1
|
Liu X, Lu S, Guo W, Xi B, Wang W. Antibiotics in the aquatic environments: A review of lakes, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 94:736-757. [PMID: 30857084 DOI: 10.1016/j.envint.2016.06.025] [Citation(s) in RCA: 618] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/19/2016] [Accepted: 06/19/2016] [Indexed: 05/05/2023]
Abstract
The potential threat of antibiotics to the environment and human health has raised significant concerns in recent years. The consumption and production of antibiotics in China are the highest in the world due to its rapid economic development and huge population, possibly resulting in the high detection frequencies and concentrations of antibiotics in aquatic environments of China. As a water resource, lakes in China play an important role in sustainable economic and social development. Understanding the current state of antibiotics in lakes in China is important. Closed and semi-closed lakes provide an ideal medium for the accumulation of antibiotics and antibiotic resistance genes (ARGs). This review summarizes the current levels of antibiotic exposure in relevant environmental compartments in lakes. The ecological and health risks of antibiotics are also evaluated. This review concludes that 39 antibiotics have been detected in the aquatic environments of lakes in China. The levels of antibiotic contamination in lakes in China is relatively high on the global scale. Antibiotic contamination is higher in sediment than water and aquatic organisms. Quinolone antibiotics (QNs) pose the greatest risks. The contents of antibiotics in aquatic organisms are far lower than their maximum residual limits (MRLs), with the exception of the organisms in Honghu Lake. The lakes experience high levels of ARG contamination. A greater assessment of ARG presence and antibiotic exposure are urgent.
Collapse
|
Review |
7 |
618 |
2
|
Liu X, Lu S, Guo W, Xi B, Wang W. Antibiotics in the aquatic environments: A review of lakes, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1195-1208. [PMID: 30857084 DOI: 10.1016/j.scitotenv.2018.01.271] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 05/25/2023]
Abstract
The potential threat of antibiotics to the environment and human health has raised significant concerns in recent years. The consumption and production of antibiotics in China are the highest in the world due to its rapid economic development and huge population, possibly resulting in the high detection frequencies and concentrations of antibiotics in aquatic environments of China. As a water resource, lakes in China play an important role in sustainable economic and social development. Understanding the current state of antibiotics in lakes in China is important. Closed and semi-closed lakes provide an ideal medium for the accumulation of antibiotics and antibiotic resistance genes (ARGs). This review summarizes the current levels of antibiotic exposure in relevant environmental compartments in lakes. The ecological and health risks of antibiotics are also evaluated. This review concludes that 39 antibiotics have been detected in the aquatic environments of lakes in China. The levels of antibiotic contamination in lakes in China is relatively high on the global scale. Antibiotic contamination is higher in sediment than water and aquatic organisms. Quinolone antibiotics (QNs) pose the greatest risks. The contents of antibiotics in aquatic organisms are far lower than their maximum residual limits (MRLs), with the exception of the organisms in Honghu Lake. The lakes experience high levels of ARG contamination. A greater assessment of ARG presence and antibiotic exposure are urgent.
Collapse
|
Review |
7 |
324 |
3
|
Xi B, Liang Y, He T, Reilly KH, Hu Y, Wang Q, Yan Y, Mi J. Secular trends in the prevalence of general and abdominal obesity among Chinese adults, 1993-2009. Obes Rev 2012; 13:287-96. [PMID: 22034908 PMCID: PMC3276709 DOI: 10.1111/j.1467-789x.2011.00944.x] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The objective of this study is to examine the trends in body mass index (BMI), waist circumference (WC) and prevalence of overweight (BMI 25-27.49 kg m(-2) ), general obesity (BMI ≥ 27.5 kg m(-2) ) and abdominal obesity (WC ≥ 90 cm for men and ≥80 cm for women) among Chinese adults from 1993 to 2009. Data were obtained from the China Health and Nutrition Survey, which was conducted from 1993 to 2009 and included a total of 52,621 Chinese adults. During the period of 1993-2009, mean BMI values increased by 1.6 kg m(-2) among men and 0.8 kg m(-2) among women; mean WC values increased by 7.0 cm among men and 4.7 cm among women. The prevalence of overweight increased from 8.0 to 17.1% among men (P < 0.001) and from 10.7 to 14.4% among women (P < 0.001); the prevalence of general obesity increased from 2.9 to 11.4% among men (P < 0.001) and from 5.0 to 10.1% among women (P < 0.001); the prevalence of abdominal obesity increased from 8.5 to 27.8% among men (P < 0.001) and from 27.8 to 45.9% among women (P < 0.001). Similar significant trends were observed in nearly all age groups and regions for both men and women. The prevalence of overweight, general obesity and abdominal obesity among Chinese adults has increased greatly during the past 17 years.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
276 |
4
|
He X, Xi B, Wei Z, Guo X, Li M, An D, Liu H. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste. CHEMOSPHERE 2011; 82:541-548. [PMID: 21147496 DOI: 10.1016/j.chemosphere.2010.10.057] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 10/20/2010] [Accepted: 10/20/2010] [Indexed: 05/30/2023]
Abstract
This paper aims to characterize the evolution of water extractable organic matter (WEOM) during the composting of municipal solid waste (MSW), and investigate the correlation between maturity and WEOM characteristics. WEOM was extracted at different stages of MSW composting (0, 7, 14, 21, and 51 d) and characterized by FTIR, UV-Vis, and fluorescence spectroscopy. The results obtained show that the composting process decreased aliphatics, alcohols, polysaccharides, as well as protein-like materials, and increased aromatic polycondensation, humification, oxygen-containing functional groups, molecular weight, and humic-like materials. The maturity of MSW during composting was characterized by the presence of the peak with an excitation/emission wavelength pair of 289/421 nm in excitation-emission matrix spectra.
Collapse
|
|
14 |
166 |
5
|
He F, Li Z, Shi S, Xu W, Sheng H, Gu Y, Jiang Y, Xi B. Dechlorination of Excess Trichloroethene by Bimetallic and Sulfidated Nanoscale Zero-Valent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8627-8637. [PMID: 29952547 DOI: 10.1021/acs.est.8b01735] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoscale zerovalent iron (nZVI) likely finds its application in source zone remediation. Two approaches to modify nZVI have been reported: bimetal (Fe-Me) and sulfidated nZVI (S-nZVI). However, previous research has primarily focused on enhancing particle reactivity with these two modifications under more plume-like conditions. In this study, we systematically compared the trichloroethene (TCE) dechlorination pathway, rate, and electron selectivity of Fe-Me (Me: Pd, Ni, Cu, and Ag), S-nZVI, and nZVI with excess TCE simulating source zone conditions. TCE dechlorination on Fe-Me was primarily via hydrogenolysis while that on S-nZVI and nZVI was mainly via β-elimination. The surface-area normalized TCE reduction rate ( k'SA) of Fe-Pd, S-nZVI, Fe-Ni, Fe-Cu, and Fe-Ag were ∼6800-, 190-, 130-, 20-, and 8-fold greater than nZVI. All bimetallic modification enhanced the competing hydrogen evolution reaction (HER) while sulfidation inhibited HER. Fe-Cu and Fe-Ag negligibly enhanced electron utilization efficiency (εe) while Fe-Pd, Fe-Ni, and S-nZVI dramatically increased εe from 2% to ∼100%, 69%, and 72%, respectively. Adsorbed atomic hydrogen was identified to be responsible for the TCE dechlorination on Fe-Me but not on S-nZVI. The enhanced dechlorination rate along with the reduced HER of S-nZVI can be explained by that FeS conducting major electrons mediated TCE dechlorination while Fe oxides conducting minor electrons mediated HER.
Collapse
|
|
7 |
162 |
6
|
Jiang Y, Li M, Guo C, An D, Xu J, Zhang Y, Xi B. Distribution and ecological risk of antibiotics in a typical effluent-receiving river (Wangyang River) in north China. CHEMOSPHERE 2014; 112:267-74. [PMID: 25048915 DOI: 10.1016/j.chemosphere.2014.04.075] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/14/2014] [Accepted: 04/19/2014] [Indexed: 05/07/2023]
Abstract
In this study, the occurrence and distribution of sixteen antibiotics belonging to four groups in surface water, sediment and groundwater samples from the Wangyang River (WYR), a typical river receiving sewage discharges were investigated. Laboratory analyses revealed that antibiotics were widely distributed in the studied area. The aqueous samples were unavoidably contaminated with antibiotics, and the target antibiotics present in high levels were oxytetracycline, tetracycline, chlortetracycline, ofloxacin, sulfamethoxazole, and trimethoprim, with maximum concentrations of the individual contaminant at 3.6×10(5), 9.7×10(3), 6.9×10(4), 1.2×10(4), 4.8×10(3), and 1.1×10(3) ng L(-1), respectively. Oxytetracycline, tetracycline, ciprofloxacin and roxithromycin were the most frequently detected compounds in sediment samples, with maximum concentrations of the individual contaminant at 1.6×10(5), 1.7×10(4), 2.1×10(3) and 2.5×10(3) ng g(-1), respectively. The results also revealed that the high intensity of aquaculture activities could contribute to the increasing levels of antibiotics in the area. According to the ratios of measured environmental concentration (MEC) to predicted no-effect concentration (PNEC), chlortetracycline, tetracycline, ofloxacin, ciprofloxacin, erythromycin-H2O and sulfamethoxazole may present possible environmental risk to Pseudokirchneriella subcapitata, Synechococcus leopoliensis and M. aeruginosa. Attention should be given to the long-term ecological effects caused by the continuous discharge of antibiotics in the WYR area.
Collapse
|
|
11 |
157 |
7
|
Meng Y, Liu X, Lu S, Zhang T, Jin B, Wang Q, Tang Z, Liu Y, Guo X, Zhou J, Xi B. A review on occurrence and risk of polycyclic aromatic hydrocarbons (PAHs) in lakes of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2497-2506. [PMID: 30336439 DOI: 10.1016/j.scitotenv.2018.10.162] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) residues have attracted attention worldwide. This study summarizes the current levels of PAH exposure in the water environments of lakes. In addition, the risk levels from individual PAHs and ΣPAHs in the water environments of lakes in China were evaluated by incremental lifetime cancer risk (ILCR) assessment, the toxic equivalent concentration (TEQBaP), the risk quotient (RQ), the effects range-low (ERL) and the effects range-median (ERM). The results showed that the concentrations of ∑PAHs in water and sediment ranged from 4.0 to 12,970.8 ng L-1 and 6.52 to 7935.21 ng g-1, respectively, and the highest concentrations of individual PAHs were of naphthalene (Nap) (6525 ng L-1), followed by indeno(1,2,3‑cd)pyrene (IcdP) (3452.6 ng g-1). Concentrations in the Great Lakes region in China showed spatial difference, with the Qinghai-Tibet Plateau Lakes District and Mongolia-Xinjiang Lakes District being less polluted. However, the pollution level of PAHs in lakes is relatively high at the global scale. The ecological risk assessment found a moderate level of ∑PAHs in water, but benz(a)anthracene (BaA) and phenanthrene (Phe) had high RQ values, which might pose a significant risk to aquatic organisms in lakes. Although the contents of ∑PAHs in sediments are low, most individual PAHs pose potential risks, especially acenaphthene (Ace), fluorene (Flu) and dibenz(a,h)anthracene (DahA). This study revealed the pollution levels of PAHs across China and provided a scientific basis for PAH pollution control and environmental protection.
Collapse
|
Review |
6 |
152 |
8
|
Liu X, Zhang G, Liu Y, Lu S, Qin P, Guo X, Bi B, Wang L, Xi B, Wu F, Wang W, Zhang T. Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:163-173. [PMID: 30543942 DOI: 10.1016/j.envpol.2018.12.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 05/21/2023]
Abstract
The pollution of antibiotics and antibiotic resistance genes (ARGs) has been highlighted on a global scale because of their serious threats to the environment and human health. Typical urban water in cities with high population density are ideal mediums for the acquisition and spread of antibiotics and ARGs. The pollution level of a broad range of antibiotics and ARGs in hospital wastewater, groundwater and the Wenyu River, and their fates through three sewage treatment plants (STPs) were investigated in this study. The concentrations of the 11 detected antibiotics ranged from not detected (ND)-16800 ng L-1 in diverse water samples from Beijing, and fluoroquinolones were detected at the highest concentration, especially in the hospital samples. The maximum concentrations of antibiotics in STPs and hospital were 1-3 orders of magnitude higher than those in the surface water from Wenyu River and groundwater. Good removal efficiencies by treatment processes were observed for tetracyclines and quinolones, and low removal efficiencies were observed for sulfonamides and macrolides. These results also revealed that the sulfonamide resistance genes (sul1, sul2) and macrolide resistance genes (ermB) were detected at the highest relative abundances (7.11 × 10-2-1.18 × 10-1) in the water bodies of Beijing. It was worth noting that sul1 abundance was the highest in groundwater samples. The relative abundance of most ARGs in STPs exhibited a declining trend in the order of influent > secondary effluents > effluent. However, the relative abundance of sul 1, sul 2 and tetC in the effluent was higher than those in the influent. The incomplete removal of antibiotics and ARGs in STPs poses a serious threat to the receiving rivers, and affects ecosystem security. Overall, our findings provide favorable support for a further investigation of the spread and risk of antibiotics and ARGs from diverse sources (e.g., STPs and hospitals) to the aquatic environment.
Collapse
|
|
6 |
150 |
9
|
Liu X, Guo X, Liu Y, Lu S, Xi B, Zhang J, Wang Z, Bi B. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: Performance and microbial response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112996. [PMID: 31400665 DOI: 10.1016/j.envpol.2019.112996] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 05/27/2023]
Abstract
Pollution caused by antibiotics has been highlighted in recent decades as a worldwide environmental and health concern. Compared to traditional physical, chemical and biological treatments, constructed wetlands (CWs) have been suggested to be a cost-efficient and ecological technology for the remediation of various kinds of contaminated waters. In this review, 39 antibiotics removal-related studies conducted on 106 treatment systems from China, Spain, Canada, Portugal, etc. were summarized. Overall, the removal efficiency of CWs for antibiotics showed good performance (average value = over 50%), especially vertical flow constructed wetlands (VFCWs) (average value = 80.44%). The removal efficiencies of sulfonamide and macrolide antibiotics were lower than those of tetracycline and quinolone antibiotics. In addition, the relationship between the removal efficiency of antibiotics and chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and ammonia nitrogen (NH3-N) concentrations showed an inverted U-shaped curve with turning points of 300 mg L-1, 57.4 mg L-1, 40 mg L-1, 3.2 mg L-1 and 48 mg L-1, respectively. The coexistence of antibiotics with nitrogen and phosphorus slightly reduced the removal efficiency of nitrogen and phosphorus in CWs. The removal effect of horizontal subsurface flow constructed wetlands for antibiotic resistance genes (ARGs) had better performance (over 50%) than that of vertical wetlands, especially for sulfonamide resistance genes. Microorganisms are highly sensitive to antibiotics. In fact, microorganisms are one of the main responsible for antibiotic removal. Moreover, due to the selective pressure induced by antibiotics and drug-resistant gene transfer from resistant bacteria to other sensitive strains through their own genetic transfer elements, decreased microbial diversity and increased resistance in sewage have been consistently reported. This review promotes further research on the removal mechanism of antibiotics and ARGs in CWs.
Collapse
|
Review |
6 |
132 |
10
|
Yu H, Hou J, Dang Q, Cui D, Xi B, Tan W. Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122690. [PMID: 32315796 DOI: 10.1016/j.jhazmat.2020.122690] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Microplastics can alter the physicochemical and biogeochemical processes in soil, but whether these alterations have further the effects on the transformation of soil heavy metal speciation, and if so, whether these effects vary across soil aggregate levels remain unknown. Herein, long-term soil culture experiments and soil fractionation are combined to investigate the effects of microplastics on chemical speciation of Cu, Cr, and Ni with different particle-size soil aggregates. Results show that microplastics in soil decrease the exchangeable, carbonate-bound, and Fe-Mn oxide-bound fractions of metals but increase their organic-bound fractions via direct adsorption and indirect effects on the soil microenvironment conditions. The findings suggest that microplastics can promote the transformation of heavy metal speciation from bioavailable to organic bound. Such promotion exerts notable differences across soil aggregate levels. The transformation of soil heavy metal speciation is greater in larger aggregates than in smaller aggregates in the early incubation period with microplastics but shows the opposite trend in the later incubation period. Therefore, this process is more sensitive to long-term microplastic pollution in smaller aggregates than in larger aggregates, most likely owing to the lag in the influence of microplastics on metal speciation transformation in the smaller aggregates.
Collapse
|
|
5 |
117 |
11
|
Huo S, Xi B, Yu H, He L, Fan S, Liu H. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages. J Environ Sci (China) 2008; 20:492-498. [PMID: 18575137 DOI: 10.1016/s1001-0742(08)62085-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The main objective of the study was to investigate the characteristics of dissolved organic matter (DOM) in leachate with different landfill ages through the chemical, spectroscopic, and elemental analysis. Humic acid (HA), fulvic acid (FA), and hydrophilic (HyI) fractions were isolated and purified by the XAD-8 resin combined with the cation exchange resin method. The analytical results of fluorescence excitation-emission matrix spectroscopy (EEMs) revealed that the fluorescence peaks were protein-like fluorescence for young landfill leachate, while the fluorescence peaks for medium and old landfill leachate were humic-like and fulvic-like fluorescence, respectively. Elemental analysis showed that carbon, hydrogen, and nitrogen content decreased with landfill age, while the oxygen content increased. Moreover, the nitrogen content in these isolated fractions followed: HA > HyI > FA. The results of elemental analysis, FT-IR, and fluorescence EEMs also confirmed that aromatic carbons and portions of aliphatic functional groups were more abundant in leachate samples with increasing landfill age.
Collapse
|
|
17 |
116 |
12
|
Jia Y, Xi B, Jiang Y, Guo H, Yang Y, Lian X, Han S. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:967-993. [PMID: 29960233 DOI: 10.1016/j.scitotenv.2018.06.201] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/04/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
The sustainability of groundwater usage faces quality problem caused by anthropogenic activity as well as geogenic contamination. With varied climate zones, geomorphology and geological background, China faces a variety of geogenic contaminated groundwater (GCG) reported known as high TDS, Fe, Mn, As, F, I, NH4+, U, Cr and low I, Se, etc., may still exist some others not fully known yet. The problem of GCG is more significant in northern China due to extensive groundwater usage, arid climate and widespread Holocene strata. High salinity groundwater is mainly distributed in semi-arid/arid northwestern inland basins and coastal areas. Elevated Fe and Mn are frequently concomitant and controlled by redox potential, prevailing in the Sanjiang Plain, Yellow River Basin, and middle and lower reaches of the Yangtze River Basin. High As groundwater occurs in reducing aquifer is mainly distributed in the Yellow River, Yangtze River and Huai River Basins as well as the Songnen Plain and Xinjiang. Fluoride is characterized by its areal distribution in northern China in comparison with scatter occurrence in the south. The dissolution of F-bearing minerals as well as evaporation effect both contribute to elevated F. High iodine groundwater mainly distributed in the Yellow-Huai-Hai River Basin and low iodine prevailing in piedmont areas both pose health issues. Iodine is related to decomposition of organic matter (OC) as well as marine origin. Contributed by OC mineralization naturally-occurring NH4+ was found in reducing aquifers. The GCG triggers endemic disease in addition to reduce groundwater resource. The co-occurrence like high TDS and F, As and F are frequently observed posing major challenges for mitigation. Anthropogenic influence like abstraction and pollutant infiltration would alter groundwater flow and the redox condition causing the further evolution of GCG. Identification of GCG should be made in rural areas where private wells prevail to ensure resident's health.
Collapse
|
Review |
7 |
113 |
13
|
Hou J, Xu X, Yu H, Xi B, Tan W. Comparing the long-term responses of soil microbial structures and diversities to polyethylene microplastics in different aggregate fractions. ENVIRONMENT INTERNATIONAL 2021; 149:106398. [PMID: 33503554 DOI: 10.1016/j.envint.2021.106398] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/04/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) alter soil aggregation stability. However, studies have yet to determine whether these alterations further affect microbial community structures and diversities within different soil aggregates and whether they influence the responses of soil microbial structures and diversities to MPs in different aggregate fractions. In this study, long-term soil incubation experiments and soil fractionation were combined to investigate the effects of polyethylene microplastics (PE-MPs) on soil aggregate properties and microbial communities in soil aggregates with different particle sizes. Results showed that the existence of PE-MPs significantly reduced the physicochemical properties of soil aggregates, inhibited the activities of soil enzymes, and changed the richness and diversity of bacterial and fungal communities. Such variations exerted notable differences in soil aggregate levels. The response sensitivity of bacteria in the silt and clay fraction was higher than that in the macroaggregate fraction, but the response sensitivity of fungi in the macroaggregate fraction was higher than that in the silt and clay fraction. Relationships and path analysis between soil aggregate properties and microbial communities after PE-MPs addition were proposed. PE-MPs affected microbial community structures by directly and indirectly influencing soil microenvironmental conditions. The relative abundances of Acidobacteria, Gemmatimonadetes, Bacteroides, Basidiomycota, Chtridiomyota, and Glomeromycota were significantly correlated with physicochemical properties and soil enzyme activities. Enzyme activities were direct factors influencing soil microbial community structures, and physicochemical properties (i.e., dissolved organic carbon, soil available phosphorus) could indirectly affect these structures by acting on soil enzyme activities. Our findings helped improve our understanding of the responses of soil microbial structures and diversities to MPs through the perspective of different soil aggregates.
Collapse
|
|
4 |
113 |
14
|
Fan P, Yu H, Xi B, Tan W. A review on the occurrence and influence of biodegradable microplastics in soil ecosystems: Are biodegradable plastics substitute or threat? ENVIRONMENT INTERNATIONAL 2022; 163:107244. [PMID: 35436719 DOI: 10.1016/j.envint.2022.107244] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/21/2022] [Accepted: 04/10/2022] [Indexed: 05/23/2023]
Abstract
Plastic products are widely used around the world, but waste plastic is not reasonably managed and causes serious plastic pollution. Biodegradable plastics (BPs) provide an alternative to conventional plastics, but not all BPs can be completely degraded under natural conditions. Instead, they may break down into microplastics (MPs) faster than conventional plastics, posing an additional threat to soil environment. In this paper, the definition, applications, and degradation behaviors of BPs, including biodegradable microplastics (BMPs), are reviewed, and we comprehensively summarized the eco-toxicological effects of BMPs in soil ecosystems, in terms of physical and chemical properties of soil, soil nutrient cycling, soil bacterial and fungal communities, soil flora and fauna. The compound effects of BMPs and other pollutants were also addressed. The results revealed that BMPs made different or more severely effects compared to conventional MPs. Overall, this review aims to address gaps in knowledge, shed light on the ecological effects of BPs and BMPs in soil. BPs are not a perfect substitute to solve plastic pollution, and further exploration should focus on their generation, environmental behavior, ecological impact and whether BMPs cause more harm than conventional MPs.
Collapse
|
Review |
3 |
113 |
15
|
Zhang C, Zeng G, Yuan L, Yu J, Li J, Huang G, Xi B, Liu H. Aerobic degradation of bisphenol A by Achromobacter xylosoxidans strain B-16 isolated from compost leachate of municipal solid waste. CHEMOSPHERE 2007; 68:181-90. [PMID: 17291567 DOI: 10.1016/j.chemosphere.2006.12.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 12/01/2006] [Accepted: 12/06/2006] [Indexed: 05/13/2023]
Abstract
A novel bacterium designated strain B-16 was isolated from the compost leachate of the municipal solid waste (MSW) in a laboratory reactor. This strain was identified as a gram-negative bacterium, Achromobacter xylosoxidans that could grow on bisphenol A (BPA, a representative endocrine disruptor) as a sole carbon source under aerobic condition. BPA-degrading characteristics of strain B-16 were investigated in liquid cultures. The results show that BPA degradation was influenced by several factors (e.g. inoculum size, substrate concentration, temperature and pH, etc). The half-lives, optimum temperature and pH were found to be 0.58-3.1d, 35 degrees C and 7.0, respectively. BPA-degrading activity and cell growth were inhibited at high substrate concentration. Metabolic intermediates detected during the degradation process were identified as p-hydroxybenzaldehyde, p-hydroxybenzoic acid and p-hydroquinone, respectively. Metabolic pathway of BPA degradation was proposed in this study.
Collapse
|
|
18 |
97 |
16
|
Xi B, He X, Dang Q, Yang T, Li M, Wang X, Li D, Tang J. Effect of multi-stage inoculation on the bacterial and fungal community structure during organic municipal solid wastes composting. BIORESOURCE TECHNOLOGY 2015; 196:399-405. [PMID: 26257051 DOI: 10.1016/j.biortech.2015.07.069] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 06/04/2023]
Abstract
In this study, PCR-DGGE method was applied to investigate the impact of multi-stage inoculation treatment on the community composition of bacterial and fungal during municipal solid wastes (MSW) composting process. The results showed that the high temperature period was extended by the multi-stage inoculation treatment, 1day longer than initial-stage inoculation treatment, and 5days longer than non-inoculation treatment. The temperature of the secondary fermentation increased to 51°C with multi-stage inoculation treatment. The multi-stage inoculation method improved the community diversity of bacteria and fungi that the diversity indexes reached the maximum on the 17days and 20days respectively, avoided the competition between inoculations and indigenous microbes, and enhanced the growth of dominant microorganisms. The DNA sequence indicated that various kinds of uncultured microorganisms with determined ratios were detected, which were dominant microbes during the whole fermentation process. These findings call for further researches of compost microbial cultivation technology.
Collapse
|
|
10 |
95 |
17
|
Yu H, Fan P, Hou J, Dang Q, Cui D, Xi B, Tan W. Inhibitory effect of microplastics on soil extracellular enzymatic activities by changing soil properties and direct adsorption: An investigation at the aggregate-fraction level. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115544. [PMID: 32911337 DOI: 10.1016/j.envpol.2020.115544] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 05/09/2023]
Abstract
Microplastics (MPs), as a new type of environmental pollutant, pose a serious threat to soil ecosystems. The activities of soil extracellular enzymes produced by microorganisms are the potential sensitive indicators of soil quality. However, little is known about the response mechanism of enzyme activities toward MPs on a long-term scale. Moreover, information on differences in enzyme activities across different soil aggregates is lacking. In this study, 150 days of incubation experiments and soil aggregate fractionation were combined to investigate the influence of MPs on extracellular enzyme activities in soil. 28% concentration of polyethylene with size 100 μm was adopted in the treatments added with MPs. The results show that MPs inhibited enzyme activities through changing soil nutritional substrates and physicochemical properties or through adsorption. Moreover, MPs competed with soil microorganisms for physicochemical niches to reduce microbial activity and eventually, extracellular enzyme activity. Enzyme activities in different aggregate-size fractions responded differently to the MPs exposure. The catalase in the coarse particulate fraction and phenol oxidase and β-glucosidase in the micro-aggregate fraction exerted the greatest response. With comparison, urease, manganese peroxidase, and laccase activities showed the greatest responses in the non-aggregated silt and clay fraction. These observations are believed to stem from differences in the key factors determining the enzyme activities in different aggregate-size fractions. The inhibitory pathway of microplastics on activities of extracellular enzymes in soil varies significantly across different aggregate fractions.
Collapse
|
|
5 |
95 |
18
|
Li S, Zhang M, Tian H, Liu Z, Yin X, Xi B. Preterm birth and risk of type 1 and type 2 diabetes: systematic review and meta-analysis. Obes Rev 2014; 15:804-11. [PMID: 25073871 DOI: 10.1111/obr.12214] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 06/14/2014] [Accepted: 06/14/2014] [Indexed: 11/27/2022]
Abstract
Preterm birth is suggested to play an important role in the development of diabetes. However, results have been inconsistent. We conducted a systematic review and meta-analysis to clarify the relationship between preterm birth and type 1 and type 2 diabetes. PubMed, Embase and ISI Web of Science were searched. A total of 18 studies (including 2,176,480 participants and 22,073 cases) for type 1 diabetes and five studies (including 31,478 participants and 1,898 cases) for type 2 diabetes were included in the current meta-analyses. We calculated pooled odds ratio (OR) and 95% confidence interval (CI) using fixed-effects model to evaluate the relations between preterm birth and type 1 and type 2 diabetes. The results suggested that preterm birth was significantly associated with increased risk of type 1 diabetes (OR = 1.18, 95% CI = 1.11-1.25), with no evidence of between-study heterogeneity (I(2) = 13.2%, P = 0.296). Preterm birth was also significantly associated with increased risk of type 2 diabetes (OR = 1.51, 95% CI = 1.32-1.72), with no evidence of (I(2) = 0.0%, P = 0.557). Subgroup analyses suggested that there was significant association in both case-control studies (OR = 1.16, 95% CI = 1.06-1.26) and cohort studies (relative risk = 1.20, 95% CI = 1.11-1.29) for type 1 diabetes, and similar results were found for type 2 diabetes. The results suggested that preterm birth was a significant and independent risk factor for both type 1 and type 2 diabetes.
Collapse
|
Meta-Analysis |
11 |
94 |
19
|
Zhao X, Wei Y, Fan Y, Zhang F, Tan W, He X, Xi B. Roles of bacterial community in the transformation of dissolved organic matter for the stability and safety of material during sludge composting. BIORESOURCE TECHNOLOGY 2018; 267:378-385. [PMID: 30031276 DOI: 10.1016/j.biortech.2018.07.060] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
This study was conducted to assess the roles of bacterial community in the dissolved organic matters (DOM) transformation during sludge composting. The relationship among the bacterial community, organic acids, diverse components of DOM as well as the indexes of the phytotoxin level and stability of materials was analyzed by regression and redundancy analysis. The results showed that there were significant correlations between the parameters for evaluating compost phytotoxicity and maturity including GI, C/N, SUVA254, SUVA280, E253/203, and A240-400, which led to a new index (PC1) by principal component analysis. PC1 was significantly affected by four components of DOM, acetic and tartaric acids that were correlated with the bacteria community shift, especially seven key bacteria. Based on structural equation modeling, the key bacteria with the ability to degrade tartaric acid exerted more important roles in regulating the transformation of DOM components, which was helpful for the stability and safety of compost.
Collapse
|
|
7 |
94 |
20
|
Xiao H, Shahab A, Xi B, Chang Q, You S, Li J, Sun X, Huang H, Li X. Heavy metal pollution, ecological risk, spatial distribution, and source identification in sediments of the Lijiang River, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116189. [PMID: 33288295 DOI: 10.1016/j.envpol.2020.116189] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 05/09/2023]
Abstract
The Lijiang River is of great ecological and environmental importance for Guilin City, which is located in the karst area of southeast China. Given its importance, a detailed evaluation of the heavy metals (HMs) in the river sediment is required. For the first time, 61 sediment samples were collected along the entire Lijiang River to determine pollution level and ecological risk posed by 10 HMs (Co, Cr, Cu, Mn, Ni, Pb, Zn, As, Hg, and Cd). These were assessed using the geo-accumulation index, potential ecological risk index, and modified degree of contamination. The results showed that the mean concentrations of the majority of HMs exceeded their corresponding background values and followed the trend: midstream > downstream > upstream. Based on the spatial distributions and pollution indices of the 10 HMs, the Lijiang River was found to have a high accumulation of Cd, Hg, Zn, and Pb in the sediments. The midstream area was the most polluted with respect to Cd and Hg, and also posed a relatively higher potential ecological risk than the downstream and upstream areas. The sources of the assessed HMs were inferred based on a correlation analysis and principal component analysis, which identified both natural and anthropogenic sources. A higher pollution potential was associated with Cd, Hg, Pb, and Zn in the midstream and downstream areas due to higher organic and carbonate content, urbanization, agricultural activities, and leisure activities (e.g., boating and cruises). In contrast, natural erosion and weathering processes were responsible for the HM concentrations in the upstream area. The findings of this study will help the local authorities to protect the important water resource of the Lijiang River.
Collapse
|
|
4 |
90 |
21
|
Wei Z, Xi B, Zhao Y, Wang S, Liu H, Jiang Y. Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid. CHEMOSPHERE 2007; 68:368-74. [PMID: 17313970 DOI: 10.1016/j.chemosphere.2006.12.067] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2006] [Revised: 12/11/2006] [Accepted: 12/11/2006] [Indexed: 05/14/2023]
Abstract
Municipal solid waste (MSW) compost contains a significant amount of humic substances. In this study, the compost consisted of residual MSW with the metal, plastic and glass removed. In order to enhance degradation processes and the degree of composting humification, complex microorganisms (Bacillus casei, Lactobacillus buchneri and Candida rugopelliculosa) and ligno-cellulolytic (Trichoderma and White-rot fungi) microorganisms were respectively inoculated in the composting process. During the MSW composting, humic acid (HA) was extracted and purified. Elements (C, N, H, O) and spectroscopic characteristics of the HA were determined using elementary analyzer, UV, Fourier transform infrared (FTIR), and fluorescence spectroscopy. The elements analysis, UV, FTIR and fluorescence spectra all led to the same conclusion, that is inoculations with microbes led to a greater degree of aromatization of HA than in the control process (CK) with no inoculation microbes. This indicated that inoculation with microbes in composting would improve the degree humification and maturation processes, in the following order: lingo-cellulolytic>complex microorganisms>CK. And mixed inoculation of MSW with complex microorganisms and lingo-cellulolytic during composting gave a greater degree of HA aromatization than inoculation with complex microorganisms or lingo-cellulolytic alone. But comparing with the HA of soil, the HA of MSW compost revealed a lower degree of aromatization.
Collapse
|
|
18 |
84 |
22
|
Wei Z, Zhao X, Zhu C, Xi B, Zhao Y, Yu X. Assessment of humification degree of dissolved organic matter from different composts using fluorescence spectroscopy technology. CHEMOSPHERE 2014; 95:261-267. [PMID: 24188626 DOI: 10.1016/j.chemosphere.2013.08.087] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 06/02/2023]
Abstract
This study was conducted to assess the degree of humification in dissolved organic matter (DOM) from different composts, and their environmental impact after soil amending based on fluorescence measurements (emission, excitation, synchronous scan, and excitation-emission matrix [EEM]). The compost sources studied included dairy cattle manure (DCM), kitchen waste (KW), cabbage waste (CW), tomato stem waste (TSW), municipal solid waste (MSW), green waste (GW), chicken manure (CM), and peat (P). Conventional and EEM fluorescence spectroscopy indicated that the DOM of these composts contained compounds similar in structure but comparisons between conventional fluorescence parameters and fluorescence regional integration of EEM fluorescence spectra showed that the DOM was different in degree of humification. Regression analysis demonstrated significant corrections between major fluorescence parameters. In hierarchical cluster analysis, these composts were clustered into 2 groups and 4 subgroups, and projection pursuit regression analysis further ranked the compost sources as KW, CW, P>CM, DCM, TW, GW>MSW in their degree of humification in DOM.
Collapse
|
|
11 |
81 |
23
|
Li R, Feng C, Hu W, Xi B, Chen N, Zhao B, Liu Y, Hao C, Pu J. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation. WATER RESEARCH 2016; 89:171-179. [PMID: 26650451 DOI: 10.1016/j.watres.2015.11.044] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
Nitrate contaminated water can be effectively treated by simultaneous heterotrophic and autotrophic denitrification (HAD). In the present study, woodchips and elemental sulfur were used as co-electron donors for HAD. It was found that ammonium salts could enhance the denitrifying activity of the Thiobacillus bacteria, which utilize the ammonium that is produced by the dissimilatory nitrate reduction to ammonium (DNRA) in the woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process. The denitrification performance of the WSHAD process (reaction constants range from 0.05485 h(-1) to 0.06637 h(-1)) is better than that of sulfur-based autotrophic denitrification (reaction constants range from 0.01029 h(-1) to 0.01379 h(-1)), and the optimized ratio of woodchips to sulfur is 1:1 (w/w). No sulfate accumulation is observed in the WSHAD process and the alkalinity generated in the heterotrophic denitrification can compensate for alkalinity consumption by the sulfur-based autotrophic denitrification. The symbiotic relationship between the autotrophic and the heterotrophic denitrification processes play a vital role in the mixotrophic environment.
Collapse
|
|
9 |
78 |
24
|
Li R, Zhang Y, Deng H, Zhang Z, Wang JJ, Shaheen SM, Xiao R, Rinklebe J, Xi B, He X, Du J. Removing tetracycline and Hg(II) with ball-milled magnetic nanobiochar and its potential on polluted irrigation water reclamation. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121095. [PMID: 31732339 DOI: 10.1016/j.jhazmat.2019.121095] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/17/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
The feasibility of ball-milled magnetic nanobiochars (BMBCs) derived from wheat straw for adsorptive removal of tetracycline (TC) and Hg(II) from aqueous solution was assessed against that of pristine magnetic biochars (PMBCs). Ball milling conversion of PMBCs into BMBCs greatly improved TC and Hg(II) removal, and ≥ 99% TC and Hg(II) were adsorbed by BMBC prepared at 700 °C (BMBC700) within 12 h. The maximum adsorptive removal capacities of BMBC700 for TC and Hg(II) were 268.3 and 127.4 mg/g, respectively. The amounts of TC and Hg(II) removed by BMBC700 decreased gradually as the ionic strength of the solution increased, but increased as the solution temperature increased from 25 to 45 °C. The further FTIR and XPS analysis confirmed removal of TC was predominately regulated by the combination of electrostatic interactions, hydrogen bonds, and Cπ-Cπ interaction, while, the adsorption of Hg(II) was mainly governed by several mechanisms, including electrostatic attractions, Hg-Cπ bond formation, and surface complexation. Overall, BMBC700 presented great potential for TC and Hg(II) removal from polluted irrigation water and exhibited acceptable recyclability performance as well as magnetic separation advantage in use.
Collapse
|
|
5 |
73 |
25
|
Xi B, Zhao X, He X, Huang C, Tan W, Gao R, Zhang H, Li D. Successions and diversity of humic-reducing microorganisms and their association with physical-chemical parameters during composting. BIORESOURCE TECHNOLOGY 2016; 219:204-211. [PMID: 27494101 DOI: 10.1016/j.biortech.2016.07.120] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Humic-reducing microorganisms (HRMs) could utilize humic substances (HS) as terminal electron mediator to promote the biodegradation of recalcitrant pollutants. However, the dynamics of HRMs during composting has not been explored. Here, high throughput sequencing technology was applied to investigate the patterns of HRMs during three composting systems. A total of 30 main genera of HRMs were identified in three composts, with Proteobacteria being the largest phylum. HRMs were detected with increased diversity and abundance and distinct patterns during composting, which were significantly associated with dissolved organic carbon, dissolved organic nitrogen and germination index. Regulating key physical-chemical parameters is a process control of HRMs community composition, thus promoting the redox capability of the compost. The redox capability of HRMs were strengthened during composting, suggesting that HRMs of the compost may play an important role on pollutant degradation of the compost or when they are applied to the contaminated soils.
Collapse
|
|
9 |
72 |