome, 3 with West syndrome, 2 with encephalopathy with early infantile onset epilepsy, one with febrile seizures plus, one with Dravet syndrome, one with encephalopathy with childhood-onset epilepsy, one with autism with epilepsy and one with intellectual disability with epilepsy. Conclusions: The clinical features of patients with SCN2A mutations include that main seizure onset is the neonate and early infancy, and the main seizure type is the focal seizure, manifested in clusters. The large spectrum of SCN2A-related epilepsy, which not only includes epilepsy with a comparatively favorable prognosis, but also epileptic encephalopathy. De novo mutations often lead to severe phenotype with development delay.
Collapse
|
121
|
Cai SS, Liu XY, Chen YP, Song FL, Ren CH, Guo W, Zhang S, Wang XF. [Diffuse leptomeningeal glioneuronal tumor: report of a case]. ZHONGHUA BING LI XUE ZA ZHI = CHINESE JOURNAL OF PATHOLOGY 2019; 48:253-255. [PMID: 30831658 DOI: 10.3760/cma.j.issn.0529-5807.2019.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
122
|
Liu XY, Song XL. [Application of confocal laser endomicroscopy in respiratory diseases]. ZHONGHUA JIE HE HE HU XI ZA ZHI = ZHONGHUA JIEHE HE HUXI ZAZHI = CHINESE JOURNAL OF TUBERCULOSIS AND RESPIRATORY DISEASES 2019; 42:125-128. [PMID: 30704186 DOI: 10.3760/cma.j.issn.1001-0939.2019.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
123
|
Zheng B, Wang PJ, Xue LY, Liu XY, Guo L, Ying JM. [Combination of environmental friendly reagent and ultrasonic assisted rapid processing for protein and molecular detection in tumor biopsy specimens]. ZHONGHUA BING LI XUE ZA ZHI = CHINESE JOURNAL OF PATHOLOGY 2019; 48:116-119. [PMID: 30695863 DOI: 10.3760/cma.j.issn.0529-5807.2019.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To investigate the impact of ultrasonic assisted rapid processing technique combined with the environment friendly reagent (which can be utilized in fixing,dehydrating and clearing) on processing tumor biopsy specimens and the subsequent target detection. Methods: Postoperative tissue samples of 56 cases of breast cancer, colorectal cancer, lung cancer, stomach cancer, liver mass, bladder mass, uterus mass were obtained at the National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences from February to April, 2017. Three specimens ranging in size from 1 to 3 mm were collected from each sample, and were separated into control group (traditional tissue-processing method); experiment group 1 (3.7% neutral buffered formaldehyde fixation, composite environment friendly reagent and ultrasonic assisted rapid processing) and experimental group 2 (composite environment friendly reagent direct fixation, higher temperature and longer time for tissue processing). Two pathologists blinded to the experimental groups scored totally the nuclear, cytoplasmic, and membrane staining of 43 cases of immunohistochemistry (IHC), four HER2 fluorescence in situ hybridization (FISH), 20 extracted DNA quality and four EGFR gene mutation detection in lung adenocarcinoma; the results were compared with the control group. Results: There was no difference in the IHC staining, HER2 FISH, the DNA quality, and EGFR genetic results between experimental group 1 and control group. For experiment group 2, comparing results of IHC staining, HER2 FISH and the quality of DNA, there was no obvious difference from control group and experiment group 1, but might show an increase in the background of IHC staining. The difference between the treatment temperature and time in the experimental group 2 did not affect the results of the gene mutation detection. Conclusions: Environment freindly reagent and ultrasonic assisted rapid processing equipment could be used for rapid processing and diagnosis for tumor biopsies. Using complex environment-friendly reagents supplement fixation, higher treatment temperature and longer treatment time do not significantly affect the IHC, FISH and molecular detection accuracy.
Collapse
|
124
|
Zhang L, Fu WW, Lin L, Wu XY, Wu L, Zhao SC, Fu HY, Xu DR, Cai SS, Zhang S, Liu XY, Wang XF. [Clinicopathologic analysis of a series of intraventricular meningioma]. ZHONGHUA BING LI XUE ZA ZHI = CHINESE JOURNAL OF PATHOLOGY 2019; 48:137-140. [PMID: 30695867 DOI: 10.3760/cma.j.issn.0529-5807.2019.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
125
|
You H, Gu H, Zhang N, Fan H, Kou Y, Cui N, Liu XY, Li XL, Gu JH. Why hasn't this woman been screened for breast and cervical cancer? - Evidence from a Chinese population-based study. Public Health 2019; 168:83-91. [PMID: 30708199 DOI: 10.1016/j.puhe.2018.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 12/01/2018] [Accepted: 12/10/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Less than half of eligible Chinese rural women have been screened for breast and cervical cancer. The objective of this study was to describe individual-level reasons for attending or not attending 'two cancers' screening using Andersen's Behavioral Model of Health Services Use. STUDY DESIGN Cross-sectional study. METHODS The study sample was from the Health Services Survey in 2013 in Jiangsu, China. A total of 6520 rural women aged 36-65 years answered the questions on 'two cancers' screening participation and were included in the final analysis, which consisted of univariate and multivariate logistic regression. RESULTS In the results of multivariate logistic regression, factors significantly associated with having 'two cancers' screening included educational level (odds ratio [OR] = 0.78, 95% confidence interval [CI] = 0.65-0.92), per capita household income (OR = 0.65, 95% CI = 0.58-0.73), availability of female medical faculty in township facilities (OR = 0.35, 95% CI = 0.28-0.42), quality of life (OR = 0.72, 95% CI = 0.58-0.90), being nulliparous (OR = 3.21, 95% CI = 1.96-5.26), and multiparous (OR = 1.91, 95% CI = 1.68-2.16). CONCLUSION To reduce inadequate screening service utilization of breast and cervical cancer in rural areas, efforts should be made not only to target the vulnerable rural women with lower income, lower educational level, and lower health conditions but also to further improve access to female primary-care providers. Strategies are also urgently needed to focus on nulliparous and multiparous women.
Collapse
|