126
|
Lucht JM, Dersch P, Kempf B, Bremer E. Interactions of the nucleoid-associated DNA-binding protein H-NS with the regulatory region of the osmotically controlled proU operon of Escherichia coli. J Biol Chem 1994; 269:6578-8. [PMID: 8120010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Escherichia coli hns gene encodes the abundant nucleoid-associated DNA-binding protein H-NS. Mutations in hns alter the expression of many genes with unrelated functions and result in a derepression of the proU operon (proVWX) without abolishing the osmotic control of its transcription. We have investigated the interactions of H-NS with the proU regulatory region by deletion analysis of cis-acting sequences, competitive gel retardation assays, and DNase I footprinting. The negative effect of H-NS on proU transcription was mediated by cis-acting sequences within proV but did not depend on the presence of a curved DNA segment upstream of the proU-35 region previously characterized as a target for H-NS binding in vitro. We detected a 46-base pair high affinity H-NS binding region downstream of the proU promoter at the 5' end of the proV gene and a complex array of additional H-NS binding sites which suggest the presence of an extended H-NS nucleoprotein complex. Most of the H-NS binding sites were highly A+T-rich and carried stretches of 5 or more consecutive A-T base pairs. The implications of our results for the osmotic regulation of proU transcription are discussed.
Collapse
|
127
|
Lucht J, Dersch P, Kempf B, Bremer E. Interactions of the nucleoid-associated DNA-binding protein H-NS with the regulatory region of the osmotically controlled proU operon of Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37411-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
128
|
Fsihi H, Kottwitz B, Bremer E. Single amino acid substitutions affecting the substrate specificity of the Escherichia coli K-12 nucleoside-specific Tsx channel. J Biol Chem 1993; 268:17495-503. [PMID: 8349629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Tsx protein from the Escherichia coli outer membrane is a channel-forming protein containing a nucleoside-specific binding site. The antibiotic albicidin enters the cell via this substrate-specific channel. Because albicidin is toxic for E. coli at a very low external substrate concentration, the Tsx channel is likely to contain a binding site for this antibiotic. To identify residues involved in the Tsx substrate-specific channel activity, we devised a selection scheme to isolate albicidin-resistant tsx mutants synthesizing Tsx proteins with defects in their nucleoside uptake function. We recovered seven distinct albicidin-resistant tsx alleles, six point mutations and a 39-base pair duplication. The mutants with a duplication of residues 21-33 of Tsx or with single amino acid substitutions of residue Gly28 (to Arg) and Ser217 (to Arg) are completely deficient in nucleoside uptake at a low substrate concentration. Substitutions of Phe27 to Leu, Gly28 to Glu, Gly239 to Asp, and Gly240 to Asp result in a Tsx protein partially defective in nucleoside transport. These mutant proteins still permit nonspecific diffusion of serine indicating that the mutations do not result in a block of the Tsx channel. Our results are discussed in terms of a model for the topological organization of the Tsx protein within the outer membrane of E. coli.
Collapse
|
129
|
Fsihi H, Kottwitz B, Bremer E. Single amino acid substitutions affecting the substrate specificity of the Escherichia coli K-12 nucleoside-specific Tsx channel. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)85361-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
130
|
Dersch P, Schmidt K, Bremer E. Synthesis of the Escherichia coli K-12 nucleoid-associated DNA-binding protein H-NS is subjected to growth-phase control and autoregulation. Mol Microbiol 1993; 8:875-89. [PMID: 8355613 DOI: 10.1111/j.1365-2958.1993.tb01634.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mutations in the structural gene (hns) for the Escherichia coli nucleoid-associated DNA-binding protein H-NS cause highly pleiotropic effects on gene expression, site-specific recombination, transposition of phage Mu, the stability of the genetic material and the topological state of the DNA. We have investigated the regulation of hns expression and found that hns transcription is subjected to stationary phase induction and negative autoregulation. A set of hns-lacZ protein and operon fusions was constructed in vitro and integrated in single copy into the attB site of the bacterial genome. Quantification of beta-galactosidase activity along the bacterial growth curve showed that hns expression increases approximately 10-fold in stationary phase compared with exponentially growing cells. Immunological detection of the H-NS protein in growing and stationary phase cells supported the genetic data and showed that H-NS synthesis varies with growth phase. In addition, primer extension experiments demonstrated that the amount of hns mRNA is elevated in stationary phase cultures and that hns transcription is directed by a unique promoter functioning in both log and stationary phase. Disruption of the hns gene by an insertion mutation led to the derepression (approximately fourfold) of the expression of an hns-lacZ operon fusion integrated at the attB site, showing that hns transcription is subjected to negative regulation by its own gene product. Autoregulation of hns expression is particularly pronounced in log phase. Both stationary phase control and autoregulation of hns transcription are associated with a 130 bp fragment that contains the hns promoter. In order to study the interaction of H-NS with its own regulatory region, we developed an efficient overproduction procedure and a simple purification scheme for H-NS. DNA gel retardation assays showed that the H-NS protein can preferentially interact with a restriction fragment carrying the hns promoter. This restriction fragment showed features of curved DNA as judged by two-dimensional polyacrylamide gel electrophoresis performed at 4 degrees C and 60 degrees C.
Collapse
|
131
|
Schneider H, Fsihi H, Kottwitz B, Mygind B, Bremer E. Identification of a segment of the Escherichia coli Tsx protein that functions as a bacteriophage receptor area. J Bacteriol 1993; 175:2809-17. [PMID: 8491700 PMCID: PMC204595 DOI: 10.1128/jb.175.10.2809-2817.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Escherichia coli outer membrane protein Tsx functions as a nucleoside-specific channel and serves as the receptor for colicin K and a number of T-even-type bacteriophages, including phage T6. To identify those segments of the Tsx protein that are important for its phage receptor function, we devised a selection and screening procedure which allowed us to isolate phage-resistant strains synthesizing normal amounts of Tsx. Three different Tsx-specific phages (T6, Ox1, and H3) were employed for the selection of phage-resistant derivatives of a strain expressing a tsx(+)-lacZ+ operon fusion, and 28 tsx mutants with impaired phage receptor function were characterized. Regardless of the Tsx-specific phage used for the initial mutant selection, cross-resistance against a set of six different Tsx phages invariably occurred. With one exception, these mutant Tsx proteins could still serve as a colicin K receptor. DNA sequence analysis of 10 mutant tsx genes revealed the presence of four distinct tsx alleles: two point mutations, an 18-bp deletion, and a 27-bp tandem duplication. In three isolates, Asn-249 was replaced by a Lys residue (tsx-504), and in four others, residue Asn-254 was replaced by Lys (tsx-505). The deletion (tsx-506; one isolate) removed six amino acids (residue 239 to residue 244) from the 272-residue Tsx polypeptide chain, and the DNA duplication (tsx-507; two isolates) resulted in the addition of nine extra amino acids (residue 229 to residue 237) to the Tsx protein. In contrast to the wild-type Tsx protein and the other mutant Tsx proteins the Tsx-507 protein was cleaved by trypsin when intact cells were treated with this protease. The Tsx proteins encoded by the four tsx alleles still functioned in deoxyadenosine uptake in vivo, demonstrating that their nucleoside-specific channel activity was not affected by the alterations that caused the loss of their phage receptor function. HTe changes in the Tsx polypeptide that confer resistance against the Tsx-specific phages are clustered in a small region near the carboxy terminus of Tsx. Our results are discussed in terms of a model for the topological organization of the carboxy-terminal end of the Tsx protein within the outer membrane.
Collapse
|
132
|
Pedersen H, Søgaard-Andersen L, Holst B, Gerlach P, Bremer E, Valentin-Hansen P. cAMP-CRP activator complex and the CytR repressor protein bind co-operatively to the cytRP promoter in Escherichia coli and CytR antagonizes the cAMP-CRP-induced DNA bend. J Mol Biol 1992; 227:396-406. [PMID: 1328649 DOI: 10.1016/0022-2836(92)90896-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Initiation of transcription from the cytRP promoter in Escherichia coli is activated by the cAMP-CRP complex and negatively regulated by the CytR repressor protein. By combining gel retardation and footprinting assays, we show that cAMP-CRP binds to a single site centered at position -64 and induces a considerable bend in the DNA. CytR binds to a region immediately downstream from, and partially overlapping, the CRP site, and induces a modest bend into the DNA. In combination, cAMP-CRP and CytR bind co-operatively to cytRP forming a nucleoprotein complex in which the proteins directly interact with each other and bind to the same face of the DNA helix. CytR binding concomitantly antagonizes the cAMP-CRP-induced bend. This study indicates that the minimal DNA region required to obtain CytR regulation consists of a single binding site for each of cAMP-CRP and CytR. The case described here, in which a protein-induced DNA bend is modulated by a second protein, may illustrate a mechanism that applies to other regulatory systems.
Collapse
|
133
|
Lucht JM, Boos W, Bremer E. Alignment of genes from the 9-minute region (araJ to tsx) of the Escherichia coli K-12 linkage map to the physical map. J Bacteriol 1992; 174:1709-10. [PMID: 1537816 PMCID: PMC206576 DOI: 10.1128/jb.174.5.1709-1710.1992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
134
|
Bremer E, Peterson D. Modulation of growth factor receptors by gangliosides. Neurochem Int 1992. [DOI: 10.1016/0197-0186(92)91807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
135
|
Gerlach P, Søgaard-Andersen L, Pedersen H, Martinussen J, Valentin-Hansen P, Bremer E. The cyclic AMP (cAMP)-cAMP receptor protein complex functions both as an activator and as a corepressor at the tsx-p2 promoter of Escherichia coli K-12. J Bacteriol 1991; 173:5419-30. [PMID: 1715855 PMCID: PMC208254 DOI: 10.1128/jb.173.17.5419-5430.1991] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The tsx-p2 promoter is one of at least seven Escherichia coli promoters that are activated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and negatively regulated by the CytR repressor. DNase I footprinting assays were used to study the interactions of these regulatory proteins with the tsx-p2 promoter region and to characterize tsx-p2 regulatory mutants exhibiting an altered response to CytR. We show that the cAMP-CRP activator complex recognizes two sites in tsx-p2 that are separated by 33 bp: a high-affinity site (CRP-1) overlaps the -35 region, and a low-affinity site (CRP-2) is centered around position -74 bp. The CytR repressor protects a DNA segment that is located between the two CRP sites and partially overlaps the CRP-1 target. In combination, the cAMP-CRP and CytR proteins bind cooperatively to tsx-p2, and the nucleoprotein complex formed covers a region of 78 bp extending from the CRP-2 site close to the -10 region. The inducer for the CytR repressor, cytidine, does not prevent in vitro DNA binding of CytR, but releases the repressor from the nucleoprotein complex and leaves the cAMP-CRP activator bound to its two DNA targets. Thus, cytidine interferes with the cooperative DNA binding of cAMP-CRP and CytR to tsx-p2. We characterized four tsx-p2 mutants exhibiting a reduced response to CytR; three carried mutations in the CRP-2 site, and one carried a mutation in the region between CRP-1 and the -10 sequence. Formation of the cAMP-CRP-CytR DNA nucleoprotein complex in vitro was perturbed in each mutant. These data indicate that the CytR repressor relies on the presence of the cAMP-CRP activator complex to regulate tsx-p2 promoter activity and that the formation of an active repression complex requires the combined interactions of cAMP-CRP and CytR at tsx-p2.
Collapse
|
136
|
Bartlett RR, Dimitrijevic M, Mattar T, Zielinski T, Germann T, Rüde E, Thoenes GH, Küchle CC, Schorlemmer HU, Bremer E. Leflunomide (HWA 486), a novel immunomodulating compound for the treatment of autoimmune disorders and reactions leading to transplantation rejection. AGENTS AND ACTIONS 1991; 32:10-21. [PMID: 2058454 DOI: 10.1007/bf01983301] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Leflunomide has been shown to be very effective in preventing and curing several autoimmune animal diseases. Further, this agent is as effective as cyclosporin A in preventing the rejection of skin and kidney transplants in rats. Preliminary results from patients suffering from severe cases of rheumatoid arthritis demonstrated that clinical and immunological parameters could be improved with leflunomide therapy. Mode of action studies revealed that this substance antagonizes the proliferation inducing activity of several cytokines and is cytostatic for certain cell types. In this light, we could show that tyrosine phosphorylation of the RR-SRC peptide substrate and the autophosphorylation of the epidermal growth factor (EGF) receptor were, dose dependently, inhibited by leflunomide. EGF activates the intrinsic tyrosine kinase of its receptor, which stimulates the phosphorylation of a variety of peptides, the amino acid residue in all cases is tyrosine. These results indicate that much of leflunomide's activity could be due to the inhibition of tyrosine-kinase(s), which is an important general mechanism for the proliferation of various cell types. Thus, leflunomide, which is effective against autoimmune diseases and reactions leading to graft rejection, would seem to have a mode of action separating it from known immunosuppressive drugs.
Collapse
|
137
|
Lucht JM, Bremer E. Characterization of mutations affecting the osmoregulated proU promoter of Escherichia coli and identification of 5' sequences required for high-level expression. J Bacteriol 1991; 173:801-9. [PMID: 1846150 PMCID: PMC207074 DOI: 10.1128/jb.173.2.801-809.1991] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Expression of the Escherichia coli proU operon, which encodes an efficient uptake system for the osmoprotectant glycine betaine, is strongly increased in cells grown at high osmolarity. We isolated 182 independent spontaneous mutants with elevated expression of the chromosomal phi(proV-lacZ) (Hyb2) fusion at low osmolarity. Genetic analysis demonstrated that eight of these mutant strains carried mutations closely linked to the fusion, whereas all others carried mutations that appeared to be in osmZ. All of the mutations resulted in increased but still osmoregulated expression of the phi(proV-lacZ)(Hyb2) fusion. The proU-linked mutants carried an identical point mutation (proU603) which changes the -35 sequence of the proU promoter from TTGCCT to TTGACT and thereby increases the homology of the -35 region to the consensus sequence (TTGACA) of E. coli promoters. We also selected for mutants with decreased expression of the plasmid pOS7-encoded phi(proV-lacZ)(Hyb2) fusion and isolated a plasmid with an IS1 insertion (proU607) between the proU -10 and -35 regions. This insertion creates a hybrid promoter and drastically reduces expression of the fusion but does not abolish its osmotic regulation. Deletion analysis of chromosomal sequences 5' to the proU promoter revealed that sequences located approximately 200 bp upstream of the -35 region were required for high-level expression. Removal of these sequences resulted in a 10-fold decline of phi(proV-lacZ)(Hyb2) expression. Osmotic regulation was retained in deletion constructs carrying just 19 bp of chromosomal DNA 5' of the promoter, showing that no sequences further upstream are required for the proper osmoregulation of proU transcription. Experiments with himA and fis mutant strains indicated that the IHF and FIS proteins are not required for the normal osmoregulation of proU expression.
Collapse
|
138
|
Bremer E, Middendorf A, Martinussen J, Valentin-Hansen P. Analysis of the tsx gene, which encodes a nucleoside-specific channel-forming protein (Tsx) in the outer membrane of Escherichia coli. Gene 1990; 96:59-65. [PMID: 2265760 DOI: 10.1016/0378-1119(90)90341-n] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The tsx gene of Escherichia coli encodes an outer membrane protein, Tsx, which constitutes the receptor for colicin K and bacteriophage T6, and functions as a substrate-specific channel for nucleosides and deoxynucleosides. The mini-Mu element pEG5005 was used to prepare a gene bank in vivo, and this bank was used to identify T6-sensitive strains carrying the cloned tsx gene. Subcloning of the tsx gene into the multicopy plasmid, pBR322, resulted in a strong overproduction of Tsx. The sequence of a 1477-bp DNA segment containing tsx and its flanking regions was determined. An open reading frame (ORF) was found which was followed by a pair of repetitive extragenic palindromic sequences. This ORF translated into a protein of 294 amino acids (aa), the first 22 aa of which showed the characteristic features of a bacterial signal sequence peptide. The putative mature form of Tsx is composed of 272 aa with a calculated Mr of 31418. The aa sequence of Tsx shows an even distribution of charged residues (52 aa) and lacks extensive hydrophobic stretches. No significant homologies of Tsx to the channel-forming proteins OmpC, OmpF, PhoE and LamB from the E. coli outer membrane were detected. Using nuclease S1, we identified two transcription start points for the tsx mRNA which were separated by approx. 150 bp. Genetic data suggest that the synthesis of the larger mRNA species is directed by a weak promoter (P1) that is controlled by the DeoR repressor, whereas the smaller mRNA species is directed by the main promoter P2, which is negatively controlled by the CytR repressor and positively affected by the cyclic AMP/catabolite activator protein complex.
Collapse
|
139
|
May G, Dersch P, Haardt M, Middendorf A, Bremer E. The osmZ (bglY) gene encodes the DNA-binding protein H-NS (H1a), a component of the Escherichia coli K12 nucleoid. MOLECULAR & GENERAL GENETICS : MGG 1990; 224:81-90. [PMID: 2177526 DOI: 10.1007/bf00259454] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A class of trans-acting mutations, which alter the osmoregulated expression of the Escherichia coli proU operon, maps at 27 min on the chromosome in a locus we have called osmZ. Mutations in osmZ are allelic to bglY, pilG and virR, affect gene expression, increase the frequency of the site-specific DNA inversion mediating fimbrial phase variation, stimulate the formation of deletions, and influence in vivo supercoiling of reporter plasmids. We have cloned the osmZ+ gene, mapped it at 1307 kb of the E. coli restriction map, identified its gene product as a 16 kDa protein, and determined the nucleotide sequence of the osmZ+ gene. The deduced amino acid sequence for OsmZ predicts a protein of 137 amino acid residues with a calculated molecular weight of 15,530. The primary sequence of OsmZ is identical to that of H-NS (H1a), a DNA-binding protein that affects DNA topology and is known to be associated with the bacterial nucleoid. Thus, osmZ is the structural gene for the H-NS (H1a) protein. The nucleotide sequence of osmZ is almost identical to that of hns; however, hns was incorrectly located at 6.1 min on the E. coli linkage map. Increased osmZ gene dosage leads to cell filament formation, altered gene expression, and reduced frequency of fimbrial phase variation. Our results suggest that the nucleoid-associated DNA-binding protein H-NS (H1a) plays a critical role in gene expression and in determining the structure of the genetic material.
Collapse
|
140
|
Maier C, Middendorf A, Bremer E. Analysis of a mutated phage T6 receptor protein of Escherichia coli K 12. MOLECULAR & GENERAL GENETICS : MGG 1990; 221:491-4. [PMID: 2199819 DOI: 10.1007/bf00259416] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The tsx-206 allele encodes an altered Tsx protein, Tsx-206, that can no longer function as the T6 receptor. We show here that this allele also confers resistance to the Tsx-specific phages H1, H3, H8, K9, K18 and Ox1 but not to colicin K. The Tsx-206 protein still mediates the efficient permeation of deoxyadenosine across the outer membrane at low substrate concentration. A host-range mutant of phage T6, T6h3.1, was isolated which can use both the Tsx-206 and the Tsx wild-type protein as its receptor. Cloning and DNA sequence analysis of the tsx-206 allele showed that the phage resistant phenotype was associated with an Asn to Tyr substitution at position 254 of the 272-residue Tsx protein.
Collapse
|
141
|
Gerlach P, Valentin-Hansen P, Bremer E. Transcriptional regulation of the cytR repressor gene of Escherichia coli: autoregulation and positive control by the cAMP/CAP complex. Mol Microbiol 1990; 4:479-88. [PMID: 2162467 DOI: 10.1111/j.1365-2958.1990.tb00614.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Escherichia coli cytR-encoded repressor protein (CytR) controls the expression of several genes involved in nucleoside and deoxynucleoside uptake and metabolism. The cytR promoter was identified by determining the transcriptional initiation site of the cytR gene. A chromosomal cytR-lacZ+ operon fusion was isolated and used to study the regulation of cytR. We show that cytR expression is negatively controlled by the CytR protein and positively affected by the cAMP/CAP complex. Footprinting studies with purified CAP protein revealed two CAP binding sites upstream of the cytR promoter. A previously described mutation (cytR*) in the cloned cytR gene, which results in the phenotypic suppression of a CytR operator mutation in the tsx P2 promoter, was analysed. DNA sequence analysis of the cytR* mutation revealed a G-C to an A-T base pair transition at position -34 bp relative to the translational initiation site of cytR. This point mutation activates a cryptic promoter that is stronger than the wild-type cytR promoter and leads to overproduction of the CytR repressor.
Collapse
|
142
|
May G, Faatz E, Lucht JM, Haardt M, Bolliger M, Bremer E. Characterization of the osmoregulated Escherichia coli proU promoter and identification of ProV as a membrane-associated protein. Mol Microbiol 1989; 3:1521-31. [PMID: 2515417 DOI: 10.1111/j.1365-2958.1989.tb00138.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Escherichia coli proU operon encodes a high-affinity, binding-protein-dependent transport system for the osmoprotectant glycine betaine. Expression of proU is osmoregulated, and transcription of this operon is greatly increased in cells grown at high osmolarity. Characterization of the proU operon and its promoter provided results similar to those published elsewhere (Gowrishankar, 1989; Stirling et al., 1989). The previously identified proU601 mutation, which leads to increased proU expression both at low- and high osmolarity, is a G to A transition in the Pribnow box of the proU promoter, which increases the homology of the -10 region to the consensus sequence of E. coli promoters. Using an antiserum raised against a ProV-beta-galactosidase hybrid protein, we have identified ProV as a protein associated with the cytoplasmic membrane. This cellular location is consistent with its proposed role as the energy-coupling component of the ProU transport system.
Collapse
|
143
|
Graeme-Cook KA, May G, Bremer E, Higgins CF. Osmotic regulation of porin expression: a role for DNA supercoiling. Mol Microbiol 1989; 3:1287-94. [PMID: 2552265 DOI: 10.1111/j.1365-2958.1989.tb00279.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The OmpC and OmpF porins are major outer membrane proteins of Escherichia coli and Salmonella typhimurium. Their expression is affected by many environmental factors and by mutations in a variety of independent genes. The pair of regulatory proteins, OmpR and EnvZ, are required for normal porin expression. Despite intensive investigation, the mechanisms by which porin expression is regulated remain unclear. Mutations which alter supercoiling, as well as inhibitors of DNA gyrase, show that porin expression is extremely and specifically sensitive to the level of DNA supercoiling. Our data lead us to suggest that environmentally induced changes in DNA supercoiling may play a role in determining the level of porin expression. These findings have implications for current models of porin regulation.
Collapse
|
144
|
Gutierrez C, Ardourel M, Bremer E, Middendorf A, Boos W, Ehmann U. Analysis and DNA sequence of the osmoregulated treA gene encoding the periplasmic trehalase of Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1989; 217:347-54. [PMID: 2671658 DOI: 10.1007/bf02464903] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The treA gene of Escherichia coli K12 codes for a periplasmic trehalase that is induced by growth at high osmolarity. The position of treA within a cloned chromosomal DNA fragment was identified by subcloning of restriction fragments and analysis of the gene product in minicells. The nucleotide sequence of the treA coding region as well as its upstream control region was determined. The treA gene consists of 1695 bp encoding 565 amino acids. The amino-terminus of the mature trehalase was found to begin with the amino acid Glu at position 31 of the open reading frame. The first 30 amino acids resemble a typical signal sequence, consistent with trehalase being a secreted periplasmic enzyme. Two previously isolated phoA fusions to the osmA gene were transferred by homologous recombination on to a treA-containing plasmid and found to be within treA. Analysis of the hybrid genes and their gene products aided the localization of treA and the determination of its direction of transcription within the cloned chromosomal segment. The treA-phoA fusions encoded hybrid proteins which could be found in the periplasm. We found that at high osmolarity the normal pathway for the uptake and utilization of trehalose is blocked. Therefore, the function of the periplasmic trehalase is to provide the cell with the ability to utilize trehalose at high osmolarity by splitting it into glucose molecules that can subsequently be taken up by the phosphotransferase-mediated uptake system.
Collapse
|
145
|
Ramirez RM, Prince WS, Bremer E, Villarejo M. In vitro reconstitution of osmoregulated expression of proU of Escherichia coli. Proc Natl Acad Sci U S A 1989; 86:1153-7. [PMID: 2645575 PMCID: PMC286644 DOI: 10.1073/pnas.86.4.1153] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osmoregulated expression of proU has been reconstituted in a cell-free system. proU encodes an osmotically inducible, high-affinity transport system for the osmoprotectant glycine betaine in Escherichia coli. Previously, a proU-lacZ fusion gene had been cloned, resulting in plasmid pOS3. In vivo osmoregulation of this extrachromosomal proU-lacZ fusion gene at low copy number showed that the plasmid-encoded fusion contained all the necessary sequences in cis for correctly receiving osmoregulatory signals during induction by osmotic stress and repression by glycine betaine. Using a cell-free (S-30) extract, plasmid pOS3 was then used to program protein synthesis in vitro. The ionic compound potassium glutamate specifically stimulated proU-lacZ expression in a concentration-dependent manner. Potassium acetate also induced some proU expression, but other salts were ineffective, thereby ruling out ionic strength as the stimulatory signal. High concentrations of sucrose, trehalose, or glycine betaine did not induce proU expression in vitro either, eliminating osmolarity per se as the stimulus. Reconstitution in a cell-free system rules out osmoregulatory mechanisms that depend on turgor, trans-membrane signaling, or trans-acting regulators synthesized after osmotic upshock.
Collapse
|
146
|
Bremer E, Silhavy TJ, Weinstock GM. Transposition of lambda placMu is mediated by the A protein altered at its carboxy-terminal end. Gene 1988; 71:177-86. [PMID: 2850974 DOI: 10.1016/0378-1119(88)90089-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lambda placMu phages are derivatives of bacteriophage lambda that use the transposition machinery of phage Mu to insert into chromosomal and cloned genes. When inserted in the proper fashion, these phages yield stable fusions to the Escherichia coli lac operon in a single step. We have determined the amount of DNA from the c end of phage Mu present in one of these phages, lambda placMu3, and have shown that this phage carries a 3137-bp fragment of Mu DNA. This DNA segment carries the Mu c-end attachment site and encodes the Mu genes cts62, ner+, and gene A lacking 179 bp at its 3' end (A'). The product of this truncated gene A' retains transposase activity and is sufficient for the transposition of lambda placMu. This was demonstrated by showing that lambda placMu derivatives carrying the A am1093 mutation in the A' gene are unable to transpose by themselves in a Su- strain, but their transposition can be triggered by coinfection with lambda pMu507(A+ B+). We have constructed several new lambda placMu phages that carry the A' am1093 gene and the kan gene, which confers resistance to kanamycin. Chromosomal insertions of these new phages are even more stable than those of the previously reported lambda placMu phages, which makes them useful tools for genetic analysis.
Collapse
|
147
|
Benz R, Schmid A, Maier C, Bremer E. Characterization of the nucleoside-binding site inside the Tsx channel of Escherichia coli outer membrane. Reconstitution experiments with lipid bilayer membranes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 176:699-705. [PMID: 2458926 DOI: 10.1111/j.1432-1033.1988.tb14333.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reconstitution of purified Tsx protein from Escherichia coli into lipid bilayer membranes showed that Tsx formed small ion-permeable channels with a single-channel conductance of 10 pS in 1 M KCl. The dependence of conductance versus salt concentration was linear, suggesting that Tsx has no binding site for ions. Conductance was inhibited by the addition of 20 mM adenosine. Titration of the Tsx-mediated membrane conductance with different solutes including free bases, nucleosides, and deoxynucleosides suggested that the channel contains a binding site for nucleosides but not for sugars or amino acids, and binding increased in the following order: free base, nucleoside, and deoxynucleoside. Among the five nucleosides the stability constant for the binding increased in the order of cytidine, guanosine, uridine, adenosine, and thymidine. Control experiments revealed that the binding of the nucleosides is independent of ion concentration in the aqueous phase, i.e. there was no competition between nucleosides and ions for the binding site inside the channel. The binding of the solutes to the channel interior can be explained by a one-site two-barrier model for the Tsx channel. The advantage of a binding site inside a specific porin for the permeation of solutes is discussed with respect to the properties of a general diffusion pore.
Collapse
|
148
|
Faatz E, Middendorf A, Bremer E. Cloned structural genes for the osmotically regulated binding-protein-dependent glycine betaine transport system (ProU) of Escherichia coli K-12. Mol Microbiol 1988; 2:265-79. [PMID: 2837616 DOI: 10.1111/j.1365-2958.1988.tb00028.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The proU locus of Escherichia coli encodes a high-affinity, binding-protein-dependent transport system (ProU) for the osmoprotectant glycine betaine. We cloned this locus into both low-copy-number lambda vectors and multicopy plasmids and demonstrated that these clones restore osmotically controlled synthesis of the periplasmic glycine betaine binding protein (GBBP) and the transport of glycine betaine in a delta (proU) strain. These clones allowed us to investigate the influence of osmolarity on ProU transport activity independent of the osmotically controlled expression of proU. ProU activity was strongly stimulated by a moderate increase in osmolarity and was partially inhibited by high osmolarity. This activity profile differs from the profile of the osmotically regulated proU expression. The proU locus is organized in an operon and the position of the structural gene (proV) for GBBP is defined using a minicell system. We determined that at least three proteins (in addition to GBBP) are encoded by the proU locus. We also investigated the permeation of glycine betaine across the outer membrane. At low substrate concentration (0.7 microM), permeation of glycine betaine was entirely dependent on the OmpF and OmpC porins.
Collapse
|
149
|
Higgins CF, Dorman CJ, Stirling DA, Waddell L, Booth IR, May G, Bremer E. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 1988; 52:569-84. [PMID: 2830029 DOI: 10.1016/0092-8674(88)90470-9] [Citation(s) in RCA: 554] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The proU locus encodes an osmotically inducible glycine betaine transport system that is important in the adaptation to osmotic stress. We present evidence that DNA supercoiling plays a key role in the osmotic induction of proU transcription. An increase in extracellular osmolarity increases in vivo DNA supercoiling, and the expression of proU is highly sensitive to these changes. Furthermore, topA mutations can mimic an increase in osmolarity, facilitating proU expression even in media of low osmolarity in which it is not normally expressed. Selection for trans-acting mutations that affect proU expression has yielded only mutations that alter DNA supercoiling, either in topA or a new genetic locus, osmZ, which strongly influences in vivo supercoiling. Mutations in osmZ are highly pleiotropic, affecting expression of a variety of chromosomal genes including ompF, ompC, fimA, and the bgl operon, as well as increasing the frequency of site-specific DNA inversions that mediate fimbrial phase variation.
Collapse
|
150
|
Maier C, Bremer E, Schmid A, Benz R. Pore-forming activity of the Tsx protein from the outer membrane of Escherichia coli. Demonstration of a nucleoside-specific binding site. J Biol Chem 1988; 263:2493-9. [PMID: 3276691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Tsx protein from the outer membrane of Escherichia coli is known to be involved in the permeation of nucleosides across the outer membrane under limiting substrate conditions. We purified Tsx from an E. coli strain that overproduces Tsx. The purified protein was still functional since it could neutralize the Tsx-specific bacteriophage T6 in vitro. When the purified Tsx was reconstituted into a lipid bilayer, there was a large increase of the membrane conductance, indicating pore-forming activity of Tsx in vitro. This increase could be strongly blocked with adenosine and to a much lesser extent with cytidine. Titration of the pore conductance with adenosine or cytidine suggested the presence of a binding site for nucleosides in the Tsx pore, with a Ks of 6 X 10(-4) and 2 X 10(-2) M for adenosine and cytidine, respectively. We propose that the Tsx protein functions in vivo as a pore that specifically facilitates the permeation of nucleosides across the outer membrane due to its binding site for nucleosides.
Collapse
|