126
|
Lindberg H, Sandersjöö L, Meister SW, Uhlén M, Löfblom J, Ståhl S. Flow-cytometric screening of aggregation-inhibitors using a fluorescence-assisted intracellular method. Biotechnol J 2016; 12. [DOI: 10.1002/biot.201600364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/20/2016] [Accepted: 11/03/2016] [Indexed: 12/29/2022]
|
127
|
Magnusson K, Gremel G, Rydén L, Pontén V, Uhlén M, Dimberg A, Jirström K, Pontén F. ANLN is a prognostic biomarker independent of Ki-67 and essential for cell cycle progression in primary breast cancer. BMC Cancer 2016; 16:904. [PMID: 27863473 PMCID: PMC5116155 DOI: 10.1186/s12885-016-2923-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/02/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Anillin (ANLN), an actin-binding protein required for cytokinesis, has recently been presented as part of a prognostic marker panel in breast cancer. The objective of the current study was to further explore the prognostic and functional value of ANLN as a single biomarker in breast cancer. METHODS Immunohistochemical assessment of ANLN protein expression was performed in two well characterized breast cancer cohorts (n = 484) with long-term clinical follow-up data and the results were further validated at the mRNA level in a publicly available transcriptomics dataset. The functional relevance of ANLN was investigated in two breast cancer cell lines using RNA interference. RESULTS High nuclear fraction of ANLN in breast tumor cells was significantly associated with large tumor size, high histological grade, high proliferation rate, hormone receptor negative tumors and poor prognosis in both examined cohorts. Multivariable analysis showed that the association between ANLN and survival was significantly independent of age in cohort I and significantly independent of proliferation, as assessed by Ki-67 expression in tumor cells, age, tumor size, ER and PR status, HER2 status and nodal status in cohort II. Analysis of ANLN mRNA expression confirmed that high expression of ANLN was significantly correlated to poor overall survival in breast cancer patients. Consistent with the role of ANLN during cytokinesis, transient knock-down of ANLN protein expression in breast cancer cell lines resulted in an increase of senescent cells and an accumulation of cells in the G2/M phase of the cell cycle with altered cell morphology including large, poly-nucleated cells. Moreover, ANLN siRNA knockdown also resulted in decreased expression of cyclins D1, A2 and B1. CONCLUSIONS ANLN expression in breast cancer cells plays an important role during cell division and a high fraction of nuclear ANLN expression in tumor cells is correlated to poor prognosis in breast cancer patients, independent of Ki-67, tumor size, hormone receptor status, HER2 status, nodal status and age.
Collapse
|
128
|
Skogs M, Stadler C, Schutten R, Hjelmare M, Gnann C, Björk L, Poser I, Hyman A, Uhlén M, Lundberg E. Antibody Validation in Bioimaging Applications Based on Endogenous Expression of Tagged Proteins. J Proteome Res 2016; 16:147-155. [PMID: 27723985 DOI: 10.1021/acs.jproteome.6b00821] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antibodies are indispensible research tools, yet the scientific community has not adopted standardized procedures to validate their specificity. Here we present a strategy to systematically validate antibodies for immunofluorescence (IF) applications using gene tagging. We have assessed the on- and off-target binding capabilities of 197 antibodies using 108 cell lines expressing EGFP-tagged target proteins at endogenous levels. Furthermore, we assessed batch-to-batch effects for 35 target proteins, showing that both the on- and off-target binding patterns vary significantly between antibody batches and that the proposed strategy serves as a reliable procedure for ensuring reproducibility upon production of new antibody batches. In summary, we present a systematic scheme for antibody validation in IF applications using endogenous expression of tagged proteins. This is an important step toward a reproducible approach for context- and application-specific antibody validation and improved reliability of antibody-based experiments and research data.
Collapse
|
129
|
Pin E, Henjes F, Hong MG, Wiklund F, Magnusson P, Bjartell A, Uhlén M, Nilsson P, Schwenk JM. Identification of a Novel Autoimmune Peptide Epitope of Prostein in Prostate Cancer. J Proteome Res 2016; 16:204-216. [PMID: 27700103 DOI: 10.1021/acs.jproteome.6b00620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is a demand for novel targets and approaches to diagnose and treat prostate cancer (PCA). In this context, serum and plasma samples from a total of 609 individuals from two independent patient cohorts were screened for IgG reactivity against a sum of 3833 human protein fragments. Starting from planar protein arrays with 3786 protein fragments to screen 80 patients with and without PCA diagnosis, 161 fragments (4%) were chosen for further analysis based on their reactivity profiles. Adding 71 antigens from literature, the selection of antigens was corroborated for their reactivity in a set of 550 samples using suspension bead arrays. The antigens prostein (SLC45A3), TATA-box binding protein (TBP), and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) showed higher reactivity in PCA patients with late disease compared with early disease. Because of its prostate tissue specificity, we focused on prostein and continued with mapping epitopes of the 66-mer protein fragment using patient samples. Using bead-based assays and 15-mer peptides, a minimal peptide epitope was identified and refined by alanine scanning to the KPxAPFP. Further sequence alignment of this motif revealed homology to transmembrane protein 79 (TMEM79) and TGF-beta-induced factor 2 (TGIF2), thus providing a reasoning for cross-reactivity found in females. A comprehensive workflow to discover and validate IgG reactivity against prostein and homologous targets in human serum and plasma was applied. This study provides useful information when searching for novel biomarkers or drug targets that are guided by the reactivity of the immune system against autoantigens.
Collapse
|
130
|
Edfors F, Danielsson F, Hallström BM, Käll L, Lundberg E, Pontén F, Forsström B, Uhlén M. Gene-specific correlation of RNA and protein levels in human cells and tissues. Mol Syst Biol 2016; 12:883. [PMID: 27951527 PMCID: PMC5081484 DOI: 10.15252/msb.20167144] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/05/2016] [Accepted: 09/15/2016] [Indexed: 02/02/2023] Open
Abstract
An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on parallel reaction monitoring to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP) conversion factor independent of the tissue type is introduced, thus significantly enhancing the predictability of protein copy numbers from RNA levels. The results show that the RTP ratio varies significantly with a few hundred copies per mRNA molecule for some genes to several hundred thousands of protein copies per mRNA molecule for others. In conclusion, our data suggest that transcriptome analysis can be used as a tool to predict the protein copy numbers per cell, thus forming an attractive link between the field of genomics and proteomics.
Collapse
|
131
|
Remnestål J, Just D, Mitsios N, Fredolini C, Mulder J, Schwenk JM, Uhlén M, Kultima K, Ingelsson M, Kilander L, Lannfelt L, Svenningsson P, Nellgård B, Zetterberg H, Blennow K, Nilsson P, Häggmark-Månberg A. CSF profiling of the human brain enriched proteome reveals associations of neuromodulin and neurogranin to Alzheimer's disease. Proteomics Clin Appl 2016; 10:1242-1253. [PMID: 27604409 PMCID: PMC5157753 DOI: 10.1002/prca.201500150] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/25/2016] [Accepted: 09/02/2016] [Indexed: 01/08/2023]
Abstract
Purpose This study is part of a larger effort aiming to expand the knowledge of brain‐enriched proteins in human cerebrospinal fluid (CSF) and to provide novel insight into the relation between such proteins and different neurodegenerative diseases. Experimental design Here 280 brain‐enriched proteins in CSF from patients with Alzheimer's disease (AD), Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are profiled. In total, 441 human samples of ventricular CSF collected post mortem and lumbar CSF collected ante mortem are analyzed using 376 antibodies in a suspension bead array setup, utilizing a direct labelling approach. Results Among several proteins displaying differentiated profiles between sample groups, we focus here on two synaptic proteins, neuromodulin (GAP43) and neurogranin (NRGN). They are both found at elevated levels in CSF from AD patients in two independent cohorts, providing disease‐associated profiles in addition to verifying and strengthening previously observed patterns. Increased levels are also observed for patients for whom the AD diagnosis was not established at the time of sampling. Conclusions and clinical relevance These findings indicate that analyzing the brain‐enriched proteins in CSF is of particular interest to increase the understanding of the CSF proteome and its relation to neurodegenerative disorders. In addition, this study lends support to the notion that measurements of these synaptic proteins could potentially be of great relevance in future diagnostic tests for AD.
Collapse
|
132
|
Butler LM, Hallström BM, Fagerberg L, Pontén F, Uhlén M, Renné T, Odeberg J. Analysis of Body-wide Unfractionated Tissue Data to Identify a Core Human Endothelial Transcriptome. Cell Syst 2016; 3:287-301.e3. [PMID: 27641958 DOI: 10.1016/j.cels.2016.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/23/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Endothelial cells line blood vessels and regulate hemostasis, inflammation, and blood pressure. Proteins critical for these specialized functions tend to be predominantly expressed in endothelial cells across vascular beds. Here, we present a systems approach to identify a panel of human endothelial-enriched genes using global, body-wide transcriptomics data from 124 tissue samples from 32 organs. We identified known and unknown endothelial-enriched gene transcripts and used antibody-based profiling to confirm expression across vascular beds. The majority of identified transcripts could be detected in cultured endothelial cells from various vascular beds, and we observed maintenance of relative expression in early passage cells. In summary, we describe a widely applicable method to determine cell-type-specific transcriptome profiles in a whole-organism context, based on differential abundance across tissues. We identify potential vascular drug targets or endothelial biomarkers and highlight candidates for functional studies to increase understanding of the endothelium in health and disease.
Collapse
|
133
|
Mardinoglu A, Uhlén M. Liver: Phenotypic and genetic variance: a systems approach to the liver. Nat Rev Gastroenterol Hepatol 2016; 13:439-40. [PMID: 27329803 DOI: 10.1038/nrgastro.2016.93] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
134
|
Djureinovic D, Hallström BM, Horie M, Mattsson JSM, La Fleur L, Fagerberg L, Brunnström H, Lindskog C, Madjar K, Rahnenführer J, Ekman S, Ståhle E, Koyi H, Brandén E, Edlund K, Hengstler JG, Lambe M, Saito A, Botling J, Pontén F, Uhlén M, Micke P. Profiling cancer testis antigens in non-small-cell lung cancer. JCI Insight 2016; 1:e86837. [PMID: 27699219 PMCID: PMC5033889 DOI: 10.1172/jci.insight.86837] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/26/2016] [Indexed: 12/31/2022] Open
Abstract
Cancer testis antigens (CTAs) are of clinical interest as biomarkers and present valuable targets for immunotherapy. To comprehensively characterize the CTA landscape of non-small-cell lung cancer (NSCLC), we compared RNAseq data from 199 NSCLC tissues to the normal transcriptome of 142 samples from 32 different normal organs. Of 232 CTAs currently annotated in the Caner Testis Database (CTdatabase), 96 were confirmed in NSCLC. To obtain an unbiased CTA profile of NSCLC, we applied stringent criteria on our RNAseq data set and defined 90 genes as CTAs, of which 55 genes were not annotated in the CTdatabase, thus representing potential new CTAs. Cluster analysis revealed that CTA expression is histology dependent and concurrent expression is common. IHC confirmed tissue-specific protein expression of selected new CTAs (TKTL1, TGIF2LX, VCX, and CXORF67). Furthermore, methylation was identified as a regulatory mechanism of CTA expression based on independent data from The Cancer Genome Atlas. The proposed prognostic impact of CTAs in lung cancer was not confirmed, neither in our RNAseq cohort nor in an independent meta-analysis of 1,117 NSCLC cases. In summary, we defined a set of 90 reliable CTAs, including information on protein expression, methylation, and survival association. The detailed RNAseq catalog can guide biomarker studies and efforts to identify targets for immunotherapeutic strategies.
Collapse
|
135
|
Häggmark-Månberg A, Zandian A, Forsström B, Khademi M, Lima Bomfim I, Hellström C, Arnheim-Dahlström L, Hallböök T, Darin N, Lundberg IE, Uhlén M, Partinen M, Schwenk JM, Olsson T, Nilsson P. Autoantibody targets in vaccine-associated narcolepsy. Autoimmunity 2016; 49:421-433. [PMID: 27206786 DOI: 10.1080/08916934.2016.1183655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Narcolepsy is a chronic sleep disorder with a yet unknown cause, but the specific loss of hypocretin-producing neurons together with a strong human leukocyte antigen (HLA) association has led to the hypothesis that autoimmune mechanisms might be involved. Here, we describe an extensive effort to profile autoimmunity repertoires in serum with the aim to find disease-related autoantigens. Initially, 57 serum samples from vaccine-associated and sporadic narcolepsy patients and controls were screened for IgG reactivity towards 10 846 fragments of human proteins using planar microarrays. The discovered differential reactivities were verified on suspension bead arrays in the same sample collection followed by further investigation of 14 antigens in 176 independent samples, including 57 narcolepsy patients. Among these 14 antigens, methyltransferase-like 22 (METTL22) and 5'-nucleotidase cytosolic IA (NT5C1A) were recognized at a higher frequency in narcolepsy patients of both sample sets. Upon sequence analysis of the 14 proteins, polymerase family, member 3 (PARP3), acyl-CoA-binding domain containing 7 (ARID4B), glutaminase 2 (GLS2) and cyclin-dependent kinase-like 1 (CDKL1) were found to contain amino acid sequences with homology to proteins found in the H1N1 vaccine. These findings could become useful elements of further clinical assays that aim towards a better phenotypic understanding of narcolepsy and its triggers.
Collapse
|
136
|
Larsson AH, Lehn S, Wangefjord S, Karnevi E, Kuteeva E, Sundström M, Nodin B, Uhlén M, Eberhard J, Birgisson H, Jirström K. Significant association and synergistic adverse prognostic effect of podocalyxin-like protein and epidermal growth factor receptor expression in colorectal cancer. J Transl Med 2016; 14:128. [PMID: 27160084 PMCID: PMC4862047 DOI: 10.1186/s12967-016-0882-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/28/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Podocalyxin-like 1 (PODXL) is an anti-adhesive transmembrane protein that has been demonstrated to be an independent factor of poor prognosis in colorectal cancer (CRC). The gene encoding PODXL is located to chromosome 7, which also harbours the gene for the epidermal growth factor receptor (EGFR). The aim of this study was to examine the associations between PODXL and EGFR expression in CRC in vitro and in vivo. METHODS EGFR expression was analysed in tumours from three independent patient cohorts; cohort 1 (n = 533), cohort 2 (n = 259) and cohort 3 (n = 310), previously analysed for immunohistochemical PODXL expression and KRAS and BRAF mutations (cohort 1 and 3). Levels of EGFR and PODXL were determined by western blot in six different CRC cell lines. RESULTS High expression of PODXL was significantly associated with high EGFR expression (p < 0.001) in all three cohorts, and with BRAF mutation (p < 0.001) in cohort 1 and 3. High EGFR expression correlated with BRAF mutation (p < 0.001) in cohort 1. High EGFR expression was associated with adverse clinicopathological factors and independently predicted a reduced 5-year overall survival (OS) in cohort 1 (HR 1.77; 95 % CI 1.27-2.46), cohort 2 (HR 1.58; 95 % CI 1.05-2.38) and cohort 3 (HR 1.83; 95 % CI 1.19-2.81). The highest risk of death within 5 years was observed in patients with tumours displaying high expression of both EGFR and PODXL in cohort 1 and 3 (HR 1.97; 95 % CI 1.18-3.28 and HR 3.56; 95 % CI 1.75-7.22, respectively). Western blot analysis showed a uniform expression of PODXL and EGFR in all six examined CRC cell lines. CONCLUSIONS The results from this study demonstrate that high expression of EGFR is an independent factor of poor prognosis in CRC. Moreover, strong links have been uncovered between expression of the recently proposed biomarker candidate PODXL with EGFR expression in CRC in vivo and in vitro, and with BRAF mutation in vivo. High expression of both PODXL and EGFR may also have a synergistic adverse effect on survival. These findings suggest a potential functional link in CRC between PODXL, EGFR and BRAF, all originating from chromosome 7, which may be highly relevant in the clinical setting and therefore merit future in-depth study.
Collapse
|
137
|
Uhlén M, Hallström BM, Lindskog C, Mardinoglu A, Pontén F, Nielsen J. Transcriptomics resources of human tissues and organs. Mol Syst Biol 2016; 12:862. [PMID: 27044256 PMCID: PMC4848759 DOI: 10.15252/msb.20155865] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Quantifying the differential expression of genes in various human organs, tissues, and cell types is vital to understand human physiology and disease. Recently, several large‐scale transcriptomics studies have analyzed the expression of protein‐coding genes across tissues. These datasets provide a framework for defining the molecular constituents of the human body as well as for generating comprehensive lists of proteins expressed across tissues or in a tissue‐restricted manner. Here, we review publicly available human transcriptome resources and discuss body‐wide data from independent genome‐wide transcriptome analyses of different tissues. Gene expression measurements from these independent datasets, generated using samples from fresh frozen surgical specimens and postmortem tissues, are consistent. Overall, the different genome‐wide analyses support a distribution in which many proteins are found in all tissues and relatively few in a tissue‐restricted manner. Moreover, we discuss the applications of publicly available omics data for building genome‐scale metabolic models, used for analyzing cell and tissue functions both in physiological and in disease contexts.
Collapse
|
138
|
Ayoglu B, Birgersson E, Mezger A, Nilsson M, Uhlén M, Nilsson P, Schwenk JM. Multiplexed protein profiling by sequential affinity capture. Proteomics 2016; 16:1251-6. [PMID: 26935855 PMCID: PMC5071697 DOI: 10.1002/pmic.201500398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/18/2016] [Accepted: 02/29/2016] [Indexed: 01/07/2023]
Abstract
Antibody microarrays enable parallelized and miniaturized analysis of clinical samples, and have proven to provide novel insights for the analysis of different proteomes. However, there are concerns that the performance of such direct labeling and single antibody assays are prone to off‐target binding due to the sample context. To improve selectivity and sensitivity while maintaining the possibility to conduct multiplexed protein profiling, we developed a multiplexed and semi‐automated sequential capture assay. This novel bead‐based procedure encompasses a first antigen capture, labeling of captured protein targets on magnetic particles, combinatorial target elution and a read‐out by a secondary capture bead array. We demonstrate in a proof‐of‐concept setting that target detection via two sequential affinity interactions reduced off‐target contribution, while lowered background and noise levels, improved correlation to clinical values compared to single binder assays. We also compared sensitivity levels with single binder and classical sandwich assays, explored the possibility for DNA‐based signal amplification, and demonstrate the applicability of the dual capture bead‐based antibody microarray for biomarker analysis. Hence, the described concept enhances the possibilities for antibody array assays to be utilized for protein profiling in body fluids and beyond.
Collapse
|
139
|
Alm T, Lundberg E, Uhlén M. Introducing the Affinity Binder Knockdown InitiativeA publicprivate partnership for validation of affinity reagents. EUPA OPEN PROTEOMICS 2016; 10:56-58. [PMID: 29900101 PMCID: PMC5988587 DOI: 10.1016/j.euprot.2016.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 06/08/2023]
Abstract
The newly launched Affinity Binder Knockdown Initiative encourages antibody suppliers and users to join this publicprivate partnership, which uses crowdsourcing to collect characterization data on antibodies. Researchers are asked to share validation data from experiments where gene-editing techniques (such as siRNA or CRISPR) have been used to verify antibody binding. The initiative is launched under the aegis of Antibodypedia, a database designed to allow comparisons and scoring of publicly available antibodies towards human protein targets. What is known about an antibody is the foundation of the scoring and ranking system in Antibodypedia.
Collapse
|
140
|
Zhang MD, Barde S, Szodorai E, Josephson A, Mitsios N, Watanabe M, Attems J, Lubec G, Kovács GG, Uhlén M, Mulder J, Harkany T, Hökfelt T. Comparative anatomical distribution of neuronal calcium-binding protein (NECAB) 1 and -2 in rodent and human spinal cord. Brain Struct Funct 2016; 221:3803-23. [DOI: 10.1007/s00429-016-1191-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 01/18/2016] [Indexed: 12/21/2022]
|
141
|
Väremo L, Scheele C, Broholm C, Mardinoglu A, Kampf C, Asplund A, Nookaew I, Uhlén M, Pedersen B, Nielsen J. Proteome- and Transcriptome-Driven Reconstruction of the Human Myocyte Metabolic Network and Its Use for Identification of Markers for Diabetes. Cell Rep 2016; 14:1567. [DOI: 10.1016/j.celrep.2016.01.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
142
|
Kürten C, Uhlén M, Syrén PO. Overexpression of functional human oxidosqualene cyclase in Escherichia coli. Protein Expr Purif 2015; 115:46-53. [DOI: 10.1016/j.pep.2015.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 12/12/2022]
|
143
|
Dijksterhuis JP, Arthofer E, Marinescu VD, Nelander S, Uhlén M, Pontén F, Mulder J, Schulte G. High levels of WNT-5A in human glioma correlate with increased presence of tumor-associated microglia/monocytes. Exp Cell Res 2015; 339:280-8. [PMID: 26511503 DOI: 10.1016/j.yexcr.2015.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/16/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022]
Abstract
Malignant gliomas are among the most severe types of cancer, and the most common primary brain tumors. Treatment options are limited and the prognosis is poor. WNT-5A, a member of the WNT family of lipoglycoproteins, plays a role in oncogenesis and tumor progression in various cancers, whereas the role of WNT-5A in glioma remains obscure. Based on the role of WNT-5A as an oncogene, its potential to regulate microglia cells and the glioma-promoting capacities of microglia cells, we hypothesize that WNT-5A has a role in regulation of immune functions in glioma. We investigated WNT-5A expression by in silico analysis of the cancer genome atlas (TCGA) transcript profiling of human glioblastoma samples and immunohistochemistry experiments of human glioma tissue microarrays (TMA). Our results reveal higher WNT-5A protein levels and mRNA expression in a subgroup of gliomas (WNT-5A(high)) compared to non-malignant control brain tissue. Furthermore, we show a significant correlation between WNT-5A in the tumor and presence of major histocompatibility complex Class II-positive microglia/monocytes. Our data pinpoint a positive correlation between WNT-5A and a proinflammatory signature in glioma. We identify increased presence of microglia/monocytes as an important aspect in the inflammatory transformation suggesting a novel role for WNT-5A in human glioma.
Collapse
|
144
|
Anfelt J, Kaczmarzyk D, Shabestary K, Renberg B, Rockberg J, Nielsen J, Uhlén M, Hudson EP. Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production. Microb Cell Fact 2015; 14:167. [PMID: 26474754 PMCID: PMC4609045 DOI: 10.1186/s12934-015-0355-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/07/2015] [Indexed: 02/05/2023] Open
Abstract
Background There is a strong interest in using photosynthetic cyanobacteria as production hosts for biofuels and chemicals. Recent work has shown the benefit of pathway engineering, enzyme tolerance, and co-factor usage for improving yields of fermentation products. Results An n-butanol pathway was inserted into a Synechocystis mutant deficient in polyhydroxybutyrate synthesis. We found that nitrogen starvation increased specific butanol productivity up to threefold, but cessation of cell growth limited total n-butanol titers. Metabolite profiling showed that acetyl-CoA increased twofold during nitrogen starvation. Introduction of a phosphoketolase increased acetyl-CoA levels sixfold at nitrogen replete conditions and increased butanol titers from 22 to 37 mg/L at day 8. Flux balance analysis of photoautotrophic metabolism showed that a Calvin–Benson–Bassham-Phosphoketolase pathway had higher theoretical butanol productivity than CBB-Embden–Meyerhof–Parnas and a reduced butanol ATP demand. Conclusion These results demonstrate that phosphoketolase overexpression and modulation of nitrogen levels are two attractive routes toward increased production of acetyl-CoA derived products in cyanobacteria and could be implemented with complementary metabolic engineering strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0355-9) contains supplementary material, which is available to authorized users.
Collapse
|
145
|
Adori C, Barde S, Bogdanovic N, Uhlén M, Reinscheid RR, Kovacs GG, Hökfelt T. Neuropeptide S- and Neuropeptide S receptor-expressing neuron populations in the human pons. Front Neuroanat 2015; 9:126. [PMID: 26441556 PMCID: PMC4585187 DOI: 10.3389/fnana.2015.00126] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/07/2015] [Indexed: 01/26/2023] Open
Abstract
Neuropeptide S (NPS) is a regulatory peptide with potent pharmacological effects. In rodents, NPS is expressed in a few pontine cell clusters. Its receptor (NPSR1) is, however, widely distributed in the brain. The anxiolytic and arousal-promoting effects of NPS make the NPS–NPSR1 system an interesting potential drug target in mood-related disorders. However, so far possible disease-related mechanisms involving NPS have only been studied in rodents. To validate the relevance of these animal studies for i.a. drug development, we have explored the distribution of NPS-expressing neurons in the human pons using in situ hybridization and stereological methods and we compared the distribution of NPS mRNA expressing neurons in the human and rat brain. The calculation revealed a total number of 22,317 ± 2411 NPS mRNA-positive neurons in human, bilaterally. The majority of cells (84%) were located in the parabrachial area in human: in the extension of the medial and lateral parabrachial nuclei, in the Kölliker-Fuse nucleus and around the adjacent lateral lemniscus. In human, in sharp contrast to the rodents, only very few NPS-positive cells (5%) were found close to the locus coeruleus. In addition, we identified a smaller cell cluster (11% of all NPS cells) in the pontine central gray matter both in human and rat, which has not been described previously even in rodents. We also examined the distribution of NPSR1 mRNA-expressing neurons in the human pons. These cells were mainly located in the rostral laterodorsal tegmental nucleus, the cuneiform nucleus, the microcellular tegmental nucleus region and in the periaqueductal gray. Our results show that both NPS and NPSR1 in the human pons are preferentially localized in regions of importance for integration of visceral autonomic information and emotional behavior. The reported interspecies differences must, however, be considered when looking for targets for new pharmacotherapeutical interventions.
Collapse
|
146
|
Yu NYL, Hallström BM, Fagerberg L, Ponten F, Kawaji H, Carninci P, Forrest ARR, Hayashizaki Y, Uhlén M, Daub CO. Complementing tissue characterization by integrating transcriptome profiling from the Human Protein Atlas and from the FANTOM5 consortium. Nucleic Acids Res 2015; 43:6787-98. [PMID: 26117540 PMCID: PMC4538815 DOI: 10.1093/nar/gkv608] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/20/2022] Open
Abstract
Understanding the normal state of human tissue transcriptome profiles is essential for recognizing tissue disease states and identifying disease markers. Recently, the Human Protein Atlas and the FANTOM5 consortium have each published extensive transcriptome data for human samples using Illumina-sequenced RNA-Seq and Heliscope-sequenced CAGE. Here, we report on the first large-scale complex tissue transcriptome comparison between full-length versus 5'-capped mRNA sequencing data. Overall gene expression correlation was high between the 22 corresponding tissues analyzed (R > 0.8). For genes ubiquitously expressed across all tissues, the two data sets showed high genome-wide correlation (91% agreement), with differences observed for a small number of individual genes indicating the need to update their gene models. Among the identified single-tissue enriched genes, up to 75% showed consensus of 7-fold enrichment in the same tissue in both methods, while another 17% exhibited multiple tissue enrichment and/or high expression variety in the other data set, likely dependent on the cell type proportions included in each tissue sample. Our results show that RNA-Seq and CAGE tissue transcriptome data sets are highly complementary for improving gene model annotations and highlight biological complexities within tissue transcriptomes. Furthermore, integration with image-based protein expression data is highly advantageous for understanding expression specificities for many genes.
Collapse
|
147
|
Fristedt R, Elebro J, Gaber A, Nodin B, Uhlén M, Jirström K. Abstract B30: High expression of PIGR is an independent favorable prognostic factor in pancreatic and periampullary adenocarcinoma. Cancer Res 2015. [DOI: 10.1158/1538-7445.panca2014-b30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Introduction: The polymeric immunoglobulin receptor (PIGR) is a member of the immunoglobulin superfamily and key component of the mucosal immune system that mediates epithelial transcytosis of polymeric immunoglobulins. High PIGR expression has been reported to correlate with a less aggressive tumor phenotype and favorable prognosis in e.g. gastro-esophageal, colon, urinary bladder and ovarian cancer, and with a greater metastatic potential and poor prognosis in hepatitis B-derived hepatocellular carcinoma, PIGR has recently been demonstrated to be up-regulated in pancreatic cancer cells upon exposure to stromal cells in vitro, but its expression and prognostic significance in human pancreatic cancer has not yet been reported. The aim of the present study was therefore to examine the longitudinal expression and prognostic significance of PIGR in a large consecutive series of pancreatic and periampullary adenocarcinoma.
Material and Methods: The study cohort encompasses a consecutive series of 175 patients surgically treated by means of pancreaticoduodenectomy for pancreatic and periampullary adenocarcinomas in the University hospitals of Malmö and Lund, Sweden, from January 1, 2001 to December 31, 2011. Tissue microarrays were constructed from all primary tumors (n =175) and paired lymph node metastases from 105 cases. PIGR was expressed in the cytoplasm and both the staining intensity and fraction of positive cells was denoted. For statistical purposes, a multiplier of the fraction and intensity of staining was applied. Mann Whitney U test was applied for analysis of PIGR expression in relation to clinicopathological characteristics. Classification and regression tree analysis was used for selection of prognostic cut-off. The impact of PIGR expression on 5-year overall survival (OS) and hazard ratios (HR) was calculated by adjusted and unadjusted Cox proportional hazards modeling.
Results: PIGR expression could be evaluated in 172/175 (98.3%) of the primary tumors and in 96/105 (91.4%) lymph node metastases. High PIGR expression was significantly associated with more well differentiated tumors (p=<0.001), and inversely associated with perineural growth (p=0.016), lymphatic invasion (p=0.010), vascular invasion (p=0.027) and infiltration of the peripancreatic fat (p=0.024). PIGR expression was significantly down regulated in lymph node metastases as compared to primary tumors (p=0.018). High PIGR expression was significantly associated with a prolonged 5-year survival (unadjusted HR 0.21, 95% CI 0.09-0.48, p=<0.001) and this association remained significant after adjustment for T-stage, N-stage, tumor size, tumor grade, perineural growth, invasion in lymphatic vessels, invasion in blood vessels, growth in peripancreatic fat, involved margins, age and sex (HR 0.27, 95% CI 0.12-0.63, p=0.002).
Conclusion: The results from this study demonstrate, for the first time, that high PIGR expression is associated with a more favorable tumor phenotype and is an independent marker of improved prognosis in pancreatic and periampullary cancer. The observed down regulation of PIGR expression in lymph node metastases as compared with primary tumors further supports a tumor suppressing role for PIGR in these cancers. These findings are of potential clinical relevance and warrant confirmation in additional patient cohorts. In addition, elucidating the mechanistic basis for the role of PIGR in tumor progression, with particular reference to the interplay of tumor cells and stroma, remains an intriguing challenge for future functional work.
Citation Format: Richard Fristedt, Jacob Elebro, Alexander Gaber, Björn Nodin, Mathias Uhlén, Karin Jirström. High expression of PIGR is an independent favorable prognostic factor in pancreatic and periampullary adenocarcinoma. [abstract]. In: Proceedings of the AACR Special Conference on Pancreatic Cancer: Innovations in Research and Treatment; May 18-21, 2014; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2015;75(13 Suppl):Abstract nr B30.
Collapse
|
148
|
Lindskog C, Linné J, Fagerberg L, Hallström BM, Sundberg CJ, Lindholm M, Huss M, Kampf C, Choi H, Liem DA, Ping P, Väremo L, Mardinoglu A, Nielsen J, Larsson E, Pontén F, Uhlén M. The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling. BMC Genomics 2015; 16:475. [PMID: 26109061 PMCID: PMC4479346 DOI: 10.1186/s12864-015-1686-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 06/05/2015] [Indexed: 11/29/2022] Open
Abstract
Background To understand cardiac and skeletal muscle function, it is important to define and explore their molecular constituents and also to identify similarities and differences in the gene expression in these two different striated muscle tissues. Here, we have investigated the genes and proteins with elevated expression in cardiac and skeletal muscle in relation to all other major human tissues and organs using a global transcriptomics analysis complemented with antibody-based profiling to localize the corresponding proteins on a single cell level. Results Our study identified a comprehensive list of genes expressed in cardiac and skeletal muscle. The genes with elevated expression were further stratified according to their global expression pattern across the human body as well as their precise localization in the muscle tissues. The functions of the proteins encoded by the elevated genes are well in line with the physiological functions of cardiac and skeletal muscle, such as contraction, ion transport, regulation of membrane potential and actomyosin structure organization. A large fraction of the transcripts in both cardiac and skeletal muscle correspond to mitochondrial proteins involved in energy metabolism, which demonstrates the extreme specialization of these muscle tissues to provide energy for contraction. Conclusions Our results provide a comprehensive list of genes and proteins elevated in striated muscles. A number of proteins not previously characterized in cardiac and skeletal muscle were identified and localized to specific cellular subcompartments. These proteins represent an interesting starting point for further functional analysis of their role in muscle biology and disease. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1686-y) contains supplementary material, which is available to authorized users.
Collapse
|
149
|
Sjöstedt E, Fagerberg L, Hallström BM, Häggmark A, Mitsios N, Nilsson P, Pontén F, Hökfelt T, Uhlén M, Mulder J. Defining the Human Brain Proteome Using Transcriptomics and Antibody-Based Profiling with a Focus on the Cerebral Cortex. PLoS One 2015; 10:e0130028. [PMID: 26076492 PMCID: PMC4468152 DOI: 10.1371/journal.pone.0130028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/15/2015] [Indexed: 01/25/2023] Open
Abstract
The mammalian brain is a complex organ composed of many specialized cells, harboring sets of both common, widely distributed, as well as specialized and discretely localized proteins. Here we focus on the human brain, utilizing transcriptomics and public available Human Protein Atlas (HPA) data to analyze brain-enriched (frontal cortex) polyadenylated messenger RNA and long non-coding RNA and generate a genome-wide draft of global and cellular expression patterns of the brain. Based on transcriptomics analysis of altogether 27 tissues, we have estimated that approximately 3% (n=571) of all protein coding genes and 13% (n=87) of the long non-coding genes expressed in the human brain are enriched, having at least five times higher expression levels in brain as compared to any of the other analyzed peripheral tissues. Based on gene ontology analysis and detailed annotation using antibody-based tissue micro array analysis of the corresponding proteins, we found the majority of brain-enriched protein coding genes to be expressed in astrocytes, oligodendrocytes or in neurons with molecular properties linked to synaptic transmission and brain development. Detailed analysis of the transcripts and the genetic landscape of brain-enriched coding and non-coding genes revealed brain-enriched splice variants. Several clusters of neighboring brain-enriched genes were also identified, suggesting regulation of gene expression on the chromatin level. This multi-angle approach uncovered the brain-enriched transcriptome and linked genes to cell types and functions, providing novel insights into the molecular foundation of this highly specialized organ.
Collapse
|
150
|
Perisic L, Rodriguez PQ, Hultenby K, Sun Y, Lal M, Betsholtz C, Uhlén M, Wernerson A, Hedin U, Pikkarainen T, Tryggvason K, Patrakka J. Correction: Schip1 Is a Novel Podocyte Foot Process Protein that Mediates Actin Cytoskeleton Rearrangements and Forms a Complex with Nherf2 and Ezrin. PLoS One 2015; 10:e0126079. [PMID: 25965062 PMCID: PMC4428695 DOI: 10.1371/journal.pone.0126079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|