126
|
Fu M, Tang W, Liu JJ, Gong XQ, Kong L, Yao XM, Jing M, Cai FY, Li XT, Ju RJ. Combination of targeted daunorubicin liposomes and targeted emodin liposomes for treatment of invasive breast cancer. J Drug Target 2019; 28:245-258. [PMID: 31462111 DOI: 10.1080/1061186x.2019.1656725] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional treatment fails to completely eliminate highly invasive breast cancer cells, and most surviving breast cancer cells tend to reproliferate and metastasize by forming vasculogenic mimicry (VM) channels. Thus, a type of targeted liposomes was developed by modification with arginine8-glycine-aspartic acid (R8GD) to encapsulate daunorubicin and emodin separately. A combination of the two targeted liposomes was then developed to destroy VM channels and inhibit tumour metastasis. MDA-MB-435S cells, a highly invasive breast cancer, were then evaluated in vitro and in mice. The experiments indicated that R8GD modified daunorubicin liposomes plus R8GD modified emodin liposomes had small particle size, uniform particle size distribution and high drug encapsulation rate. The combination of the two targeted liposomes exerted strong toxicity on the MDA-MB-435S cells and effectively inhibited the formation of VM channels and the metastasis of tumour cells. Action mechanism studies showed that the R8GD modified daunorubicin liposomes plus R8GD modified emodin liposomes could downregulate some metastasis-related proteins, including MMP-2, VE-cad, TGF-β1 and HIF-1α. These studies also demonstrated that the targeted liposomes allowed the chemotherapeutic drug to selectively accumulate at tumour site, thus exhibiting a distinct antitumor effect. Therefore, the combination of targeted daunorubicin liposomes and targeted emodin liposomes can provide a potential treatment for invasive breast cancer.
Collapse
|
127
|
Kong L, Guo J, Makepeace JW, Xiao T, Greer HF, Zhou W, Jiang Z, Edwards PP. Rapid synthesis of BiOBrxI1-x photocatalysts: Insights to the visible-light photocatalytic activity and strong deviation from Vegard’s law. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
128
|
Kong L, Hu J, Gao J, Hu W, Yang J, Qiu X, Lu J. Phase I/II Trial Evaluating Carbon-Ion Radiotherapy for Salvage Treatment of Locally Recurrent Nasopharyngeal Carcinoma. Int J Radiat Oncol Biol Phys 2019. [DOI: 10.1016/j.ijrobp.2019.06.1663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
129
|
Zhou W, Yao Y, Li J, Wu D, Zhao M, Yan Z, Pang A, Kong L. TIGAR Attenuates High Glucose-Induced Neuronal Apoptosis via an Autophagy Pathway. Front Mol Neurosci 2019; 12:193. [PMID: 31456661 PMCID: PMC6700368 DOI: 10.3389/fnmol.2019.00193] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/25/2019] [Indexed: 01/21/2023] Open
Abstract
Hyperglycemia-induced neuronal apoptosis is one of the important reasons for diabetic neuropathy. Long-time exposure to high glucose accelerates many aberrant glucose metabolic pathways and eventually leads to neuronal injury. However, the underlying mechanisms of metabolic alterations remain unknown. TP53-inducible glycolysis and apoptosis regulator (TIGAR) is an endogenous inhibitor of glycolysis and increases the flux of pentose phosphate pathway (PPP) by regulating glucose 6-phosphate dehydrogenase (G6PD). TIGAR is highly expressed in neurons, but its role in hyperglycemia-induced neuronal injury is still unclear. In this study, we observed that TIGAR and G6PD are decreased in the hippocampus of streptozotocin (STZ)-induced diabetic mice. Correspondingly, in cultured primary neurons and Neuro-2a cell line, stimulation with high glucose induced significant neuronal apoptosis and down-regulation of TIGAR expression. Overexpression of TIGAR reduced the number of TUNEL-positive neurons and prevented the activation of Caspase-3 in cultured neurons. Furthermore, enhancing the expression of TIGAR rescued high glucose-induced autophagy impairment and the decrease of G6PD. Nitric oxide synthase 1 (NOS1), a negative regulator of autophagy, is also inhibited by overexpression of TIGAR. Inhibition of autophagy abolished the protective effect of TIGAR in neuronal apoptosis in Neuro-2a. Importantly, overexpression of TIGAR in the hippocampus ameliorated STZ-induced cognitive impairment in mice. Therefore, our data demonstrated that TIGAR may have an anti-apoptosis effect via up-regulation of autophagy in diabetic neuropathy.
Collapse
|
130
|
Cheng W, Lin M, Qiu M, Kong L, Xu Y, Li Y, Wang Y, Ye W, Dong S, He S, Wang Y. Chitin synthase is involved in vegetative growth, asexual reproduction and pathogenesis of Phytophthora capsici and Phytophthora sojae. Environ Microbiol 2019; 21:4537-4547. [PMID: 31314944 DOI: 10.1111/1462-2920.14744] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/13/2019] [Accepted: 07/13/2019] [Indexed: 11/29/2022]
Abstract
Chitin is a structural and functional component of the fungal cell wall and also serves as a pathogen-associated molecular pattern (PAMP) that triggers the innate immune responses of host plants. However, no or very little chitin is found in the fungus-like oomycetes. In Phytophthora spp., the presence of chitin has not been demonstrated so far, although putative chitin synthase (CHS) genes, which encode the enzymes that synthesize chitin, are present in their genomes. Here, we revealed that chitin is present in the zoospores and released sporangia of Phytophthora, and this is most consistent with the transcriptional pattern of PcCHS in Phytophthora capsici and PsCHS1 in Phytophthora sojae. Disruption of the CHS genes indicated that PcCHS and PsCHS1, but not PsCHS2 (which exhibited very weak transcription), have similar functions involved in mycelial growth, sporangial production, zoospore release and the pathogenesis of P. capsici and P. sojae. We also suggest that chitin in the zoospores of P. capsici can act as a PAMP that is recognized by the chitin receptors AtLYK5 or AtCERK1 of Arabidopsis. These results provide new insights into the biological significance of chitin and CHSs in Phytophthora and help with the identification of potential targets for disease control.
Collapse
|
131
|
Kong L, Yao Y, Xia Y, Liang X, Ni Y, Yang J. Osthole alleviates inflammation by down-regulating NF-κB signaling pathway in traumatic brain injury. Immunopharmacol Immunotoxicol 2019; 41:349-360. [PMID: 31056982 DOI: 10.1080/08923973.2019.1608560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) is a common neurotrosis disorder of the central nervous system (CNS), which has dramatic consequences on the integrity of damaged tissue. In this study, we investigated the neuroprotective effect and anti-inflammatory actions of osthole, a natural coumarin derivative, in both in vivo and in vitro TBI models. We first prepared a mouse model of cortical stab wound brain injury, investigated the capacity for osthole to prevent secondary brain injury and further examined the underlying mechanism. We revealed that osthole significantly improved the neurological function, increased the number of neurons beside injured site. Additionally, osthole treatment reduced the expression of microglia and glial scar, lowered the level of the proinflammatory cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α), and blocked the activation of nuclear factor kappa B (NF-κB). Furthermore, the protective effect of osthole was also examined in SH-SY5Y cells subjected to scratch injury. Treatment of osthole prominently suppressed cell apoptosis and inflammatory factors release by blocking injury-induced IκB-α phosphorylation and NF-κB translocation, and upregulated the IκB-α which functions in the NF-κB signaling pathway of SH-SY5Y cells. However, NF-κB signaling pathway was inhibited by pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor, the anti-inflammatory effect of osthole was abolished. In conclusion, our findings demonstrated that osthole attenuated inflammatory response by inhibiting the NF-κB pathway in TBI.
Collapse
|
132
|
Zhang L, Kong L. iRSpot-PDI: Identification of recombination spots by incorporating dinucleotide property diversity information into Chou's pseudo components. Genomics 2019; 111:457-464. [DOI: 10.1016/j.ygeno.2018.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/27/2018] [Accepted: 03/03/2018] [Indexed: 12/11/2022]
|
133
|
Liang X, Yao Y, Lin Y, Kong L, Xiao H, Shi Y, Yang J. Corrigendum to "Panaxadiol inhibits synaptic dysfunction in Alzheimer's disease and targets the Fyn protein in APP/PS1 mice and APP-SH-SY5Y cells" [Life Sci. 221 (2019) 35-46]. Life Sci 2019; 224:274. [PMID: 30952465 DOI: 10.1016/j.lfs.2019.03.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
134
|
Chen C, Xu X, Kong L, Li P, Zhou F, Zhao S, Xin X, Tan J, Zhang X. Novel homozygous nonsense mutations in LHCGR lead to empty follicle syndrome and 46, XY disorder of sex development. Hum Reprod 2019; 33:1364-1369. [PMID: 29912377 DOI: 10.1093/humrep/dey215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 11/14/2022] Open
Abstract
Empty follicle syndrome (EFS) is a disorder associated with female infertility and presents as a complete failure to retrieve oocytes during ART cycles despite normal follicle development and careful aspiration. To date, only two EFS cases have been reported with homozygous missense mutations in the luteinizing hormone/chorionic gonadotropin receptor (LHCGR) gene, and both cases showed normal estradiol (E2) production during ovulation induction. The molecular genetic mechanisms of EFS remain unknown. Herein, we report two novel homozygous inactivating LHCGR mutations, c.736 C>T (p.Q246*) and c.846dupT (p.R283*), in two female EFS patients from unrelated consanguineous families. The probands had impaired E2 production during the ART process, which differs from previously reported EFS cases. The inactivating mutations not only led to EFS in the two female probands, but also resulted in 46, XY disorder of sex development (46, XY DSD) in their male siblings. As far as we know, this is the first report of LHCGR mutations leading to both EFS and 46, XY DSD within the same pedigree. Our findings provide researchers and clinicians with a better understanding of phenotype-genotype correlations between EFS and 46, XY DSD and the LHCGR gene.
Collapse
|
135
|
Kong L, Zhang L, Han X, Lv J. Protein Structural Class Prediction Based on Distance-related Statistical Features from Graphical Representation of Predicted Secondary Structure. LETT ORG CHEM 2019. [DOI: 10.2174/1570178615666180914110451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein structural class prediction is beneficial to protein structure and function analysis. Exploring good feature representation is a key step for this prediction task. Prior works have demonstrated the effectiveness of the secondary structure based feature extraction methods especially for lowsimilarity protein sequences. However, the prediction accuracies still remain limited. To explore the potential of secondary structure information, a novel feature extraction method based on a generalized chaos game representation of predicted secondary structure is proposed. Each protein sequence is converted into a 20-dimensional distance-related statistical feature vector to characterize the distribution of secondary structure elements and segments. The feature vectors are then fed into a support vector machine classifier to predict the protein structural class. Our experiments on three widely used lowsimilarity benchmark datasets (25PDB, 1189 and 640) show that the proposed method achieves superior performance to the state-of-the-art methods. It is anticipated that our method could be extended to other graphical representations of protein sequence and be helpful in future protein research.
Collapse
|
136
|
Kong L, Zhang L. An ensemble method for multi-type Gram-negative bacterial secreted protein prediction by integrating different PSSM-based features. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:181-194. [PMID: 30739484 DOI: 10.1080/1062936x.2019.1573438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
In Gram-negative bacteria, a wide range of proteins are secreted by highly specialized secretion systems. These secreted proteins play essential roles in the response of bacteria to their environment and also in several physiological processes such as adhesion, pathogenicity, adaptation and survival. Therefore, identifying secreted proteins in Gram-negative bacteria may assist in understanding the secretion mechanism and development of new antimicrobial strategies. Considering that a single-feature model is less likely to comprehensively cover this information, three kinds of feature models were used in this paper to represent protein samples by composition analysis, correlation analysis and smoothing encoding method on position-specific scoring matrix profiles. A support vector machine-based ensemble method with these hybrid features was developed to predict multi-type Gram-negative bacterial secreted proteins. Finally, our method achieves overall accuracies of 97.09% and 96.51% using an independent dataset test and jackknife test on a public test dataset, which are 3.49% and 2.32% higher, respectively, than results obtained by other methods. These results show the effectiveness and stability of the proposed ensemble method. It is anticipated that our method will provide useful information for further research on bacterial secreted proteins and secreted systems.
Collapse
|
137
|
Liang X, Yao Y, Lin Y, Kong L, Xiao H, Shi Y, Yang J. Panaxadiol inhibits synaptic dysfunction in Alzheimer's disease and targets the Fyn protein in APP/PS1 mice and APP-SH-SY5Y cells. Life Sci 2019; 221:35-46. [PMID: 30735733 DOI: 10.1016/j.lfs.2019.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
Abstract
AIM Alzheimer's disease (AD), a neurodegenerative disease, is characterized by memory loss and synaptic damage. Up to now, there are limited drugs to cure or delay the state of this illness. Recently, the Fyn tyrosine kinase is implicated in AD pathology triggered by synaptic damage. Thus, Fyn inhibition may prevent or delay the AD progression. Therefore, in this paper, we investigated whether Panaxadiol could decrease synaptic damage in AD and the underlying mechanism. MAIN METHODS The ability of learning and memory of mice has detected by Morris Water Maze. The pathological changes detected by H&E staining and Nissl staining. The percentage of cell apoptosis and the calcium concentration were detected by Flow Cytometry in vitro. The amount of synaptic protein and related proteins in the Fyn/GluN2B/CaMKIIα signaling pathway were detected by Western Blot. KEY FINDINGS In the present article, Panaxadiol could significantly improve the ability of learning and memory of mice and reduce its synaptic dysfunction. Panaxadiol could down-regulate GluN2B's phosphorylation level by inhibition Fyn kinase activity, Subsequently, decrease Ca2+-mediated synaptic damage, reducing LDH leakage, inhibiting apoptosis in AD, resulting in facilitating the cells survival. For the underlying molecular mechanism, we used PP2 to block the Fyn/GluN2B/CaMKIIα signaling pathway. The results from WB showed that the expression of related proteins in the Fyn signaling pathway decreased with PP2 treated. SIGNIFICANCE Our results indicate that Panaxadiol could decrease synaptic damage, which will cause AD via inhibition of the Fyn/GluN2B/CaMKIIα signaling pathway. Thus, the Panaxadiol is a best promising candidate to test as a potential therapy for AD.
Collapse
|
138
|
Liu F, Li Y, Liang J, Sui W, Bellare A, Kong L. Effects of micro/nano strontium‐loaded surface implants on osseointegration in ovariectomized sheep. Clin Implant Dent Relat Res 2019; 21:377-385. [DOI: 10.1111/cid.12719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/04/2019] [Indexed: 12/25/2022]
|
139
|
Yao Y, Wang Y, Kong L, Chen Y, Yang J. RETRACTED: Osthole decreases tau protein phosphorylation via PI3K/AKT/GSK-3β signaling pathway in Alzheimer's disease. Life Sci 2019; 217:16-24. [PMID: 30471283 DOI: 10.1016/j.lfs.2018.11.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/10/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of Editor-in-Chief. The corresponding author notified the journal of image duplications within the published article and requested a corrigendum. Specifically, the ‘APP/PS1’ plot in Figure 1A had appeared in a previous publication [Panaxadiol inhibits synaptic dysfunction in Alzheimer's disease and targets the Fyn protein in APP/PS1 mice and APP-SH-SY5Y cells, Life Sciences (DOI: 10.1016/j.lfs.2019.03.070)], as the ‘TG’ plot in Figure 2A. In addition, several image duplications were identified within the panels of Figure 2. These issues, and others relating to unusual characteristics within the western blots, have been detailed here: https://pubpeer.com/publications/892AF7E4913255548C1446247FC65A#. As per journal policy when considering corrigendum requests, the journal requested the authors to provide explanations and source data relating to these affected figures. Upon receipt of additional source data, the editorial team noticed additional suspected image duplications. In relation to Figure 1A, the corresponding author stated that “…we mistakenly used the same Morris Water Maze data”, and a corrected figure was submitted. In relation to the image duplications within Figure 2, the corresponding author stated “…we mistakenly used the copy-and-paste tool instead of a color adjustment tool” during image post-processing. The corresponding author was unable to produce original unaltered and uncropped western blot source data. The editorial team have concerns about the provenance of the data and therefore the Editor-in-Chief decided to retract the article.
Collapse
|
140
|
Pei Z, Ying X, Tang Y, Liu L, Zhang H, Liu S, Zhang D, Wang K, Zhang D, Kong L, Gao Y, Ma H. Biological characteristics of a new antibacterial peptide and its antibacterial mechanisms against Gram-negative bacteria. Pol J Vet Sci 2018; 21:533-542. [PMID: 30468326 DOI: 10.24425/124287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MDAP-2 is a new antibacterial peptide with a unique structure that was isolated from house- flies. However, its biological characteristics and antibacterial mechanisms against bacteria are still poorly understood. To study the biological characteristics, antibacterial activity, hemolytic activi- ty, cytotoxicity to mammalian cells, and the secondary structure of MDAP-2 were detected; the results showed that MDAP-2 displayed high antibacterial activity against all of the tested Gram-negative bacteria. MDAP-2 had lower hemolytic activity to rabbit red blood cells; only 3.4% hemolytic activity was observed at a concentration of 800μg/ml. MDAP-2 also had lower cytotoxicity to mammalian cells; IC50 values for HEK-293 cells, VERO cells, and IPEC-J2 cells were greater than 1000 μg/ml. The circular dichroism (CD) spectra showed that the peptide most- ly has α-helical properties and some β-fold structure in water and in membrane-like conditions. MDAP-2 is therefore a promising antibacterial agent against Gram-negative bacteria. To deter- mine the antibacterial mechanism(s) of action, fluorescent probes, flow cytometry, and transmis- sion electron microscopy (TEM) were used to study the effects of MDAP-2 on membrane perme- ability, polarization ability, and integrity of Gram-negative bacteria. The results indicated that the peptide caused membrane depolarization, increased membrane permeability, and destroyed membrane integrity. In conclusion, MDAP-2 is a broad-spectrum, lower hemolytic activity, and lower cytotoxicity antibacterial peptide, which is mainly effective on Gram-negative bacteria. It exerts its antimicrobial effects by causing bacterial cytoplasm membrane depolarization, increas- ing cell membrane permeability and disturbing the membrane integrity of Gram-negative bacte- ria. MDAP-2 may offer a new strategy to for defense against Gram-negative bacteria.
Collapse
|
141
|
Kong F, Zhou J, Du C, He X, Kong L, Hu C, Ying H. Long-Term Survival and Late Complications of Intensity-Modulated Radiation Therapy for Recurrent Nasopharyngeal Carcinoma. Int J Radiat Oncol Biol Phys 2018. [DOI: 10.1016/j.ijrobp.2018.07.929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
142
|
Sun Y, Zhang XL, Mao QF, Liu YH, Kong L, Li MH. Elective nodal irradiation or involved-field irradiation in definitive chemoradiotherapy for esophageal squamous cell cancer: a retrospective analysis in clinical N0 patients. ACTA ACUST UNITED AC 2018; 25:e423-e429. [PMID: 30464693 DOI: 10.3747/co.25.3895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Objective We compared failure patterns and survival after elective nodal irradiation (eni) or involved-field irradiation (ifi) in patients with thoracic esophageal squamous cell carcinoma (escc), clinical stage T2-4N0M0, to determine whether ifi is feasible for such patients. Methods Between 2005 and 2015, 126 patients with clinical stage T2-4N0M0 thoracic escc who received definitive concurrent chemoradiotherapy in Shandong Cancer Hospital and Institute and who had complete data, were analyzed retrospectively. Of those patients, 49 received ifi, and 77 received eni. In the ifi group, the radiation field included the primary tumour, with a 3-cm to 4-cm margin in the craniocaudal direction, and the elective irradiation was delivered to the adjacent regional lymphatics according to the location of the primary tumour. Patterns of failure were classified using the first site of failure, which included primary tumour failure, regional lymph node failure, and distant metastasis. Results Median progression-free survival was 20 months [95% confidence interval (ci): 7.87 months to 39.2 months] in the ifi group and 30 months (95% ci: 17.4 months to 44.6 months) in the eni group (p = 0.580). Median overall survival (os) was 36 months (95% ci: 21.9 months to 50.1 months) in the ifi group and 38 months (95% ci: 26.1 months to 49.9 months) in the eni group (p = 0.761). The estimated 1-year, 3-year, and 5-year os rates were, respectively, 87.8%, 49.4%, and 32.3% for the ifi patients and 92.2%, 52.0%, and 28.9% for the eni patients. Disease persistence and primary lesion recurrence after complete remission (cr) were the most frequent causes of treatment failure in the patients overall (83 of 124, 66.9%). Of the 66 patients achieving a clinical cr, 25 experienced recurrence of the primary lesion, 12 experienced distant relapse, 10 experienced regional nodal failure, and 2 experienced an isolated recurrence. No significant differences in the pattern of failure or in the incidences of grade 3 or greater treatment-related myelosuppression or esophagitis were found between the ifi and eni groups. Conclusions In patients with thoracic escc clinical stage T2-4N0M0 receiving definitive chemoradiotherapy, failure patterns and os were similar with either eni or ifi. Large prospective randomized studies are needed to further investigate and verify those results in this subgroup of patients.
Collapse
|
143
|
Li H, Wang H, Jing M, Zhu J, Guo B, Wang Y, Lin Y, Chen H, Kong L, Ma Z, Wang Y, Ye W, Dong S, Tyler B, Wang Y. A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility. eLife 2018; 7:e40039. [PMID: 30346270 PMCID: PMC6249003 DOI: 10.7554/elife.40039] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022] Open
Abstract
Oomycete pathogens secrete host cell-entering effector proteins to manipulate host immunity during infection. We previously showed that PsAvh52, an early-induced RxLR effector secreted from the soybean root rot pathogen, Phytophthora sojae, could suppress plant immunity. Here, we found that PsAvh52 is required for full virulence on soybean and binds to a novel soybean transacetylase, GmTAP1, in vivo and in vitro. PsAvh52 could cause GmTAP1 to relocate into the nucleus where GmTAP1 could acetylate histones H2A and H3 during early infection, thereby promoting susceptibility to P. sojae. In the absence of PsAvh52, GmTAP1 remained confined to the cytoplasm and did not modify plant susceptibility. These results demonstrate that GmTAP1 is a susceptibility factor that is hijacked by PsAvh52 in order to promote epigenetic modifications that enhance the susceptibility of soybean to P. sojae infection.
Collapse
|
144
|
Wang D, Wang G, Yang F, Liu C, Kong L, Liu Y. Treatment of municipal sewage with low carbon-to-nitrogen ratio via simultaneous partial nitrification, anaerobic ammonia oxidation, and denitrification (SNAD) in a non-woven rotating biological contactor. CHEMOSPHERE 2018; 208:854-861. [PMID: 30068028 DOI: 10.1016/j.chemosphere.2018.06.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 05/12/2023]
Abstract
In this study, a non-woven rotating biological contactor was evaluated for the treatment of municipal sewage via simultaneous partial nitrification, anaerobic ammonia oxidation (anammox), and denitrification (SNAD). Fluorescence in situ hybridization analysis showed that the dominant bacterial group in the aerobic outer layer of the biofilm was ammonia-oxidizing bacteria (65.13%), whereas anammox (47.17%) and denitrifying (38.91%) bacteria were present in the anaerobic inner layer. Response surface methodology was applied to develop mathematical models for the interaction between C/N and dissolved oxygen (DO) for chemical oxygen demand (COD) and total nitrogen (TN) removal. Results showed that the optimum region for SNAD was at C/N = 1.4-2.3 and DO = 0.2-0.8 mg/L. The most optimal operating condition was determined at C/N = 2.3 and DO = 0.2 mg/L, with actual removal rates of COD and TN were 83.12% and 79.13%, respectively, which are in close model consistency with model prediction (84% and 80%).
Collapse
|
145
|
Kong L, You D. Methylation of intermediate product mediated the xantholipin biosynthetic pathway. N Biotechnol 2018. [DOI: 10.1016/j.nbt.2018.05.890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
146
|
Tan L, Jiang W, Lu A, Cai H, Kong L. miR-155 Aggravates Liver Ischemia/reperfusion Injury by Suppressing SOCS1 in Mice. Transplant Proc 2018; 50:3831-3839. [PMID: 30577275 DOI: 10.1016/j.transproceed.2018.08.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/16/2018] [Indexed: 01/23/2023]
Abstract
Liver ischemia/reperfusion injury (IRI) occurs during partial liver resection and liver transplantation. Activation of Toll-like receptors (TLRs) is a key event triggered by a range of proinflammatory cytokines during liver I/R. Although it has been reported that miR-155 takes part in both innate and adaptive immune responses, the potential role of miR-155 in liver IRI remains unknown. In this study, we found that expression of miR-155 was upregulated during liver I/R by many inflammatory cytokines, and forced expression of miR-155 aggravated hepatocyte injury following liver I/R both in vivo and in vitro. Mice transfected with Ago-miR-155-a chemically modified miR-155-showed enhanced liver severity compared to those transfected with negative control miRNA by inhibiting the expression of SOCS1, the target of miR-155. Thus by the inhibition of SOCS1, the overexpression of miR-155 promoted activation of NF-κB, and elevating the production of proinflammatory cytokines, such TNF-α and IL-6. In conclusion, miR-155 aggravates liver I/R injury in vivo and hepatocyte hypoxia/reoxygenation injury by suppressing the expression of SOCS1.
Collapse
|
147
|
Gunnala V, Canon C, Kong L, Wan J, Irani M, Chung P, Rosenwaks Z. Do blastulation rates correlate with embryo ploidy? a comparison of 1,552 IVF cycles with preimplantation genetic testing stratified by age and percent blastulation. Fertil Steril 2018. [DOI: 10.1016/j.fertnstert.2018.07.1156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
148
|
Kong L, Liang X, Liu A, Yang X, Luo Q, Lv Y, Dong J. Icariin inhibits inflammation via immunomodulation of the cutaneous hypothalamus-pituitary-adrenal axis in vitro. Clin Exp Dermatol 2018; 44:144-152. [PMID: 30155911 DOI: 10.1111/ced.13735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2017] [Indexed: 12/15/2022]
|
149
|
Basappa Krishnamurthy V, Coffey A, Sanjay Y, Singh J, Kong L, Fernandez Mendoza J, Vgontzas A, Bixler E, Roger M. 1005 Sleep Disturbances In Opioid Dependent Patients On Buprenorphine- Gender Differences. Sleep 2018. [DOI: 10.1093/sleep/zsy061.1004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
150
|
Xue Y, Wang J, Huang Y, Gao X, Kong L, Zhang T, Tang M. Comparative cytotoxicity and apoptotic pathways induced by nanosilver in human liver HepG2 and L02 cells. Hum Exp Toxicol 2018; 37:1293-1309. [PMID: 29658330 DOI: 10.1177/0960327118769718] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Silver nanoparticles are used in many commercial products in daily life. Exposure to nanosilver has hepatotoxic effects in animals. This study investigated the cytotoxicity associated with polyvinylpyrrolidone-coated nanosilver (23.44 ± 4.92 nm in diameter) exposure in the human hepatoma cell line (HepG2) and normal hepatic cell line (L02), and the molecular mechanisms induced by nanosilver in HepG2 cells. Nanosilver, in doses of 20-160 μg mL-1 for 24 and 48 h, reduced cell viability in a dose- and time-dependent manner and induced cell membrane leakage and mitochondria injury in both cell lines; these effects were more pronounced in HepG2 cells than in L02 cells. Intracellular oxidative stress was documented by reactive oxygen species (ROS) being generated in HepG2 cells but not in L02 cells, an effect possibly due to differential uptake of nanosilver by cancer cells and normal cells. In HepG2 cells, apoptosis was documented by finding that ROS triggered a decrease in mitochondrial membrane potential, an increase in cytochrome c release, activation of caspase 3 and caspase 9, and a decrease in the ratio of Bcl-2/Bax. Furthermore, nanosilver activated the Fas death receptor pathway by downregulation of nuclear factor-κB and activation of caspase 8 and caspase 3. These results suggest that apoptosis induced by nanosilver in HepG2 cells is mediated via a mitochondria-dependent pathway and the Fas death receptor pathway. These findings provide toxicological and mechanistic information that can help in assessing the effects of nanosilver in biological systems, including the potential for anticancer activities.
Collapse
|