1
|
Dworak O, Keilholz L, Hoffmann A. Pathological features of rectal cancer after preoperative radiochemotherapy. Int J Colorectal Dis 1997; 12:19-23. [PMID: 9112145 DOI: 10.1007/s003840050072] [Citation(s) in RCA: 1049] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The standard therapy for rectal carcinoma is surgical, however, preoperative radiochemotherapy will play an increasing role especially in locally advanced disease. To estimate the prognosis and the effect of radiochemotherapy the postradiochemotherapeutical pathological features are important to assess. We examined the surgical specimens of 17 patients after preoperative radiochemotherapy to estimate and grade the histological reactions. A proposal for a grading system for tumor regression (not yet available in the literature) has also been described. All but one of the carcinomas showed different degrees of tumor regression. A total regression was not observed after standardised pathological work up. In only one case a locally curative resection was not possible. We think that preoperative radiochemotherapy is able to reduce tumor mass thus achieving operability in non-curatively operable cases. We recommend standards of pathological work up and regression grading for further studies comparing surgery and radiochemotherapy of rectal carcinoma.
Collapse
|
|
28 |
1049 |
2
|
Abstract
Stimulus-induced nuclear factor-kappaB (NF-kappaB) activity, the central mediator of inflammatory responses and immune function, comprises a family of dimeric transcription factors that regulate diverse gene expression programs consisting of hundreds of genes. A family of inhibitor of kappaB (IkappaB) proteins controls NF-kappaB DNA-binding activity and nuclear localization. IkappaB protein metabolism is intricately regulated through stimulus-induced degradation and feedback re-synthesis, which allows for dynamic control of NF-kappaB activity. This network of interactions has been termed the NF-kappaB signaling module. Here, we summarize the current understanding of the molecular structures and biochemical mechanisms that determine NF-kappaB dimer formation and the signal-processing characteristics of the signaling module. We identify NF-kappaB-kappaB site interaction specificities and dynamic control of NF-kappaB activity as mechanisms that generate specificity in transcriptional regulation. We discuss examples of gene regulation that illustrate how these mechanisms may interface with other transcription regulators and promoter-associated events, and how these mechanisms suggest regulatory principles for NF-kappaB-mediated gene activation.
Collapse
|
Review |
19 |
490 |
3
|
Sango K, Yamanaka S, Hoffmann A, Okuda Y, Grinberg A, Westphal H, McDonald MP, Crawley JN, Sandhoff K, Suzuki K, Proia RL. Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat Genet 1995; 11:170-6. [PMID: 7550345 DOI: 10.1038/ng1095-170] [Citation(s) in RCA: 327] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tay-Sachs and Sandhoff diseases are clinically similar neurodegenerative disorders. These two sphingolipidoses are characterized by a heritable absence of beta-hexosaminidase A resulting in defective GM2 ganglioside degradation. Through disruption of the Hexa and Hexb genes in embryonic stem cells, we have established mouse models corresponding to each disease. Unlike the two human disorders, the two mouse models show very different neurologic phenotypes. Although exhibiting biochemical and pathologic features of the disease, the Tay-Sachs model showed no neurological abnormalities. In contrast, the Sandhoff model was severely affected. The phenotypic difference between the two mouse models is the result of differences in the ganglioside degradation pathway between mice and humans.
Collapse
|
Comparative Study |
30 |
327 |
4
|
Nikolov DB, Hu SH, Lin J, Gasch A, Hoffmann A, Horikoshi M, Chua NH, Roeder RG, Burley SK. Crystal structure of TFIID TATA-box binding protein. Nature 1992; 360:40-6. [PMID: 1436073 DOI: 10.1038/360040a0] [Citation(s) in RCA: 321] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structure of a central component of the eukaryotic transcriptional apparatus, a TATA-box binding protein (TBP or TFIID tau) from Arabidopsis thaliana, has been determined by X-ray crystallography at 2.6 A resolution. This highly symmetric alpha/beta structure contains a new DNA-binding fold, resembling a molecular 'saddle' that sits astride the DNA. The DNA-binding surface is a curved, antiparallel beta-sheet. When bound to DNA, the convex surface of the saddle would be presented for interaction with other transcription initiation factors and regulatory proteins.
Collapse
|
|
33 |
321 |
5
|
Vogt K, Fradin F, Pearson J, Sebastian T, Bader S, Hillebrands B, Hoffmann A, Schultheiss H. Realization of a spin-wave multiplexer. Nat Commun 2014; 5:3727. [DOI: 10.1038/ncomms4727] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/26/2014] [Indexed: 11/09/2022] Open
|
|
11 |
273 |
6
|
Sanjabi S, Hoffmann A, Liou HC, Baltimore D, Smale ST. Selective requirement for c-Rel during IL-12 P40 gene induction in macrophages. Proc Natl Acad Sci U S A 2000; 97:12705-10. [PMID: 11058167 PMCID: PMC18828 DOI: 10.1073/pnas.230436397] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2000] [Indexed: 11/18/2022] Open
Abstract
A major challenge in the study of gene regulation by NF-kappaB/Rel transcription factors is to understand, at the biological and mechanistic levels, the selective functions of individual Rel family members. To study selectivity, we have examined the NF-kappaB/Rel protein binding site (Rel site) within the IL-12 p40 promoter. IL-12 is a proinflammatory cytokine expressed by activated macrophages that serves as an essential inducer of T helper 1 cell development. In nuclear extracts from lipopolysaccharideactivated macrophages, the predominant Rel dimers capable of binding the IL-12 p40 Rel site were the p50/p65 and p50/c-Rel heterodimers and p50/p50 homodimer. The two heterodimers bound the site with comparable affinities and exhibited comparable transactivation activities. In striking contrast, p40 mRNA and protein concentrations were reduced dramatically in c-Rel(-/-) macrophages and only modestly in p65(-/-) macrophages. Other proinflammatory cytokine mRNAs and proteins were not significantly reduced in c-Rel(-/-) macrophages. These results reveal that a c-Rel-containing complex is an essential and selective activator of p40 transcription, which may reflect unique regulatory mechanisms or biological functions of IL-12. Furthermore, because selectivity was not observed in vitro or in transient transactivation experiments, these findings suggest that an understanding of the selectivity mechanism may require an analysis of the endogenous p40 locus.
Collapse
|
research-article |
25 |
259 |
7
|
Hoffmann A, Roeder RG. Purification of his-tagged proteins in non-denaturing conditions suggests a convenient method for protein interaction studies. Nucleic Acids Res 1991; 19:6337-8. [PMID: 1956801 PMCID: PMC329157 DOI: 10.1093/nar/19.22.6337] [Citation(s) in RCA: 247] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
research-article |
34 |
247 |
8
|
Aharonian F, Akhperjanian AG, Bazer-Bachi AR, Beilicke M, Benbow W, Berge D, Bernlöhr K, Boisson C, Bolz O, Borrel V, Braun I, Brown AM, Bühler R, Büsching I, Carrigan S, Chadwick PM, Chounet LM, Coignet G, Cornils R, Costamante L, Degrange B, Dickinson HJ, Djannati-Ataï A, Drury LO, Dubus G, Egberts K, Emmanoulopoulos D, Espigat P, Feinstein F, Ferrero E, Fiasson A, Fontaine G, Funk S, Funk S, Füßling M, Gallant YA, Giebels B, Glicenstein JF, Goret P, Hadjichristidis C, Hauser D, Hauser M, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hoffmann A, Hofmann W, Holleran M, Hoppe S, Horns D, Jacholkowska A, de Jager OC, Kendziorra E, Kerschhaggl M, Khélifi B, Komin N, Konopelko A, Kosack K, Lamanna G, Latham IJ, Le Gallou R, Lemière A, Lemoine-Goumard M, Lenain JP, Lohse T, Martin JM, Martineau-Huynh O, Marcowith A, Masterson C, Maurin G, McComb TJL, Moulin E, de Naurois M, Nedbal D, Nolan SJ, Noutsos A, Orford KJ, Osborne JL, Ouchrif M, Panter M, Pelletier G, Pita S, Pühlhofer G, Punch M, Ranchon S, Raubenheimer BC, Raue M, Rayner SM, Reimer A, Ripken J, Rob L, Rolland L, Rosier-Lees S, Rowell G, Sahakian V, Santangelo A, Saugé L, Schlenker S, Schlickeiser R, Schröder R, Schwanke U, Schwarzburg S, Schwemmer S, Shalchi A, Sol H, Spangler D, Spanier F, Steenkamp R, Stegmann C, Superina G, Tam PH, Tavernet JP, Terrier R, Tluczykont M, van Eldik C, Vasileiadis G, Venter C, Vialle JP, Vincent P, Völk HJ, Wagner SJ, Ward M. Fast Variability of TeraElectron Volt γ Rays from the Radio Galaxy M87. Science 2006; 314:1424-7. [PMID: 17068224 DOI: 10.1126/science.1134408] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The detection of fast variations of the tera-electron volt (TeV) (10(12) eV) gamma-ray flux, on time scales of days, from the nearby radio galaxy M87 is reported. These variations are about 10 times as fast as those observed in any other wave band and imply a very compact emission region with a dimension similar to the Schwarzschild radius of the central black hole. We thus can exclude several other sites and processes of the gamma-ray production. The observations confirm that TeV gamma rays are emitted by extragalactic sources other than blazars, where jets are not relativistically beamed toward the observer.
Collapse
|
|
19 |
241 |
9
|
Xie X, Kokubo T, Cohen SL, Mirza UA, Hoffmann A, Chait BT, Roeder RG, Nakatani Y, Burley SK. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 1996; 380:316-22. [PMID: 8598927 DOI: 10.1038/380316a0] [Citation(s) in RCA: 223] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A complex of two TFIID TATA box-binding protein-associated factors (TA FIIs) is described at 2.0A resolution. The amino-terminal portions of dTAFII42 and dTAFII62 from Drosophila adopt the canonical histone fold, consisting of two short alpha-helices flanking a long central alpha-helix. Like histones H3 and H4, dTAFII42 and dTAFII62 form an intimate heterodimer by extensive hydrophobic contacts between the paired molecules. In solution and in the crystalline state, the dTAFII42/dTAFII62 complex exists as a heterotetramer, resembling the (H3/H4)2 heterotetrameric core of the histone octamer, suggesting that TFIID contains a histone octamer-like substructure.
Collapse
|
|
29 |
223 |
10
|
McNamara NB, Munro DAD, Bestard-Cuche N, Uyeda A, Bogie JFJ, Hoffmann A, Holloway RK, Molina-Gonzalez I, Askew KE, Mitchell S, Mungall W, Dodds M, Dittmayer C, Moss J, Rose J, Szymkowiak S, Amann L, McColl BW, Prinz M, Spires-Jones TL, Stenzel W, Horsburgh K, Hendriks JJA, Pridans C, Muramatsu R, Williams A, Priller J, Miron VE. Microglia regulate central nervous system myelin growth and integrity. Nature 2023; 613:120-129. [PMID: 36517604 PMCID: PMC9812791 DOI: 10.1038/s41586-022-05534-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/05/2022] [Indexed: 12/15/2022]
Abstract
Myelin is required for the function of neuronal axons in the central nervous system, but the mechanisms that support myelin health are unclear. Although macrophages in the central nervous system have been implicated in myelin health1, it is unknown which macrophage populations are involved and which aspects they influence. Here we show that resident microglia are crucial for the maintenance of myelin health in adulthood in both mice and humans. We demonstrate that microglia are dispensable for developmental myelin ensheathment. However, they are required for subsequent regulation of myelin growth and associated cognitive function, and for preservation of myelin integrity by preventing its degeneration. We show that loss of myelin health due to the absence of microglia is associated with the appearance of a myelinating oligodendrocyte state with altered lipid metabolism. Moreover, this mechanism is regulated through disruption of the TGFβ1-TGFβR1 axis. Our findings highlight microglia as promising therapeutic targets for conditions in which myelin growth and integrity are dysregulated, such as in ageing and neurodegenerative disease2,3.
Collapse
|
research-article |
2 |
184 |
11
|
Spengler D, Villalba M, Hoffmann A, Pantaloni C, Houssami S, Bockaert J, Journot L. Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain. EMBO J 1997; 16:2814-25. [PMID: 9184226 PMCID: PMC1169890 DOI: 10.1093/emboj/16.10.2814] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The proliferation rate of a cell population reflects a balance between cell division, cell cycle arrest, differentiation and apoptosis. The regulation of these processes is central to development and tissue homeostasis, whereas dysregulation may lead to overt pathological outcomes, notably cancer and neurodegenerative disorders. We report here the cloning of a novel zinc finger protein which regulates apoptosis and cell cycle arrest and was accordingly named Zac1. In vitro Zac1 inhibited proliferation of tumor cells, as evidenced by measuring colony formation, growth rate and cloning in soft agar. In vivo Zac1 abrogated tumor formation in nude mice. The antiproliferative activity of Zac1 was due to induction of extensive apoptosis and of G1 arrest, which proceeded independently of retinoblastoma protein and of regulation of p21(WAF1/Cip1), p27Kip1, p57Kip2 and p16INK4a expression. Zac1-mediated apoptosis was unrelated to cell cycle phase and G1 arrest was independent of apoptosis, indicating separate control of apoptosis and cell cycle arrest. Zac1 is thus the first gene besides p53 which concurrently induces apoptosis and cell cycle arrest.
Collapse
|
research-article |
28 |
182 |
12
|
Georganas C, Liu H, Perlman H, Hoffmann A, Thimmapaya B, Pope RM. Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblasts: the dominant role for NF-kappa B but not C/EBP beta or c-Jun. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:7199-206. [PMID: 11120852 DOI: 10.4049/jimmunol.165.12.7199] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) produce IL-6 and IL-8, which contribute to inflammation and joint damage. The promoters of both cytokines possess binding sites for NF-kappaB, C/EBPbeta, and c-Jun, but the contribution of each to the regulation of IL-6 and IL-8 in RA FLS is unknown. We employed adenoviral-mediated gene delivery of a nondegradable IkappaBalpha, or dominant-negative versions of C/EBPbeta or c-Jun, to determine the contribution of each transcription factor to IL-6 and IL-8 expression. Inhibition of NF-kappaB activation significantly reduced the spontaneous and IL-1beta-induced secretion of IL-6 and IL-8 by RA FLS and the IL-1ss-induced production of IL-6 and IL-8 by human dermal fibroblasts. Inhibition of C/EBPbeta modestly reduced constitutive and IL-1beta-induced IL-6 by RA FLS, but not by human dermal fibroblasts, and had no effect on IL-8. Inhibition of c-Jun/AP-1 had no effect on the production of either IL-6 or IL-8. Employing gel shift assays, NF-kappaB, C/EBPbeta, and c-Jun were constitutively activated in RA FLS, but only NF-kappaB and c-Jun activity increased after IL-1beta. The reduction of cytokines by IkappaBalpha was mediated through inhibition of NF-kappaB activation, which resulted in decreased IL-6 and IL-8 mRNA. NF-kappaB was essential for IL-6 expression, because fibroblasts in which both NF-kappaB p50/p65 genes were deleted failed to express IL-6 in response to IL-1. These findings document the importance of NF-kappaB for the regulation of the constitutive and IL-1beta-stimulated expression of IL-6 and IL-8 by RA FLS and support the role of inhibition of NF-kappaB as a therapeutic goal in RA.
Collapse
|
Comparative Study |
25 |
173 |
13
|
Phipps BM, Hoffmann A, Stetter KO, Baumeister W. A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J 1991; 10:1711-22. [PMID: 1828761 PMCID: PMC452842 DOI: 10.1002/j.1460-2075.1991.tb07695.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have discovered a large cylindrical protein complex which is an abundant component of the cytoplasm of extremely thermophilic archaebacteria. Structural analysis by image processing of electron micrographs suggests that the complex is composed of two stacked rings of eight subunits each; the rings enclose a central channel. The complex purified from the hyperthermophile Pyrodictium occultum is composed of equal quantities of two polypeptides of Mr 56,000 and 59,000. It exhibits an extremely thermostable ATPase activity with a temperature optimum of 100 degrees C. The basal level of the ATPase complex in the cell is high, and it becomes highly enriched as a result of heat shock (shift from 102 degrees C to 108 degrees C) or balanced growth at temperatures near the physiological upper limit. Immunoblotting results indicate that a related protein is present in most thermophilic archaebacteria and in Escherichia coli. This protein complex may play an important role in the adaptation of thermophilic archaebacteria to life at high temperature.
Collapse
|
|
34 |
168 |
14
|
Sango K, McDonald MP, Crawley JN, Mack ML, Tifft CJ, Skop E, Starr CM, Hoffmann A, Sandhoff K, Suzuki K, Proia RL. Mice lacking both subunits of lysosomal beta-hexosaminidase display gangliosidosis and mucopolysaccharidosis. Nat Genet 1996; 14:348-52. [PMID: 8896570 DOI: 10.1038/ng1196-348] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The GM2 gangliosidoses, Tay-Sachs and Sandhoff diseases, are caused by mutations in the HEXA (alpha-subunit) and HEXB (beta-subunit) genes, respectively. Each gene encodes a subunit for the heterodimeric lysosomal enzyme, beta-hexosaminidase A (alpha beta), as well as for the homodimers beta-hexosaminidase B (beta beta) and S (alpha alpha). In this study, we have produced mice that have both Hexa and Hexb genes disrupted through interbreeding Tay-Sachs (Hexa-/-) and Sandhoff (Hexb-/-) disease model mice. Lacking both the alpha and beta-subunits these 'double knockout' mice displayed a total deficiency of all forms of lysosomal beta-hexosaminidase including the small amount of beta-hexosaminidase S present in the Sandhoff disease model mice. More surprisingly, these mice showed the phenotypic, pathologic and biochemical features of the mucopolysaccharidoses, lysosomal storage diseases caused by the accumulation of glycosaminoglycans. The mucopolysaccharidosis phenotype is not seen in the Tay-Sachs or Sandhoff disease model mice or in the corresponding human patients. This result demonstrates that glycosaminoglycans are crucial substrates for beta-hexosaminidase and that their lack of storage in Tay-Sachs and Sandhoff diseases is due to functional redundancy in the beta-hexosaminidase enzyme system.
Collapse
|
|
29 |
164 |
15
|
Segil N, Guermah M, Hoffmann A, Roeder RG, Heintz N. Mitotic regulation of TFIID: inhibition of activator-dependent transcription and changes in subcellular localization. Genes Dev 1996; 10:2389-400. [PMID: 8843192 DOI: 10.1101/gad.10.19.2389] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mitosis in higher eukaryotes is accompanied by a general inhibition of transcription. To begin to understand the mechanisms underlying this inhibition we have examined the behavior of the general transcription factor TFIID during mitosis. Immunocytochemistry and subcellular fractionation studies indicate that the majority of TFIID is displaced from the disassembling prophase nucleus to the mitotic cytoplasm around the time of nuclear envelope breakdown. However, a subpopulation of TFIID remains associated tightly with the condensed mitotic chromosomes. Metabolic labeling of mitotic cells revealed that several subunits of TFIID undergo mitosis-specific phosphorylation, but in spite of these changes, the TFIID complex remains intact. Functional analysis of purified TFIID from mitotic cells shows that phosphorylated forms are unable to direct activator-dependent transcription, but that this activity is restored upon dephosphorylation. These results demonstrate that TFIID regulation by phosphorylation is likely to have an important role in mitotic inhibition of RNA polymerase II transcription. In addition, they suggest a mechanism for regulating gene expression through the selective disruption of polymerase II promoter structures during mitosis.
Collapse
|
|
29 |
158 |
16
|
Acciari VA, Aliu E, Arlen T, Bautista M, Beilicke M, Benbow W, Bradbury SM, Buckley JH, Bugaev V, Butt Y, Byrum K, Cannon A, Celik O, Cesarini A, Chow YC, Ciupik L, Cogan P, Cui W, Dickherber R, Fegan SJ, Finley JP, Fortin P, Fortson L, Furniss A, Gall D, Gillanders GH, Grube J, Guenette R, Gyuk G, Hanna D, Holder J, Horan D, Hui CM, Humensky TB, Imran A, Kaaret P, Karlsson N, Kieda D, Kildea J, Konopelko A, Krawczynski H, Krennrich F, Lang MJ, LeBohec S, Maier G, McCann A, McCutcheon M, Millis J, Moriarty P, Ong RA, Otte AN, Pandel D, Perkins JS, Petry D, Pohl M, Quinn J, Ragan K, Reyes LC, Reynolds PT, Roache E, Roache E, Rose HJ, Schroedter M, Sembroski GH, Smith AW, Swordy SP, Theiling M, Toner JA, Varlotta A, Vincent S, Wakely SP, Ward JE, Weekes TC, Weinstein A, Williams DA, Wissel S, Wood M, Walker RC, Davies F, Hardee PE, Junor W, Ly C, Aharonian F, Akhperjanian AG, Anton G, Barres de Almeida U, Bazer-Bachi AR, Becherini Y, Behera B, Bernlöhr K, Bochow A, Boisson C, Bolmont J, Borrel V, Brucker J, Brun F, Brun P, Bühler R, Bulik T, Büsching I, Boutelier T, Chadwick PM, Charbonnier A, Chaves RCG, Cheesebrough A, Chounet LM, Clapson AC, Coignet G, Dalton M, Daniel MK, Davids ID, Degrange B, Deil C, Dickinson HJ, Djannati-Ataï A, Domainko W, Drury LO, Dubois F, Dubus G, Dyks J, Dyrda M, Egberts K, Emmanoulopoulos D, Espigat P, Farnier C, Feinstein F, Fiasson A, Förster A, Fontaine G, Füssling M, Gabici S, Gallant YA, Gérard L, Gerbig D, Giebels B, Glicenstein JF, Glück B, Goret P, Göhring D, Hauser D, Hauser M, Heinz S, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hoffmann A, Hofmann W, Holleran M, Hoppe S, Horns D, Jacholkowska A, de Jager OC, Jahn C, Jung I, Katarzyński K, Katz U, Kaufmann S, Kendziorra E, Kerschhaggl M, Khangulyan D, Khélifi B, Keogh D, Kluźniak W, Kneiske T, Komin N, Kosack K, Lamanna G, Lenain JP, Lohse T, Marandon V, Martin JM, Martineau-Huynh O, Marcowith A, Maurin D, McComb TJL, Medina MC, Moderski R, Moulin E, Naumann-Godo M, de Naurois M, Nedbal D, Nekrassov D, Nicholas B, Niemiec J, Nolan SJ, Ohm S, Olive JF, de Oña Wilhelmi E, Orford KJ, Ostrowski M, Panter M, Paz Arribas M, Pedaletti G, Pelletier G, Petrucci PO, Pita S, Pühlhofer G, Punch M, Quirrenbach A, Raubenheimer BC, Raue M, Rayner SM, Renaud M, Rieger F, Ripken J, Rob L, Rosier-Lees S, Rowell G, Rudak B, Rulten CB, Ruppel J, Sahakian V, Santangelo A, Schlickeiser R, Schöck FM, Schröder R, Schwanke U, Schwarzburg S, Schwemmer S, Shalchi A, Sikora M, Skilton JL, Sol H, Spangler D, Stawarz Ł, Steenkamp R, Stegmann C, Stinzing F, Superina G, Szostek A, Tam PH, Tavernet JP, Terrier R, Tibolla O, Tluczykont M, van Eldik C, Vasileiadis G, Venter C, Venter L, Vialle JP, Vincent P, Vivier M, Völk HJ, Volpe F, Wagner SJ, Ward M, Zdziarski AA, Zech A, Anderhub H, Antonelli LA, Antoranz P, Backes M, Baixeras C, Balestra S, Barrio JA, Bastieri D, Becerra González J, Becker JK, Bednarek W, Berger K, Bernardini E, Biland A, Bock RK, Bonnoli G, Bordas P, Borla Tridon D, Bosch-Ramon V, Bose D, Braun I, Bretz T, Britvitch I, Camara M, Carmona E, Commichau S, Contreras JL, Cortina J, Costado MT, Covino S, Curtef V, Dazzi F, De Angelis A, De Cea del Pozo E, Delgado Mendez C, De los Reyes R, De Lotto B, De Maria M, De Sabata F, Dominguez A, Dorner D, Doro M, Elsaesser D, Errando M, Ferenc D, Fernández E, Firpo R, Fonseca MV, Font L, Galante N, García López RJ, Garczarczyk M, Gaug M, Goebel F, Hadasch D, Hayashida M, Herrero A, Hildebrand D, Höhne-Mönch D, Hose J, Hsu CC, Jogler T, Kranich D, La Barbera A, Laille A, Leonardo E, Lindfors E, Lombardi S, Longo F, López M, Lorenz E, Majumdar P, Maneva G, Mankuzhiyil N, Mannheim K, Maraschi L, Mariotti M, Martínez M, Mazin D, Meucci M, Miranda JM, Mirzoyan R, Miyamoto H, Moldón J, Moles M, Moralejo A, Nieto D, Nilsson K, Ninkovic J, Oya I, Paoletti R, Paredes JM, Pasanen M, Pascoli D, Pauss F, Pegna RG, Perez-Torres MA, Persic M, Peruzzo L, Prada F, Prandini E, Puchades N, Reichardt I, Rhode W, Ribó M, Rico J, Rissi M, Robert A, Rügamer S, Saggion A, Saito TY, Salvati M, Sanchez-Conde M, Satalecka K, Scalzotto V, Scapin V, Schweizer T, Shayduk M, Shore SN, Sidro N, Sierpowska-Bartosik A, Sillanpää A, Sitarek J, Sobczynska D, Spanier F, Stamerra A, Stark LS, Takalo L, Tavecchio F, Temnikov P, Tescaro D, Teshima M, Torres DF, Turini N, Vankov H, Wagner RM, Zabalza V, Zandanel F, Zanin R, Zapatero J. Radio Imaging of the Very-High-Energy γ-Ray Emission Region in the Central Engine of a Radio Galaxy. Science 2009; 325:444-8. [PMID: 19574351 DOI: 10.1126/science.1175406] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
16 |
157 |
17
|
Ardura-Fabregat A, Boddeke EWGM, Boza-Serrano A, Brioschi S, Castro-Gomez S, Ceyzériat K, Dansokho C, Dierkes T, Gelders G, Heneka MT, Hoeijmakers L, Hoffmann A, Iaccarino L, Jahnert S, Kuhbandner K, Landreth G, Lonnemann N, Löschmann PA, McManus RM, Paulus A, Reemst K, Sanchez-Caro JM, Tiberi A, Van der Perren A, Vautheny A, Venegas C, Webers A, Weydt P, Wijasa TS, Xiang X, Yang Y. Targeting Neuroinflammation to Treat Alzheimer's Disease. CNS Drugs 2017; 31:1057-1082. [PMID: 29260466 PMCID: PMC5747579 DOI: 10.1007/s40263-017-0483-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past few decades, research on Alzheimer's disease (AD) has focused on pathomechanisms linked to two of the major pathological hallmarks of extracellular deposition of beta-amyloid peptides and intra-neuronal formation of neurofibrils. Recently, a third disease component, the neuroinflammatory reaction mediated by cerebral innate immune cells, has entered the spotlight, prompted by findings from genetic, pre-clinical, and clinical studies. Various proteins that arise during neurodegeneration, including beta-amyloid, tau, heat shock proteins, and chromogranin, among others, act as danger-associated molecular patterns, that-upon engagement of pattern recognition receptors-induce inflammatory signaling pathways and ultimately lead to the production and release of immune mediators. These may have beneficial effects but ultimately compromise neuronal function and cause cell death. The current review, assembled by participants of the Chiclana Summer School on Neuroinflammation 2016, provides an overview of our current understanding of AD-related immune processes. We describe the principal cellular and molecular players in inflammation as they pertain to AD, examine modifying factors, and discuss potential future therapeutic targets.
Collapse
|
review-article |
8 |
156 |
18
|
Acero F, Aharonian F, Akhperjanian AG, Anton G, Barres de Almeida U, Bazer-Bachi AR, Becherini Y, Behera B, Bernlöhr K, Bochow A, Boisson C, Bolmont J, Borrel V, Brucker J, Brun F, Brun P, Bühler R, Bulik T, Büsching I, Boutelier T, Chadwick PM, Charbonnier A, Chaves RCG, Cheesebrough A, Chounet LM, Clapson AC, Coignet G, Dalton M, Daniel MK, Davids ID, Degrange B, Deil C, Dickinson HJ, Djannati-Ataï A, Domainko W, Drury LO, Dubois F, Dubus G, Dyks J, Dyrda M, Egberts K, Emmanoulopoulos D, Espigat P, Farnier C, Fegan S, Feinstein F, Fiasson A, Förster A, Fontaine G, Füßling M, Gabici S, Gallant YA, Gérard L, Gerbig D, Giebels B, Glicenstein JF, Glück B, Goret P, Göring D, Hauser D, Hauser M, Heinz S, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hoffmann A, Hofmann W, Hofverberg P, Hoppe S, Horns D, Jacholkowska A, de Jager OC, Jahn C, Jung I, Katarzyński K, Katz U, Kaufmann S, Kerschhaggl M, Khangulyan D, Khélifi B, Keogh D, Klochkov D, Kluźniak W, Kneiske T, Komin N, Kosack K, Kossakowski R, Lamanna G, Lenain JP, Lohse T, Marandon V, Martineau-Huynh O, Marcowith A, Masbou J, Maurin D, McComb TJL, Medina MC, Méhault J, Moderski R, Moulin E, Naumann-Godo M, de Naurois M, Nedbal D, Nekrassov D, Nicholas B, Niemiec J, Nolan SJ, Ohm S, Olive JF, Wilhelmi EDO, Orford KJ, Ostrowski M, Panter M, Arribas MP, Pedaletti G, Pelletier G, Petrucci PO, Pita S, Pühlhofer G, Punch M, Quirrenbach A, Raubenheimer BC, Raue M, Rayner SM, Reimer O, Renaud M, Rieger F, Ripken J, Rob L, Rosier-Lees S, Rowell G, Rudak B, Rulten CB, Ruppel J, Sahakian V, Santangelo A, Schlickeiser R, Schöck FM, Schwanke U, Schwarzburg S, Schwemmer S, Shalchi A, Sikora M, Skilton JL, Sol H, Stawarz Ł, Steenkamp R, Stegmann C, Stinzing F, Superina G, Szostek A, Tam PH, Tavernet JP, Terrier R, Tibolla O, Tluczykont M, van Eldik C, Vasileiadis G, Venter C, Venter L, Vialle JP, Vincent P, Vivier M, Völk HJ, Volpe F, Wagner SJ, Ward M, Zdziarski AA, Zech A. Detection of Gamma Rays from a Starburst Galaxy. Science 2009; 326:1080-2. [DOI: 10.1126/science.1178826] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
16 |
151 |
19
|
Hoffmann A, Chiang CM, Oelgeschläger T, Xie X, Burley SK, Nakatani Y, Roeder RG. A histone octamer-like structure within TFIID. Nature 1996; 380:356-9. [PMID: 8598932 DOI: 10.1038/380356a0] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The general transcription factor TFIID nucleates initiation complex formation through direct core promoter binding, commits promoters within chromatin to transcription, and mediates the action of transcriptional activators, a phenomenon that may correlate with enhanced TFIID recruitment or conformational changes in TFIID-promoter complexes. Molecular studies of the multiprotein TFIID complex have identified a primary TATA binding subunit (TBP), TBP-associated factors (TAFs) that interact with and mediate the function of activators and intersubunit interactions but have yielded relatively little insight into the structural organization of the complex or the actual mechanism of transcriptional activation. Here we present biochemical evidence for the structural relevance of histone homologies in the human TFIID subunits hTAF80, hTAF31 and hTAF20/15. Together with analyses of native TFIID complexes and accompanying crystallographic studies, the results suggest that there is a histone octamer-like TAF complex within TFIID.
Collapse
|
|
29 |
144 |
20
|
Chiang CM, Ge H, Wang Z, Hoffmann A, Roeder RG. Unique TATA-binding protein-containing complexes and cofactors involved in transcription by RNA polymerases II and III. EMBO J 1993; 12:2749-62. [PMID: 7687540 PMCID: PMC413525 DOI: 10.1002/j.1460-2075.1993.tb05936.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Two multisubunit complexes containing the TATA-binding protein (TBP) were isolated from HeLa cells constitutively expressing the FLAG epitope-tagged TBP using antibody affinity and peptide elution methods. One of the complexes (f:TFIID), isolated from the P11 0.85 M KCl fraction, contains at least 13 specific TBP-associated factors (TAFs) and can mediate activator-dependent transcription by RNA polymerase II. Importantly, activator function through the highly purified f:TFIID complex still requires a general cofactor fraction containing upstream factor stimulatory activity (USA). As previously observed with partially purified activator-competent natural TFIID, f:TFIID generates extended TATA-dependent footprints on the intrinsically strong adenovirus major late promoter (MLP) but only restricted footprints on the weak adenovirus E1b and E4 and HIV (core) promoters. Along with previous demonstrations of activator-induced downstream TFIID interactions on the E4 promoter, these results argue for a relationship between downstream interactions and overall promoter strength. Initiator-like sequences appear not to be essential for downstream interactions since they have no effect on downstream MLP interactions when mutated, do not effect downstream interactions on the HIV promoter and are not present on the inducible E4 promoter. The other multisubunit complex (f:TFIIIB), isolated from the P11 0.30 M KCl fraction, contains four specific TAFs and can substitute for one of the fractions (TFIIIB) required for RNA polymerase III (pol III) transcription. Neither f:TFIID nor TBP could substitute for this pol III TBP-containing fraction. This plus the fact that f:TFIIIB failed to generate a footprint on the MLP underscores the importance of TAFs in determining promoter specificity by different RNA polymerases.
Collapse
|
|
32 |
141 |
21
|
Hoffmann A, Conradt HS, Gross G, Nimtz M, Lottspeich F, Wurster U. Purification and chemical characterization of beta-trace protein from human cerebrospinal fluid: its identification as prostaglandin D synthase. J Neurochem 1993; 61:451-6. [PMID: 8336134 DOI: 10.1111/j.1471-4159.1993.tb02145.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
beta-Trace protein from pooled human CSF was purified to homogeneity. An apparent molecular mass of 23-29 kDa was determined for the polypeptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Amino-terminal sequencing of the polypeptide yielded the unique amino acid sequence APEAQVSVQPNFQQDKFLGRWFSA. Alignment of amino acid sequences obtained from tryptic peptides with the sequence previously deduced from a cDNA clone isolated by other investigators allowed the identification of beta-trace protein as prostaglandin D synthase [prostaglandin-H2 D-isomerase; (5Z, 13E)-(15S)-9 alpha, 11 alpha-epidioxy-15-hydroxyprosta-5,13-dienoate D-isomerase; EC 5.3.99.2]. A conservative amino acid exchange (Thr instead of Ser) was detected at amino acid position 154 of the beta-trace polypeptide chain in the corresponding tryptic peptide. The two N-glycosylation sites of the polypeptide were shown to be almost quantitatively occupied by carbohydrate. Carbohydrate compositional as well as methylation analysis indicated that Asn29 and Asn56 bear exclusively complex-type oligosaccharide structures (partially sialylated with alpha 2-3- and/or alpha 2-6-linked N-acetylneuraminic acid) that are almost quantitatively alpha 1-6 fucosylated at the proximal N-acetylglucosamine; approximately 70% of these molecules contain a bisecting N-acetylglucosamine. Agalacto structures as well as those with a peripheral fucose are also present.
Collapse
|
|
32 |
140 |
22
|
Mosendz O, Pearson JE, Fradin FY, Bauer GEW, Bader SD, Hoffmann A. Quantifying spin Hall angles from spin pumping: experiments and theory. PHYSICAL REVIEW LETTERS 2010; 104:046601. [PMID: 20366725 DOI: 10.1103/physrevlett.104.046601] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Indexed: 05/29/2023]
Abstract
Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating Ni{80}Fe{20}|normal metal (N) bilayers into a coplanar waveguide. A dc spin current in N can be generated by spin pumping in a controllable way by ferromagnetic resonance. The transverse dc voltage detected along the Ni{80}Fe{20}|N has contributions from both the anisotropic magnetoresistance and the spin Hall effect, which can be distinguished by their symmetries. We developed a theory that accounts for both. In this way, we determine the spin Hall angle quantitatively for Pt, Au, and Mo. This approach can readily be adapted to any conducting material with even very small spin Hall angles.
Collapse
|
|
15 |
137 |
23
|
Gasch A, Hoffmann A, Horikoshi M, Roeder RG, Chua NH. Arabidopsis thaliana contains two genes for TFIID. Nature 1990; 346:390-4. [PMID: 2197561 DOI: 10.1038/346390a0] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The general transcription initiation factor TFIID plays a primary part in the activation of eukaryotic genes transcribed by RNA polymerase II. Binding of TFIID to the TATA box initiates the assembly of other general transcription factors as well as RNA polymerase II at the promoter resulting in a preinitiation complex capable of accurate transcription initiation in vitro. Human TFIID has been shown to interact with various regulatory factors. The observation that stimulation of transcription by different trans-acting factors is mediated through distinct TATA elements led to the suggestion that different types of TFIID may exist in yeast, humans and plants. Here we report the cloning and characterization of two distinct TFIID complementary DNA clones from Arabidopsis thaliana. Furthermore, we have found that TFIID from Arabidopsis and other organisms shows homology to helix-loop-helix proteins.
Collapse
|
Comparative Study |
35 |
137 |
24
|
Weinmann AS, Mitchell DM, Sanjabi S, Bradley MN, Hoffmann A, Liou HC, Smale ST. Nucleosome remodeling at the IL-12 p40 promoter is a TLR-dependent, Rel-independent event. Nat Immunol 2001; 2:51-7. [PMID: 11135578 DOI: 10.1038/83168] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lipopolysaccharide (LPS) induction of the gene encoding interleukin 12 p40 requires remodeling of a promoter-encompassing nucleosome and the Toll-like receptor (TLR)-mediated activation of a c-Rel-containing complex. Analysis of TLR4-mutant mice revealed that remodeling requires TLR signaling. However, Rel proteins and other proteins required for transcription of an integrated p40 promoter were insufficient for remodeling. c-Rel was also unnecessary for remodeling, as remodeling was observed in c-Rel-/- macrophages, which lack p40 transcripts. These results suggest that remodeling requires TLR signaling pathways that diverge from the c-Rel activation pathways. The factors that stimulate remodeling may represent, therefore, newly identified targets of TLR signaling and of agents that regulate inflammatory responses and TH1 development.
Collapse
|
|
24 |
135 |
25
|
Norflus F, Tifft CJ, McDonald MP, Goldstein G, Crawley JN, Hoffmann A, Sandhoff K, Suzuki K, Proia RL. Bone marrow transplantation prolongs life span and ameliorates neurologic manifestations in Sandhoff disease mice. J Clin Invest 1998; 101:1881-8. [PMID: 9576752 PMCID: PMC508774 DOI: 10.1172/jci2127] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The GM2 gangliosidoses are a group of severe, neurodegenerative conditions that include Tay-Sachs disease, Sandhoff disease, and the GM2 activator deficiency. Bone marrow transplantation (BMT) was examined as a potential treatment for these disorders using a Sandhoff disease mouse model. BMT extended the life span of these mice from approximately 4.5 mo to up to 8 mo and slowed their neurologic deterioration. BMT also corrected biochemical deficiencies in somatic tissues as indicated by decreased excretion of urinary oligosaccharides, and lower glycolipid storage and increased levels of beta-hexosaminidase activity in visceral organs. Even with neurologic improvement, neither clear reduction of brain glycolipid storage nor improvement in neuronal pathology could be detected, suggesting a complex pathogenic mechanism. Histological analysis revealed beta-hexosaminidase-positive cells in the central nervous system and visceral organs with a concomitant reduction of colloidal iron-positive macrophages. These results may be important for the design of treatment approaches for the GM2 gangliosidoses.
Collapse
|
research-article |
27 |
128 |