151
|
Ding Y, Rath CM, Bolduc KL, Håkansson K, Sherman DH. Chemoenzymatic synthesis of cryptophycin anticancer agents by an ester bond-forming non-ribosomal peptide synthetase module. J Am Chem Soc 2011; 133:14492-5. [PMID: 21823639 DOI: 10.1021/ja204716f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cryptophycins (Crp) are a group of cyanobacterial depsipeptides with activity against drug-resistant tumors. Although they have been shown to be promising, further efforts are required to return these highly potent compounds to the clinic through a new generation of analogues with improved medicinal properties. Herein, we report a chemosynthetic route relying on the multifunctional enzyme CrpD-M2 that incorporates a 2-hydroxy acid moiety (unit D) into Crp analogues. CrpD-M2 is a unique non-ribosomal peptide synthetase (NRPS) module comprised of condensation-adenylation-ketoreduction-thiolation (C-A-KR-T) domains. We interrogated A-domain 2-keto and 2-hydroxy acid activation and loading, and KR domain activity in the presence of NADPH and NADH. The resulting 2-hydroxy acid was elongated with three synthetic Crp chain elongation intermediate analogues through ester bond formation catalyzed by CrpD-M2 C domain. Finally, the enzyme-bound seco-Crp products were macrolactonized by the Crp thioesterase. Analysis of these sequential steps was enabled through LC-FTICR-MS of enzyme-bound intermediates and products. This novel chemoenzymatic synthesis of Crp involves four sequential catalytic steps leading to the incorporation of a 2-hydroxy acid moiety in the final chain elongation intermediate. The presented work constitutes the first example where a NRPS-embedded KR domain is employed for assembly of a fully elaborated natural product, and serves as a proof-of-principle for chemoenzymatic synthesis of new Crp analogues.
Collapse
|
152
|
Fribley AM, Cruz PG, Miller JR, Callaghan MU, Cai P, Narula N, Neubig RR, Showalter HD, Larsen SD, Kirchhoff PD, Larsen MJ, Burr DA, Schultz PJ, Jacobs RR, Tamayo-Castillo G, Ron D, Sherman DH, Kaufman RJ. Complementary cell-based high-throughput screens identify novel modulators of the unfolded protein response. ACTA ACUST UNITED AC 2011; 16:825-35. [PMID: 21844328 DOI: 10.1177/1087057111414893] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite advances toward understanding the prevention and treatment of many cancers, patients who suffer from oral squamous cell carcinoma (OSCC) confront a survival rate that has remained unimproved for more than 2 decades, indicating our ability to treat them pharmacologically has reached a plateau. In an ongoing effort to improve the clinical outlook for this disease, we previously reported that an essential component of the mechanism by which the proteasome inhibitor bortezomib (PS-341, Velcade) induced apoptosis in OSCC required the activation of a terminal unfolded protein response (UPR). Predicated on these studies, the authors hypothesized that high-throughput screening (HTS) of large diverse chemical libraries might identify more potent or selective small-molecule activators of the apoptotic arm of the UPR to control or kill OSCC. They have developed complementary cell-based assays using stably transfected CHO-K1 cell lines that individually assess the PERK/eIF2α/CHOP (apoptotic) or the IRE1/XBP1 (adaptive) UPR subpathways. An 66 K compound collection was screened at the University of Michigan Center for Chemical Genomics that included a unique library of prefractionated natural product extracts. The mycotoxin methoxycitrinin was isolated from a natural extract and found to selectively activate the CHOP-luciferase reporter at 80 µM. A series of citrinin derivatives was isolated from these extracts, including a unique congener that has not been previously described. In an effort to identify more potent compounds, the authors examined the ability of citrinin and the structurally related mycotoxins ochratoxin A and patulin to activate the UPR. Strikingly, it was found that patulin at 2.5 to 10 µM induced a terminal UPR in a panel of OSCC cells that was characterized by an increase in CHOP, GADD34, and ATF3 gene expression and XBP1 splicing. A luminescent caspase assay and the induction of several BH3-only genes indicated that patulin could induce apoptosis in OSCC cells. These data support the use of this complementary HTS strategy to identify novel modulators of UPR signaling and tumor cell death.
Collapse
|
153
|
Carlson JC, Li S, Gunatilleke SS, Anzai Y, Burr DA, Podust LM, Sherman DH. Tirandamycin biosynthesis is mediated by co-dependent oxidative enzymes. Nat Chem 2011; 3:628-33. [PMID: 21778983 PMCID: PMC3154026 DOI: 10.1038/nchem.1087] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/03/2011] [Indexed: 11/23/2022]
Abstract
Elucidation of natural product biosynthetic pathways provides important insights into the assembly of potent bioactive molecules, and expands access to unique enzymes able to selectively modify complex substrates. Here, we show full reconstitution, in vitro, of an unusual multi-step oxidative cascade for post-assembly-line tailoring of tirandamycin antibiotics. This pathway involves a remarkably versatile and iterative cytochrome P450 monooxygenase (TamI) and a flavin adenine dinucleotide-dependent oxidase (TamL), which act co-dependently through the repeated exchange of substrates. TamI hydroxylates tirandamycin C (TirC) to generate tirandamycin E (TirE), a previously unidentified tirandamycin intermediate. TirE is subsequently oxidized by TamL, giving rise to the ketone of tirandamycin D (TirD), after which a unique exchange back to TamI enables successive epoxidation and hydroxylation to afford, respectively, the final products tirandamycin A (TirA) and tirandamycin B (TirB). Ligand-free, substrate- and product-bound crystal structures of bicovalently flavinylated TamL oxidase reveal a likely mechanism for the C10 oxidation of TirE.
Collapse
|
154
|
Finefield JM, Kato H, Greshock TJ, Sherman DH, Tsukamoto S, Williams RM. Biosynthetic studies of the notoamides: isotopic synthesis of stephacidin A and incorporation into notoamide B and sclerotiamide. Org Lett 2011; 13:3802-5. [PMID: 21714564 DOI: 10.1021/ol201284y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The advanced natural product stephacidin A is proposed as a biosynthetic precursor to notoamide B in various Aspergillus species. Doubly (13)C-labeled racemic stephacidin A was synthesized and fed to cultures of the terrestrial-derived fungus, Aspergillus versicolor NRRL 35600, and the marine-derived fungus, Aspergillus sp. MF297-2. Analysis of the metabolites revealed enantiospecific incorporation of intact (-)-stephacidin A into (+)-notoamide B in Aspergillus versicolor and (+)-stephacidin A into (-)-notoamide B in Aspergillus sp. MF297-2. (13)C-Labeled sclerotiamide was also isolated from both fungal cultures.
Collapse
|
155
|
Finefield JM, Sherman DH, Tsukamoto S, Williams RM. Studies on the biosynthesis of the notoamides: synthesis of an isotopomer of 6-hydroxydeoxybrevianamide E and biosynthetic incorporation into notoamide J. J Org Chem 2011; 76:5954-8. [PMID: 21504234 DOI: 10.1021/jo200218a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
6-Hydroxydeoxybrevianamide E is proposed as a biosynthetic precursor to several advanced metabolites isolated from both marine-derived Aspergillus sp. and a terrestrial-derived Aspergillus versicolor. To verify the role of this reverse-prenylated indole alkaloid as an intermediate along the biosynthetic pathway, [(13)C](2)-[(15)N]-6-hydroxydeoxybrevianamide E was synthesized and fed to Aspergillus versicolor. Analysis of the metabolites showed incorporation of the intermediate only into the natural product notoamide J.
Collapse
|
156
|
Lee JY, Passalacqua KD, Hanna PC, Sherman DH. Regulation of petrobactin and bacillibactin biosynthesis in Bacillus anthracis under iron and oxygen variation. PLoS One 2011; 6:e20777. [PMID: 21673962 PMCID: PMC3108971 DOI: 10.1371/journal.pone.0020777] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/10/2011] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Bacillus anthracis produces two catecholate siderophores, petrobactin and bacillibactin, under iron-limited conditions. Here, we investigate how variable iron and oxygen concentrations influence the biosynthetic output of both siderophores in B. anthracis. In addition, we describe the differential levels of transcription of select genes within the B. anthracis siderophore biosynthetic operons that are responsible for synthesis of petrobactin and bacillibactin, during variable growth conditions. METHODOLOGY/PRINCIPAL FINDINGS Accumulation of bacillibactin in B. anthracis Sterne (34F(2)) and in a mutant lacking the major superoxide dismutase (ΔsodA1) was almost completely repressed by the addition of 20 µM of iron. In contrast, petrobactin synthesis in both strains continued up to 20 µM of iron. Accumulation of petrobactin and bacillibactin showed a slight increase with addition of low levels of paraquat-induced oxidative stress in wild type B. anthracis Sterne. Cultures grown with high aeration resulted in greater accumulation of petrobactin relative to low aeration cultures, and delayed the repressive effect of added iron. Conversely, iron-depleted cultures grown with low aeration resulted in increased levels of bacillibactin. No difference was found in overall superoxide dismutase (SOD) activity or transcriptional levels of the sodA1 and sodA2 genes between iron-depleted and iron-replete conditions at high or low aeration, suggesting that SOD regulation and iron metabolism are separate in B. anthracis. The highest transcription of the gene asbB, part of the petrobactin biosynthetic operon, occurred under iron-limitation with high aeration, but transcription was readily detectable even under iron-replete conditions and in low aeration. The gene dhbC, a member of the bacillibactin biosynthetic operon, was only transcribed under conditions of iron-depletion, regardless of growth aeration. CONCLUSION These data suggest that bacillibactin regulation is highly sensitive to iron-concentration. In contrast, although regulation of petrobactin is less dependent on iron, it is likely subject to additional levels of regulation that may contribute to virulence of B. anthracis.
Collapse
|
157
|
Singh S, Chang A, Goff RD, Bingman CA, Grüschow S, Sherman DH, Phillips GN, Thorson JS. Structural characterization of the mitomycin 7-O-methyltransferase. Proteins 2011; 79:2181-8. [PMID: 21538548 DOI: 10.1002/prot.23040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/09/2011] [Accepted: 02/19/2011] [Indexed: 11/07/2022]
Abstract
Mitomycins are quinone-containing antibiotics, widely used as antitumor drugs in chemotherapy. Mitomycin-7-O-methyltransferase (MmcR), a key tailoring enzyme involved in the biosynthesis of mitomycin in Streptomyces lavendulae, catalyzes the 7-O-methylation of both C9β- and C9α-configured 7-hydroxymitomycins. We have determined the crystal structures of the MmcR-S-adenosylhomocysteine (SAH) binary complex and MmcR-SAH-mitomycin A (MMA) ternary complex at resolutions of 1.9and 2.3 Å, respectively. The study revealed MmcR to adopt a common S-adenosyl-L-methionine-dependent O-methyltransferase fold and the presence of a structurally conserved active site general acid-base pair is consistent with a proton-assisted methyltransfer common to most methyltransferases. Given the importance of C7 alkylation to modulate mitomycin redox potential, this study may also present a template toward the future engineering of catalysts to generate uniquely bioactive mitomycins.
Collapse
|
158
|
Gehret JJ, Gu L, Gerwick WH, Wipf P, Sherman DH, Smith JL. Terminal alkene formation by the thioesterase of curacin A biosynthesis: structure of a decarboxylating thioesterase. J Biol Chem 2011; 286:14445-54. [PMID: 21357626 PMCID: PMC3077644 DOI: 10.1074/jbc.m110.214635] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/25/2011] [Indexed: 11/06/2022] Open
Abstract
Curacin A is a polyketide synthase (PKS)-non-ribosomal peptide synthetase-derived natural product with potent anticancer properties generated by the marine cyanobacterium Lyngbya majuscula. Type I modular PKS assembly lines typically employ a thioesterase (TE) domain to off-load carboxylic acid or macrolactone products from an adjacent acyl carrier protein (ACP) domain. In a striking departure from this scheme the curacin A PKS employs tandem sulfotransferase and TE domains to form a terminal alkene moiety. Sulfotransferase sulfonation of β-hydroxy-acyl-ACP is followed by TE hydrolysis, decarboxylation, and sulfate elimination (Gu, L., Wang, B., Kulkarni, A., Gehret, J. J., Lloyd, K. R., Gerwick, L., Gerwick, W. H., Wipf, P., Håkansson, K., Smith, J. L., and Sherman, D. H. (2009) J. Am. Chem. Soc. 131, 16033-16035). With low sequence identity to other PKS TEs (<15%), the curacin TE represents a new thioesterase subfamily. The 1.7-Å curacin TE crystal structure reveals how the familiar α/β-hydrolase architecture is adapted to specificity for β-sulfated substrates. A Ser-His-Glu catalytic triad is centered in an open active site cleft between the core domain and a lid subdomain. Unlike TEs from other PKSs, the lid is fixed in an open conformation on one side by dimer contacts of a protruding helix and on the other side by an arginine anchor from the lid into the core. Adjacent to the catalytic triad, another arginine residue is positioned to recognize the substrate β-sulfate group. The essential features of the curacin TE are conserved in sequences of five other putative bacterial ACP-ST-TE tridomains. Formation of a sulfate leaving group as a biosynthetic strategy to facilitate acyl chain decarboxylation is of potential value as a route to hydrocarbon biofuels.
Collapse
|
159
|
Sunderhaus JD, Sherman DH, Williams RM. Studies on the Biosynthesis of the Stephacidin and Notoamide Natural Products: A Stereochemical and Genetic Conundrum. Isr J Chem 2011; 51:442-452. [PMID: 21818159 PMCID: PMC3148524 DOI: 10.1002/ijch.201100016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The stephacidin and notoamide natural products belong to a group of prenylated indole alkaloids containing a bicyclo[2.2.2]diazaoctane core. Biosynthetically, this bicyclic core is believed to be the product of an intermolecular Diels- Alder (IMDA) cycloaddition of an achiral azadiene. Since all of the natural products in this family have been isolated in enantiomerically pure form to date, it is believed that an elusive Diels-Alderase enzyme mediates the IMDA reaction. Adding further intrigue to this biosynthetic puzzle is the fact that several related Aspergillus fungi produce a number of metabolites with the opposite absolute configuration, implying that these fungi have evolved enantiomerically distinct Diels-Alderases. We have undertaken a program to identify every step in the biogenesis of the stephacidins and notoamides, and by combining the techniques of chemical synthesis and biochemical analysis we have been able to identify the two prenyltransferases involved in the early stages of the stephacidin and notoamide biosyntheses. This has allowed us to propose a modified biosynthesis for stephacidin A, and has brought us closer to our goal of finding evidence for, or against, the presence of a Diels-Alderase in this biosynthetic pathway.
Collapse
|
160
|
Gu L, Eisman EB, Dutta S, Franzmann TM, Walter S, Gerwick WH, Skiniotis G, Sherman DH. Tandem Acyl Carrier Proteins in the Curacin Biosynthetic Pathway Promote Consecutive Multienzyme Reactions with a Synergistic Effect. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
161
|
Gu L, Eisman EB, Dutta S, Franzmann TM, Walter S, Gerwick WH, Skiniotis G, Sherman DH. Tandem acyl carrier proteins in the curacin biosynthetic pathway promote consecutive multienzyme reactions with a synergistic effect. Angew Chem Int Ed Engl 2011; 50:2795-8. [PMID: 21387490 DOI: 10.1002/anie.201005280] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 01/12/2011] [Indexed: 11/10/2022]
|
162
|
Buchholz TJ, Rath CM, Lopanik NB, Gardner NP, Håkansson K, Sherman DH. Polyketide β-branching in bryostatin biosynthesis: identification of surrogate acetyl-ACP donors for BryR, an HMG-ACP synthase. ACTA ACUST UNITED AC 2011; 17:1092-100. [PMID: 21035732 DOI: 10.1016/j.chembiol.2010.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/10/2010] [Accepted: 08/17/2010] [Indexed: 10/18/2022]
Abstract
In vitro analysis of natural product biosynthetic gene products isolated from unculturable symbiotic bacteria is necessary to probe the functionalities of these enzymes. Herein, we report the biochemical characterization of BryR, the 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase (HMGS) homolog implicated in β-branching at C13 and C21 of the core ring system from the bryostatin metabolic pathway (Bry). We confirmed the activity of BryR using two complementary methods, radio-SDS PAGE, and Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS). The activity of BryR depended on pairing of the native acetoacetyl-BryM3 acceptor acyl carrier protein (ACP) with an appropriate donor acetyl-ACP from a heterologous HMGS cassette. Additionally, the ability of BryR to discriminate between various ACPs was assessed using a surface plasmon resonance (SPR)-based protein-protein binding assay. Our data suggest that specificity for a protein-bound acyl group is a distinguishing feature between HMGS homologs found in PKS or PKS/NRPS biosynthetic pathways and those of primary metabolism. These findings reveal an important example of molecular recognition between protein components that are essential for biosynthetic fidelity in natural product assembly and modification.
Collapse
|
163
|
Himpsl SD, Pearson MM, Arewång CJ, Nusca TD, Sherman DH, Mobley HLT. Proteobactin and a yersiniabactin-related siderophore mediate iron acquisition in Proteus mirabilis. Mol Microbiol 2011; 78:138-57. [PMID: 20923418 DOI: 10.1111/j.1365-2958.2010.07317.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteus mirabilis causes complicated urinary tract infections (UTIs). While the urinary tract is an iron-limiting environment, iron acquisition remains poorly characterized for this uropathogen. Microarray analysis of P. mirabilis HI4320 cultured under iron limitation identified 45 significantly upregulated genes (P ≤ 0.05) that represent 21 putative iron-regulated systems. Two gene clusters, PMI0229-0239 and PMI2596-2605, encode putative siderophore systems. PMI0229-0239 encodes a non-ribosomal peptide synthetase-independent siderophore system for producing a novel siderophore, proteobactin. PMI2596-2605 are contained within the high-pathogenicity island, originally described in Yersinia pestis, and encodes proteins with apparent homology and organization to those involved in yersiniabactin production and uptake. Cross-feeding and biochemical analysis shows that P. mirabilis is unable to utilize or produce yersiniabactin, suggesting that this yersiniabactin-related locus is functionally distinct. Only disruption of both systems resulted in an in vitro iron-chelating defect; demonstrating production and iron-chelating activity for both siderophores. These findings clearly show that proteobactin and the yersiniabactin-related siderophore function as iron acquisition systems. Despite the activity of both siderophores, only mutants lacking the yersiniabactin-related siderophore have reduced fitness in vivo. The fitness requirement for the yersiniabactin-related siderophore during UTI shows, for the first time, the importance of siderophore production in vivo for P. mirabilis.
Collapse
|
164
|
Scaglione JB, Akey DL, Sullivan R, Kittendorf JD, Rath CM, Kim ES, Smith JL, Sherman DH. Biochemical and structural characterization of the tautomycetin thioesterase: analysis of a stereoselective polyketide hydrolase. Angew Chem Int Ed Engl 2011; 49:5726-30. [PMID: 20623733 DOI: 10.1002/anie.201000032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
165
|
Ding Y, de Wet JR, Cavalcoli J, Li S, Greshock TJ, Miller KA, Finefield JM, Sunderhaus JD, McAfoos TJ, Tsukamoto S, Williams RM, Sherman DH. Genome-based characterization of two prenylation steps in the assembly of the stephacidin and notoamide anticancer agents in a marine-derived Aspergillus sp. J Am Chem Soc 2011; 132:12733-40. [PMID: 20722388 DOI: 10.1021/ja1049302] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stephacidin and notoamide natural products belong to a group of prenylated indole alkaloids containing a core bicyclo[2.2.2]diazaoctane ring system. These bioactive fungal secondary metabolites have a range of unusual structural and stereochemical features but their biosynthesis has remained uncharacterized. Herein, we report the first biosynthetic gene cluster for this class of fungal alkaloids based on whole genome sequencing of a marine-derived Aspergillus sp. Two central pathway enzymes catalyzing both normal and reverse prenyltransfer reactions were characterized in detail. Our results establish the early steps for creation of the prenylated indole alkaloid structure and suggest a scheme for the biosynthesis of stephacidin and notoamide metabolites. The work provides the first genetic and biochemical insights for understanding the structural diversity of this important family of fungal alkaloids.
Collapse
|
166
|
McAfoos TJ, Li S, Tsukamoto S, Sherman DH, Williams RM. STUDIES ON THE BIOSYNTHESIS OF THE STEPHACIDINS AND NOTOAMIDES. TOTAL SYNTHESIS OF NOTOAMIDE S. HETEROCYCLES 2010; 82:461-472. [PMID: 21796227 PMCID: PMC3143024 DOI: 10.3987/com-10-s(e)19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Notoamide S has been suggested to be the final common precursor between two different Aspergillus sp. fungal strains before diverging to form enantiomerically opposite natural products (+)- and (-)-stephacidin A and (+)- and (-)-notoamide B. The synthesis of notoamide S comes from the coupling of N-Fmoc proline with a 6-hydroxy-7-prenyl-2-reverse prenyl tryptophan derivative that was synthesized via a late stage Claisen rearrangement from a 6-propargyl-2-reverse prenylated indole.
Collapse
|
167
|
Abstract
Natural product biosynthetic pathways have evolved enzymes with myriad activities that represent an expansive array of chemical transformations for constructing secondary metabolites. Recently, harnessing the biosynthetic potential of these enzymes through chemoenzymatic synthesis has provided a powerful tool that often rivals the most sophisticated methodologies in modern synthetic chemistry and provides new opportunities for accessing chemical diversity. Herein, we describe our research efforts with enzymes from a broad collection of biosynthetic systems, highlighting recent progress in this exciting field.
Collapse
|
168
|
choi S, Sherman DH, Kim ES. Generation and Characterization of Novel Tautomycetin Analogs using Streptomyces Targeted Gene Disruption. J Biotechnol 2010. [DOI: 10.1016/j.jbiotec.2010.09.642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
169
|
Jones AC, Monroe EA, Eisman EB, Gerwick L, Sherman DH, Gerwick WH. The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Nat Prod Rep 2010; 27:1048-65. [PMID: 20442916 DOI: 10.1039/c000535e] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cyanobacteria are abundant producers of natural products well recognized for their bioactivity and utility in drug discovery and biotechnology applications. In the last decade, characterization of several modular gene clusters that code for the biosynthesis of these compounds has revealed a number of unusual enzymatic reactions. In this article, we review several mechanistic transformations identified in marine cyanobacterial biosynthetic pathways, with an emphasis on modular polyketide synthase(PKS)/non-ribosomal peptide synthetase (NRPS) gene clusters. In selected instances, we also make comparisons between cyanobacterial gene clusters derived from marine and freshwater strains. We then provide an overview of recent developments in cyanobacterial natural products biosynthesis made available through genome sequencing and new advances in bioinformatics and genetics.
Collapse
|
170
|
Carlson JC, Fortman JL, Anzai Y, Li S, Burr DA, Sherman DH. Identification of the tirandamycin biosynthetic gene cluster from Streptomyces sp. 307-9. Chembiochem 2010; 11:564-72. [PMID: 20127927 PMCID: PMC3019614 DOI: 10.1002/cbic.200900658] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Indexed: 11/10/2022]
Abstract
The structurally intriguing bicyclic ketal moiety of tirandamycin is common to several acyl-tetramic acid antibiotics, and is a key determinant of biological activity. We have identified the tirandamycin biosynthetic gene cluster from the environmental marine isolate Streptomyces sp. 307-9, thus providing the first genetic insight into the biosynthesis of this natural product scaffold. Sequence analysis revealed a hybrid polyketide synthase-nonribosomal peptide synthetase gene cluster with a colinear domain organization, which is entirely consistent with the core structure of the tirandamycins. We also identified genes within the cluster that encode candidate tailoring enzymes for elaboration and modification of the bicyclic ketal system. Disruption of tamI, which encodes a presumed cytochrome P450, led to a mutant strain deficient in production of late stage tirandamycins that instead accumulated tirandamycin C, an intermediate devoid of any post assembly-line oxidative modifications.
Collapse
|
171
|
Carlson PE, Dixon SD, Janes BK, Carr KA, Nusca TD, Anderson EC, Keene SE, Sherman DH, Hanna PC. Genetic analysis of petrobactin transport in Bacillus anthracis. Mol Microbiol 2010; 75:900-9. [PMID: 20487286 DOI: 10.1111/j.1365-2958.2009.07025.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Iron acquisition mechanisms play an important role in the pathogenesis of many infectious microbes. In Bacillus anthracis, the siderophore petrobactin is required for both growth in iron-depleted conditions and for full virulence of the bacterium. Here we demonstrate the roles of two putative petrobactin binding proteins FatB and FpuA (encoded by GBAA5330 and GBAA4766 respectively) in B. anthracis iron acquisition and pathogenesis. Markerless deletion mutants were created using allelic exchange. The Delta fatB strain was capable of wild-type levels of growth in iron-depleted conditions, indicating that FatB does not play an essential role in petrobactin uptake. In contrast, Delta fpuA bacteria exhibited a significant decrease in growth under low-iron conditions when compared with wild-type bacteria. This mutant could not be rescued by the addition of exogenous purified petrobactin. Further examination of this strain demonstrated increased levels of petrobactin accumulation in the culture supernatants, suggesting no defect in siderophore synthesis or export but, instead, an inability of Delta fpuA to import this siderophore. Delta fpuA spores were also significantly attenuated in a murine model of inhalational anthrax. These results provide the first genetic evidence demonstrating the role of FpuA in petrobactin uptake.
Collapse
|
172
|
Tsukada SI, Anzai Y, Li S, Kinoshita K, Sherman DH, Kato F. Gene targeting for O-methyltransferase genes, mycE and mycF, on the chromosome of Micromonospora griseorubida producing mycinamicin with a disruption cassette containing the bacteriophage phi C31 attB attachment site. FEMS Microbiol Lett 2010; 304:148-56. [PMID: 20158522 DOI: 10.1111/j.1574-6968.2010.01899.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycinamicin, a 16-membered macrolide antibiotic produced by Micromonospora griseorubida, comprises a macrolactone and two deoxysugars: desosamine and mycinose. Mycinose is synthesized through two modification steps: the methylation of 6-deoxyallose in mycinamicin VI and of javose in mycinamicin III. To confirm the role of mycE and mycF genes in mycinamicin biosynthesis in M. griseorubida, disruption mutants of mycE and mycF were constructed by disruption plasmids containing attB in the disruption cassette FRT-neo-oriT-FRT-attB for the integration of phiC31-derivative vector plasmids; the disruption mutants were complemented through the integration of pSET152 derivatives containing intact mycE or mycF into the artificially inserted attB site. These disruption mutants did not produce mycinamicin II, but mainly accumulated mycinamicins VI and III, indicating that MycE and MycF methylated the C2''-OH group of 6-deoxyallose in mycinamicin VI and the C3''-OH group of C2''-methylated 6-deoxyallose in mycinamicin III, respectively. The complemented strains of mycE and mycF recovered the mycinamicin II productivity.
Collapse
|
173
|
Gu L, Wang B, Kulkarni A, Gehret JJ, Lloyd KR, Gerwick L, Gerwick WH, Wipf P, Håkansson K, Smith JL, Sherman DH. Polyketide decarboxylative chain termination preceded by o-sulfonation in curacin a biosynthesis. J Am Chem Soc 2009; 131:16033-5. [PMID: 19835378 PMCID: PMC2839324 DOI: 10.1021/ja9071578] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biosynthetic innovation in natural product systems is driven by the recruitment of new genes and enzymes into these complex pathways. Here, an unprecedented decarboxylative chain termination mechanism is described for the polyketide synthase of curacin A, an anticancer lead compound isolated from the marine cyanobacterium Lyngbya majuscula. The unusual chain termination module containing adjacent sulfotransferase (ST) and thioesterase (TE) catalytic domains embedded in CurM was biochemically characterized. The TE was proved to catalyze a hydrolytic chain release of the polyketide chain elongation intermediate. Moreover, a selective ST-mediated sulfonation of the (R)-beta-hydroxyl group was found to precede TE-mediated hydrolysis, triggering a successive decarboxylative elimination and resulting in the formation of a rare terminal olefin in the final metabolite.
Collapse
|
174
|
Mortison JD, Kittendorf JD, Sherman DH. Synthesis and biochemical analysis of complex chain-elongation intermediates for interrogation of molecular specificity in the erythromycin and pikromycin polyketide synthases. J Am Chem Soc 2009; 131:15784-93. [PMID: 19810731 PMCID: PMC2796446 DOI: 10.1021/ja9060596] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 6-deoxyerythronolide B synthase (DEBS) and pikromycin (Pik) polyketide synthase (PKS) are unique multifunctional enzyme systems that are responsible for the biosynthesis of the erythromycin and pikromycin 14-membered ring aglycones, respectively. Together, these natural product biosynthetic systems provide excellent platforms to examine the fundamental structural and catalytic elements that govern polyketide assembly, processing, and macrocyclization. In these studies, the native pentaketide intermediate for DEBS was synthesized and employed for in vitro chemoenzymatic synthesis of macrolactone products in engineered monomodules Ery5, Ery5-TE, and Ery6. A comparative analysis was performed with the corresponding Pik module 5 (PikAIII) and module 6 (PikAIV), dissecting key similarities and differences between these highly related PKSs. The data revealed that individual modules in the DEBS and Pik PKSs possess distinctive molecular selectivity profiles and suggest that substrate recognition has evolved unique characteristics in each system.
Collapse
|
175
|
Park SH, Choi SS, Sherman DH, Kim ES. A global positive regulator afsR2 stimulates tautomycetin production via pathway-specific regulatory gene over-expression in Streptomyces sp. CK4412. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|