151
|
Voermans NC, Guillard M, Doedée R, Lammens M, Huizing M, Padberg GW, Wevers RA, van Engelen BG, Lefeber DJ. Clinical features, lectin staining, and a novel GNE frameshift mutation in hereditary inclusion body myopathy. Clin Neuropathol 2010; 29:71-77. [PMID: 20175955 PMCID: PMC3500779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
We present a comprehensive report of two siblings with hereditary inclusion body myopathy (HIBM). The clinical features and histological characteristics of the muscle biopsies showed the typical pattern of predominantly distal vacuolar myopathy with quadriceps sparing. This was confirmed by muscle MRI. PNA lectin staining showed an increased signal at the sarcolemma in patient muscle sections compared to control muscle, indicating reduced sialylation of glycoconjugates. Mutation analysis revealed compound heterozygous mutations in the GNE gene, encoding the key enzyme in sialic acid synthesis UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase: a missense mutation (c.2086G > A; p.V696M) previously described in HIBM patients of Indian origin, and a novel frame shift mutation (c.1295delA; p.K432RfsX17) leading to a premature stopcodon. These findings confirmed the diagnosis of HIBM on the histological, molecular and biochemical level.
Collapse
|
152
|
Janssen MJ, Waanders E, Woudenberg J, Lefeber DJ, Drenth JPH. Congenital disorders of glycosylation in hepatology: the example of polycystic liver disease. J Hepatol 2010; 52:432-40. [PMID: 20138683 DOI: 10.1016/j.jhep.2009.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autosomal dominant polycystic liver disease (PCLD) is a rare progressive disorder characterized by an increased liver volume due to many (>20) fluid-filled cysts of biliary origin. Disease causing mutations in PRKCSH or SEC63 are found in approximately 25% of the PCLD patients. Both gene products function in the endoplasmic reticulum, however, the molecular mechanism behind cyst formation remains to be elucidated. As part of the translocon complex, SEC63 plays a role in protein import into the ER and is implicated in the export of unfolded proteins to the cytoplasm during ER-associated degradation (ERAD). PRKCSH codes for the beta-subunit of glucosidase II (hepatocystin), which cleaves two glucose residues of Glc(3)Man(9)GlcNAc(2) N-glycans on proteins. Hepatocystin is thereby directly involved in the protein folding process by regulating protein binding to calnexin/calreticulin in the ER. A separate group of genetic diseases affecting protein N-glycosylation in the ER is formed by the congenital disorders of glycosylation (CDG). In distinct subtypes of this autosomal recessive multisystem disease specific liver symptoms have been reported that overlap with PCLD. Recent research revealed novel insights in PCLD disease pathology such as the absence of hepatocystin from cyst epithelia indicating a two-hit model for PCLD cystogenesis. This opens the way to speculate about a recessive mechanism for PCLD pathophysiology and shared molecular pathways between CDG and PCLD. In this review we will discuss the clinical-genetic features of PCLD and CDG as well as their biochemical pathways with the aim to identify novel directions of research into cystogenesis.
Collapse
|
153
|
Wortmann SB, Lefeber DJ, Dekomien G, Willemsen MAAP, Wevers RA, Morava E. Substrate deprivation therapy in juvenile Sandhoff disease. J Inherit Metab Dis 2009; 32 Suppl 1:S307-11. [PMID: 19898952 DOI: 10.1007/s10545-009-1261-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/27/2009] [Accepted: 09/09/2009] [Indexed: 11/29/2022]
Abstract
Substrate deprivation therapy has been successfully applied in a number of lysosomal storage diseases, such as Gaucher disease. So far only limited experience is available in Sandhoff disease. We initiated substrate deprivation therapy in one male patient, who initially presented at the age of 3.5 years with epilepsy and regression in motor skills and speech development. Juvenile Sandhoff disease was diagnosed on the basis of a decreased hexosaminidase activity in leukocytes and a homozygous HEXB gene mutation. After the epilepsy was controlled, the clinical course remained stable for years, defined by a mild proximal myopathy and stable mental retardation. At 14 years of age the patient experienced a second episode with progressively worsening general condition with diminishing muscle power and progressive ataxia. Treatment was started with the N-alkylated imino sugar miglustat, inhibiting the glucosylceramide synthase, an essential enzyme for the synthesis of glycosphingolipids. Diarrhoea was treated with lactose restriction. We performed detailed biochemical investigations, motor and mental development analysis, brain imaging, organ function studies and quality of life score prior to and at different time points after start of the treatment. Two years after the initiation of therapy the patient has a stable neurological picture without further regression in his motor development, ataxia or intelligence. There is a subjective improvement in the fine motor skills and walking up the stairs but no change in the quality of life score. Under treatment with miglustat the clinical course in our patient with Sandhoff disease did not further deteriorate.
Collapse
|
154
|
Lefeber DJ, Schönberger J, Morava E, Guillard M, Huyben KM, Verrijp K, Grafakou O, Evangeliou A, Preijers FW, Manta P, Yildiz J, Grünewald S, Spilioti M, van den Elzen C, Klein D, Hess D, Ashida H, Hofsteenge J, Maeda Y, van den Heuvel L, Lammens M, Lehle L, Wevers RA. Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am J Hum Genet 2009; 85:76-86. [PMID: 19576565 DOI: 10.1016/j.ajhg.2009.06.006] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/04/2009] [Accepted: 06/12/2009] [Indexed: 11/28/2022] Open
Abstract
Alpha-dystroglycanopathies such as Walker Warburg syndrome represent an important subgroup of the muscular dystrophies that have been related to defective O-mannosylation of alpha-dystroglycan. In many patients, the underlying genetic etiology remains unsolved. Isolated muscular dystrophy has not been described in the congenital disorders of glycosylation (CDG) caused by N-linked protein glycosylation defects. Here, we present a genetic N-glycosylation disorder with muscular dystrophy in the group of CDG type I. Extensive biochemical investigations revealed a strongly reduced dolichol-phosphate-mannose (Dol-P-Man) synthase activity. Sequencing of the three DPM subunits and complementation of DPM3-deficient CHO2.38 cells showed a pathogenic p.L85S missense mutation in the strongly conserved coiled-coil domain of DPM3 that tethers catalytic DPM1 to the ER membrane. Cotransfection experiments in CHO cells showed a reduced binding capacity of DPM3(L85S) for DPM1. Investigation of the four Dol-P-Man-dependent glycosylation pathways in the ER revealed strongly reduced O-mannosylation of alpha-dystroglycan in a muscle biopsy, thereby explaining the clinical phenotype of muscular dystrophy. This mild Dol-P-Man biosynthesis defect due to DPM3 mutations is a cause for alpha-dystroglycanopathy, thereby bridging the congenital disorders of glycosylation with the dystroglycanopathies.
Collapse
|
155
|
Guillard M, Gloerich J, Wessels HJCT, Morava E, Wevers RA, Lefeber DJ. Automated measurement of permethylated serum N-glycans by MALDI-linear ion trap mass spectrometry. Carbohydr Res 2009; 344:1550-7. [PMID: 19577739 DOI: 10.1016/j.carres.2009.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 06/04/2009] [Accepted: 06/12/2009] [Indexed: 11/19/2022]
Abstract
The use of N-glycan mass spectrometry for clinical diagnostics requires the development of robust high-throughput profiling methods. Still, structural assignment of glycans requires additional information such as MS(2) fragmentation or exoglycosidase digestions. We present a setting which combines a MALDI ionization source with a linear ion trap analyzer. This instrumentation allows automated measurement of samples thanks to the crystal positioning system, combined with MS(n) sequencing options. 2,5-Dihydroxybenzoic acid, commonly used for the analysis of glycans, failed to produce the required reproducibility due to its non-homogeneous crystallization properties. In contrast, alpha-cyano-4-hydroxycinnamic acid provided a homogeneous crystallization pattern and reproducibility of the measurements. Using serum N-glycans as a test sample, we focused on the automation of data collection by optimizing the instrument settings. Glycan structures were confirmed by MS(2) analysis. Although sample processing still needs optimization, this method provides a reproducible and high-throughput approach for measurement of N-glycans using a MALDI-linear ion trap instrument.
Collapse
|
156
|
Morava E, Guillard M, Lefeber DJ, Wevers RA. Autosomal recessive cutis laxa syndrome revisited. Eur J Hum Genet 2009; 17:1099-110. [PMID: 19401719 DOI: 10.1038/ejhg.2009.22] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The clinical spectrum of the autosomal recessive cutis laxa syndromes is highly heterogeneous with respect to organ involvement and severity. One of the major diagnostic criteria is to detect abnormal elastin fibers. In several other clinically similar autosomal recessive syndromes, however, the classic histological anomalies are absent, and the definite diagnosis remains uncertain. In cutis laxa patients mutations have been demonstrated in elastin or fibulin genes, but in the majority of patients the underlying genetic etiology remains unknown. Recently, we found mutations in the ATP6V0A2 gene in families with autosomal recessive cutis laxa. This genetic defect is associated with abnormal glycosylation leading to a distinct combined disorder of the biosynthesis of N- and O-linked glycans. Interestingly, similar mutations have been found in patients with wrinkly skin syndrome, without the presence of severe skin symptoms of elastin deficiency. These findings suggest that the cutis laxa and wrinkly skin syndromes are phenotypic variants of the same disorder. Interestingly many phenotypically similar patients carry no mutations in the ATP6V0A2 gene. The variable presence of protein glycosylation abnormalities in the diverse clinical forms of the wrinkled skin-cutis laxa syndrome spectrum necessitates revisiting the diagnostic criteria to be able to offer adequate prognosis assessment and counseling. This paper aims at describing the spectrum of clinical features of the various forms of autosomal recessive cutis laxa syndromes. Based on the recently unraveled novel genetic entity we also review the genetic aspects in cutis laxa syndromes including genotype-phenotype correlations and suggest a practical diagnostic approach.
Collapse
|
157
|
Hucthagowder V, Morava E, Kornak U, Lefeber DJ, Fischer B, Dimopoulou A, Aldinger A, Choi J, Davis EC, Abuelo DN, Adamowicz M, Al-Aama J, Basel-Vanagaite L, Fernandez B, Greally MT, Gillessen-Kaesbach G, Kayserili H, Lemyre E, Tekin M, Türkmen S, Tuysuz B, Yüksel-Konuk B, Mundlos S, Van Maldergem L, Wevers RA, Urban Z. Loss-of-function mutations in ATP6V0A2 impair vesicular trafficking, tropoelastin secretion and cell survival. Hum Mol Genet 2009; 18:2149-65. [PMID: 19321599 DOI: 10.1093/hmg/ddp148] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Autosomal recessive cutis laxa type 2 (ARCL2), a syndrome of growth and developmental delay and redundant, inelastic skin, is caused by mutations in the a2 subunit of the vesicular ATPase H+-pump (ATP6V0A2). The goal of this study was to define the disease mechanisms that lead to connective tissue lesions in ARCL2. In a new cohort of 17 patients, DNA sequencing of ATP6V0A2 detected either homozygous or compound heterozygous mutations. Considerable allelic and phenotypic heterogeneity was observed, with a missense mutation of a moderately conserved residue p.P87L leading to unusually mild disease. Abnormal N- and/or mucin type O-glycosylation was observed in all patients tested. Premature stop codon mutations led to decreased ATP6V0A2 mRNA levels by destabilizing the mutant mRNA via the nonsense-mediated decay pathway. Loss of ATP6V0A2 either by siRNA knockdown or in ARCL2 cells resulted in distended Golgi cisternae, accumulation of abnormal lysosomes and multivesicular bodies. Immunostaining of ARCL2 cells showed the accumulation of tropoelastin (TE) in the Golgi and in large, abnormal intracellular and extracellular aggregates. Pulse-chase studies confirmed impaired secretion and increased intracellular retention of TE, and insoluble elastin assays showed significantly reduced extracellular deposition of mature elastin. Fibrillin-1 microfibril assembly and secreted lysyl oxidase activity were normal in ARCL2 cells. TUNEL staining demonstrated increased rates of apoptosis in ARCL2 cell cultures. We conclude that loss-of-function mutations in ATP6V0A2 lead to TE aggregation in the Golgi, impaired clearance of TE aggregates and increased apoptosis of elastogenic cells.
Collapse
|
158
|
Guillard M, Dimopoulou A, Fischer B, Morava E, Lefeber DJ, Kornak U, Wevers RA. Vacuolar H+-ATPase meets glycosylation in patients with cutis laxa. Biochim Biophys Acta Mol Basis Dis 2009; 1792:903-14. [PMID: 19171192 DOI: 10.1016/j.bbadis.2008.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/22/2008] [Accepted: 12/29/2008] [Indexed: 02/08/2023]
Abstract
Glycosylation of proteins is one of the most important post-translational modifications. Defects in the glycan biosynthesis result in congenital malformation syndromes, also known as congenital disorders of glycosylation (CDG). Based on the iso-electric focusing patterns of plasma transferrin and apolipoprotein C-III a combined defect in N- and O-glycosylation was identified in patients with autosomal recessive cutis laxa type II (ARCL II). Disease-causing mutations were identified in the ATP6V0A2 gene, encoding the a2 subunit of the vacuolar H(+)-ATPase (V-ATPase). The V-ATPases are multi-subunit, ATP-dependent proton pumps located in membranes of cells and organels. In this article, we describe the structure, function and regulation of the V-ATPase and the phenotypes currently known to result from V-ATPase mutations. A clinical overview of cutis laxa syndromes is presented with a focus on ARCL II. Finally, the relationship between ATP6V0A2 mutations, the glycosylation defect and the ARCLII phenotype is discussed.
Collapse
|
159
|
Morava E, Wosik HN, Sykut-Cegielska J, Adamowicz M, Guillard M, Wevers RA, Lefeber DJ, Cruysberg JRM. Ophthalmological abnormalities in children with congenital disorders of glycosylation type I. Br J Ophthalmol 2008; 93:350-4. [PMID: 19019927 DOI: 10.1136/bjo.2008.145359] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Children with congenital disorders of glycosylation (CDG) type Ia frequently present with ocular involvement and visual loss. Little is known, however, about the occurrence of ophthalmological abnormalities in other subtypes of CDG syndrome. METHODS We evaluated 45 children sequentially diagnosed with CDG type I for the presence of ocular abnormalities at the time of the diagnosis and during follow-up. We compared the various ophthalmic findings in the different CDG subgroups. RESULTS Of the 45 patients, 22 had CDG type Ia, nine had CDG type Ic and 14 had a so-far undiagnosed biochemical background (CDG type Ix). We found ocular anomalies in 28 of the 45 children. Three had unique findings, including congenital cataract, retinal coloboma and glaucoma. A few CDG type Ia patients showed a sequential occurrence of symptoms, including retinitis pigmentosa or cataract. CONCLUSIONS Ophthalmic findings are frequent in CDG syndrome involving both the anterior and posterior segment of the eye. The disorder might lead to abnormal development of the lens or the retina, cause diminished vision, alter ocular motility and intraocular pressure. We suggest routine screening and follow-up for ophthalmological anomalies in all children diagnosed with CDG syndrome to provide early treatment and adequate counselling.
Collapse
|
160
|
Truin G, Guillard M, Lefeber DJ, Sykut-Cegielska J, Adamowicz M, Hoppenreijs E, Sengers RCA, Wevers RA, Morava E. Pericardial and abdominal fluid accumulation in congenital disorder of glycosylation type Ia. Mol Genet Metab 2008; 94:481-484. [PMID: 18571450 DOI: 10.1016/j.ymgme.2008.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 10/21/2022]
Abstract
The association of fetal hydrops with Congenital Disorders of Glycosylation (CDG) has been reported previously. Pericardial fluid accumulation and ascites were also observed in a few young patients with CDG type Ia. Here we describe the clinical and biochemical features in three children developing life-threatening extravascular fluid accumulation. All patients carried severe PMM2 mutations comparable to the earlier reported patients with fetal hydrops. One patient was successfully treated with a pericardial-pleural shunt placement. Pericardial fluid accumulation and generalized oedema resolved temporarily in the other two children on regular albumin infusions and the use of diuretics. Sequential abdominal punctures were unsuccessful in the treatment of the extensive ascites production. The use of non-steroid anti-inflammatory agents and the application of high dose steroids had no clinical effect. Severe extravascular fluid accumulation progressed to decompensation and death. Biochemical investigations of the abdominal fluid and pericardial fluid demonstrated a high extracellular protein concentration, increased cytokine concentrations and an abnormal transferrin isoelectric focusing pattern characteristic of CDG type I. Our results are consistent with a local activation of the cytokine pathways and subsequent protein transport through the endothelial surface to the extravascular space. Normal glycosylation of cell surface proteins is essential for the normal fluid balance and protein transport through the pericardial and peritoneal membrane. Future therapeutic efforts should be directed to inhibit the abnormal immune response and excessive protein transport in this life-threatening complication of CDG syndrome.
Collapse
|
161
|
Morava E, Wosik H, Kárteszi J, Guillard M, Adamowicz M, Sykut-Cegielska J, Hadzsiev K, Wevers RA, Lefeber DJ. Congenital disorder of glycosylation type Ix: review of clinical spectrum and diagnostic steps. J Inherit Metab Dis 2008; 31:450-6. [PMID: 18500572 DOI: 10.1007/s10545-008-0822-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 02/01/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
Congenital disorder of glycosylation type I (CDG I) represent a rapidly growing group of inherited multisystem disorders with 13 genetically established subtypes (CDG Ia to CDG Im), and a high number of biochemically unresolved cases (CDG Ix). Further diagnostic effort and prognosis counselling are very challenging in these children. In the current study, we reviewed the clinical records of 10 CDG Ix patients and compared the data with 13 CDG Ix patients published in the literature in search for specific symptoms to create clinical subgroups. The most frequent findings were rather nonspecific, including developmental delay and axial hypotonia. Several features were found that are uncommon in CDG syndrome, such as elevated creatine kinase or arthrogryposis. Distinct ophthalmological abnormalities were observed including optic nerve atrophy, cataract and glaucoma. Two subgroups could be established: one with a pure neurological presentation and the other with a neurological-multivisceral form. The first group had a significantly better prognosis. The unique presentation of microcephaly, seizures, ascites, hepatomegaly, nephrotic syndrome and severe developmental delay was observed in one child diagnosed with CDG Ik. Establishing clinical subgroups and increasing the number of patients within the subgroups may lead the way towards the genetic defect in children with a so far unsolved type of the congenital disorders of glycosylation. Raising awareness for less common, non-CDG specific clinical features such as congenital joint contractures, movement disorders or ophthalmological anomalies will encourage clinicians to think of CDG in its more unusual presentation. Clinical grouping also helps to determine the prognosis and provide better counselling for the families.
Collapse
|
162
|
Wijnhoven TJM, Lensen JFM, Wismans RGP, Lefeber DJ, Rops ALWMM, van der Vlag J, Berden JHM, van den Heuvel LPWJ, van Kuppevelt TH. Removal of heparan sulfate from the glomerular basement membrane blocks protein passage. J Am Soc Nephrol 2007; 18:3119-27. [PMID: 18003778 DOI: 10.1681/asn.2007020198] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Heparan sulfate (HS) within the glomerular basement membrane (GBM) is thought to play a major role in the charge-selective properties of the glomerular capillary wall. Recent data, however, raise questions regarding the direct role of HS in glomerular filtration. For example, in situ studies suggest that HS may prevent plasma macromolecules from clogging the GBM, keeping it in an "open" state. We evaluated this potential role of HS in vivo by studying the passage of protein through the glomerular capillary wall in the presence and absence of HS. Intravenous administration of neuraminidase removed neuraminic acid--but not HS--from the GBM, and this led to albuminuria. Concomitant removal of HS with heparinase III, confirmed by ultrastructural imaging, prevented the development of albuminuria in response to neuraminidase treatment. Taken together, these results suggest that HS keeps the GBM in an open state, facilitating passage of proteins through the glomerular capillary wall.
Collapse
|
163
|
Morava E, Lefeber DJ, Urban Z, de Meirleir L, Meinecke P, Gillessen Kaesbach G, Sykut-Cegielska J, Adamowicz M, Salafsky I, Ranells J, Lemyre E, van Reeuwijk J, Brunner HG, Wevers RA. Defining the phenotype in an autosomal recessive cutis laxa syndrome with a combined congenital defect of glycosylation. Eur J Hum Genet 2007; 16:28-35. [PMID: 17971833 DOI: 10.1038/sj.ejhg.5201947] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Autosomal recessive cutis laxa is a genetically heterogeneous condition. Its molecular basis is largely unknown. Recently, a combined disorder of N- and O-linked glycosylation was described in children with congenital cutis laxa in association with severe central nervous system involvement, brain migration defects, seizures and hearing loss. We report on seven additional patients with similar clinical features in combination with congenital disorder of glycosylation type IIx. On the basis of phenotype in 10 patients, we define an autosomal recessive cutis laxa syndrome. The patients have a complex phenotype of neonatal cutis laxa, transient feeding intolerance, late closure of the fontanel, characteristic facial features including down-slanting palpebral fissures, short nose and small mouth, and developmental delay. There is a variable degree of the central nervous system involvement and variable systemic presentation. The biochemical analysis using transferrin isoelectric focusing gives false negative results in some of the youngest patients. Analysis of the apolipoprotein C-III isoelectric focusing, however, is diagnostic in all cases.
Collapse
|
164
|
Vermeer S, Kremer HPH, Leijten QH, Scheffer H, Matthijs G, Wevers RA, Knoers NAVM, Morava E, Lefeber DJ. Cerebellar ataxia and congenital disorder of glycosylation Ia (CDG-Ia) with normal routine CDG screening. J Neurol 2007; 254:1356-8. [PMID: 17694350 DOI: 10.1007/s00415-007-0546-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 12/19/2006] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
Cerebellar ataxia can have many genetic causes among which are the congenital disorders of glycosylation type I (CDG-I). In this group of disorders, a multisystem phenotype is generally observed including the involvement of many organs, the endocrine, hematologic and central nervous systems. A few cases of CDG-Ia have been reported with a milder presentation, namely cerebellar hypoplasia as an isolated abnormality. To identify patients with a glycosylation disorder, isofocusing of plasma transferrin is routinely performed. Here, we describe two CDG-Ia patients,who presented with mainly ataxia and cerebellar hypoplasia and with a normal or only slightly abnormal transferrin isofocusing result. Surprisingly, the activity of the corresponding enzyme phosphomannomutase was clearly deficient in both leucocytes and fibroblasts. Therefore, in patients presenting with apparently recessive inherited ataxia caused by cerebellar hypoplasia and an unknown genetic aetiology after proper diagnostic work-up, we recommend the measurement of phosphomannomutase activity when transferrin isofocusing is normal or inconclusive.
Collapse
|
165
|
Morava E, Zeevaert R, Korsch E, Huijben K, Wopereis S, Matthijs G, Keymolen K, Lefeber DJ, De Meirleir L, Wevers RA. Erratum: A common mutation in the COG7 gene with a consistent phenotype including microcephaly, adducted thumbs, growth retardation, VSD and episodes of hyperthermia. Eur J Hum Genet 2007. [DOI: 10.1038/sj.ejhg.5201863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
166
|
Adamowicz M, Płoski R, Rokicki D, Morava E, Gizewska M, Mierzewska H, Pollak A, Lefeber DJ, Wevers RA, Pronicka E. Transferrin hypoglycosylation in hereditary fructose intolerance: using the clues and avoiding the pitfalls. J Inherit Metab Dis 2007; 30:407. [PMID: 17457694 DOI: 10.1007/s10545-007-0569-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 02/18/2007] [Accepted: 02/21/2007] [Indexed: 12/11/2022]
Abstract
Hereditary fructose intolerance (HFI) is caused by a deficiency of aldolase B due to mutations of the ALDOB gene. The disease poses diagnostic problems because of unspecific clinical manifestations. We report three cases of HFI all of whom had a chronic disease with neurological, nephrological or gastroenterological symptoms, whereas nutritional fructose intolerance, the pathognomonic sign of HFI, was apparent only in retrospect. In all patients a hypoglycosylated pattern of transferrin isoforms was found but was misinterpreted as a sign of CDG Ix. The correct diagnosis was achieved with marked delay (26, 36 and 24 months, respectively) by sequencing of the ALDOB gene two common mutations were identified on both alleles or on one (A150P/A175D, A150P/-, and A150P/A175D). The diagnosis was further supported by normalization of transferrin isoforms on a fructose-free diet. Data available in two patients showed that following the fructose restriction the type I pattern of carbohydrate-deficient transferrin detectable on fructose-containing diet disappeared after 3-4 weeks. These cases illustrate that in the first years of life HFI may show misleading variability in clinical presentation and that protein glycosylation analysis such as transferrin isofocusing may give important diagnostic clues. However, care should be taken not to misinterpret the abnormal results as CDG Ix as well as to remember that a normal profile does not exclude HFI due to the possibility of spontaneous fructose restriction in the diet. The presented data also emphasize the usefulness of ALDOB mutation screening for diagnosis of HFI.
Collapse
|
167
|
Morava E, Zeevaert R, Korsch E, Huijben K, Wopereis S, Matthijs G, Keymolen K, Lefeber DJ, De Meirleir L, Wevers RA. A common mutation in the COG7 gene with a consistent phenotype including microcephaly, adducted thumbs, growth retardation, VSD and episodes of hyperthermia. Eur J Hum Genet 2007; 15:638-45. [PMID: 17356545 DOI: 10.1038/sj.ejhg.5201813] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We describe the clinical and biochemical characteristics in three patients from two different families diagnosed with Congenital Disorder of Glycosylation type IIe owing to a defect in Conserved Oligomeric Golgi complex (COG)7; one of the eight subunits of the COG. The siblings and an unrelated single child of consanguineous parents presented with growth retardation, progressive, severe microcephaly, hypotonia, adducted thumbs, feeding problems by gastrointestinal pseudo-obstruction, failure to thrive, cardiac anomalies, wrinkled skin and episodes of extreme hyperthermia. A combined disorder in the biosynthesis of N- and O-linked glycosylation with hyposialylation was detected. Western blot analysis showed a severe reduction in the COG5 and 7 subunits of the COG. A homozygous, intronic splice site mutation (c.169+4A>C) of the COG7 gene was identified in all patients. The phenotype is similar to that previously described in two patients of North African ethnicity with the same mutation, except for the lack of skeletal anomalies and only a mild liver involvement in our patients. We suggest performing protein glycosylation studies and Western blot for the different COG subunits in patients with progressive microcephaly, growth retardation, hypotonia, adducted thumbs and cardiac defects, especially in association with skin anomalies or episodes of hyperthermia. The presence of the characteristic phenotype might warrant direct DNA analysis.
Collapse
|
168
|
Bruneel A, Robert T, Lefeber DJ, Benard G, Loncle E, Djedour A, Durand G, Seta N. Two-dimensional gel electrophoresis of apolipoprotein C-III and other serum glycoproteins for the combined screening of human congenital disorders ofO- andN-glycosylation. Proteomics Clin Appl 2007. [DOI: 10.1002/prca.200600777] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
169
|
Wopereis S, Grünewald S, Huijben KMLC, Morava E, Mollicone R, van Engelen BGM, Lefeber DJ, Wevers RA. Transferrin and Apolipoprotein C-III Isofocusing Are Complementary in the Diagnosis of N- and O-Glycan Biosynthesis Defects. Clin Chem 2007; 53:180-7. [PMID: 17170056 DOI: 10.1373/clinchem.2006.073940] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Apolipoprotein C-III (apoC-III) isoelectric focusing (IEF) can be used to detect abnormalities in the biosynthesis of core 1 mucin-type O-glycans.
Methods: We studied plasma samples from 55 patients with various primary defects in N- and/or O-glycosylation, 21 patients with secondary N-glycosylation defects, and 6 patients with possible glycosylation abnormalities. Furthermore, we analyzed 500 plasma samples that were sent to our laboratory for selective screening for inborn errors of metabolism.
Results: Plasma samples from patients with congenital disorders of glycosylation (CDG) types –IIe and –IIf showed a hypoglycosylated apoC-III isoform profile, as did plasma samples from 75% of the patients with an unspecified CDG type II. Hyposialylated O-glycan profiles were also seen in plasma from 2 patients with hemolytic-uremic syndrome. In the 500 plasma samples from the selective screening, 3 patients were identified with a possible isolated defect in the biosynthesis of core 1 mucin-type O-glycans.
Conclusions: To our knowledge this is the first study in which use of a plasma marker protein has identified patients in whom only O-glycan biosynthesis might be affected. The primary defect(s) remain as yet unknown. Plasma apoC-III IEF is complementary to transferrin isofocusing. In conjunction both tests identify biosynthesis defects in N-glycan and mucin-type core 1 O-glycan biosynthesis. The apoC-III IEF assay is likely to help metabolic laboratories to identify and unravel further subtypes of inborn errors of glycan biosynthesis.
Collapse
|
170
|
van de Kamp JM, Lefeber DJ, Ruijter GJG, Steggerda SJ, den Hollander NS, Willems SM, Matthijs G, Poorthuis BJHM, Wevers RA. Congenital disorder of glycosylation type Ia presenting with hydrops fetalis. J Med Genet 2006; 44:277-80. [PMID: 17158594 PMCID: PMC2598051 DOI: 10.1136/jmg.2006.044735] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
There is a growing awareness that inborn errors of metabolism can be a cause of non-immune hydrops fetalis. The association between congenital disorders of glycosylation (CDG) and hydrops fetalis has been based on one case report concerning two sibs with hydrops fetalis and CDG-Ik. Since then two patients with hydrops-like features and CDG-Ia have been reported. Two more unrelated patients with CDG-Ia who presented with hydrops fetalis are reported here, providing definite evidence that non-immune hydrops fetalis can be caused by CDG-Ia. The presence of congenital thrombocytopenia and high ferritin levels in both patients was remarkable. These might be common features in this severe form of CDG. Both patients had one severe mutation in the phosphomannomutase 2 gene, probably fully inactivating the enzyme, and one milder mutation with residual activity, as had the patients reported in literature. The presence of one severe mutation might be required for the development of hydrops fetalis. CDG-Ia should be considered in the differential diagnosis of hydrops fetalis and analysis of PMM activity in chorionic villi or amniocytes should also be considered.
Collapse
|
171
|
Wopereis S, Abd Hamid UM, Critchley A, Royle L, Dwek RA, Morava E, Leroy JG, Wilcken B, Lagerwerf AJ, Huijben KMLC, Lefeber DJ, Rudd PM, Wevers RA. Abnormal glycosylation with hypersialylated O-glycans in patients with Sialuria. Biochim Biophys Acta Mol Basis Dis 2006; 1762:598-607. [PMID: 16769205 DOI: 10.1016/j.bbadis.2006.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 03/30/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
Sialuria is an inborn error of metabolism characterized by coarse face, hepatomegaly and recurrent respiratory tract infections. The genetic defect in this disorder results in a loss of feedback control of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine-kinase by CMP-N-acetylneuraminic acid (CMP-NeuAc) resulting in a substantial overproduction of cytoplasmic free sialic acid. This study addresses fibroblast CMP-NeuAc levels and N- and O-glycan sialylation of serum proteins from Sialuria patients. CMP-NeuAc levels were measured with HPLC in fibroblasts. Isoelectric focusing (IEF) of serum transferrin and of apolipoprotein C-III (apoC-III) was performed on serum of three Sialuria patients. Isoforms of these proteins can be used as specific markers for the biosynthesis of N- and core 1 O-glycans. Furthermore, total N- and O-linked glycans from serum proteins were analyzed by HPLC. HPLC showed a clear overproduction of CMP-NeuAc in fibroblasts of a Sialuria patient. Minor changes were found for serum N-glycans and hypersialylation was found for core 1 O-glycans on serum apoC-III and on total serum O-glycans in Sialuria patients. HPLC showed an increased ratio of disialylated over monosialylated core 1 O-glycans. The hypersialylation of core 1 O-glycans is due to the increase of NeuAcalpha2,6-containing structures (mainly NeuAcalpha2-3Galbeta1-3[NeuAcalpha2-6]GalNAc). This may relate to KM differences between GalNAc-alpha2,6-sialyltransferase and alpha2,3-sialyltransferases. This is the first study demonstrating that the genetic defect in Sialuria results in a CMP-NeuAc overproduction. Subsequently, increased amounts of alpha2,6-linked NeuAc were found on serum core 1 O-glycans from Sialuria patients. N-glycosylation of serum proteins seems largely unaffected. Sialuria is the first metabolic disorder presenting with hypersialylated O-glycans.
Collapse
|
172
|
Wopereis S, Lefeber DJ, Morava E, Wevers RA. Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: a review. Clin Chem 2006; 52:574-600. [PMID: 16497938 DOI: 10.1373/clinchem.2005.063040] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Genetic diseases that affect the biosynthesis of protein O-glycans are a rapidly growing group of disorders. Because this group of disorders does not have a collective name, it is difficult to get an overview of O-glycosylation in relation to human health and disease. Many patients with an unsolved defect in N-glycosylation are found to have an abnormal O-glycosylation as well. It is becoming increasingly evident that the primary defect of these disorders is not necessarily localized in one of the glycan-specific transferases, but can likewise be found in the biosynthesis of nucleotide sugars, their transport to the endoplasmic reticulum (ER)/Golgi, and in Golgi trafficking. Already, disorders in O-glycan biosynthesis form a substantial group of genetic diseases. In view of the number of genes involved in O-glycosylation processes and the increasing scientific interest in congenital disorders of glycosylation, it is expected that the number of identified diseases in this group will grow rapidly over the coming years. CONTENT We first discuss the biosynthesis of protein O-glycans from their building blocks to their secretion from the Golgi. Subsequently, we review 24 different genetic disorders in O-glycosylation and 10 different genetic disorders that affect both N- and O-glycosylation. The key clinical, metabolic, chemical, diagnostic, and genetic features are described. Additionally, we describe methods that can be used in clinical laboratory screening for protein O-glycosylation biosynthesis defects and their pitfalls. Finally, we introduce existing methods that might be useful for unraveling O-glycosylation defects in the future.
Collapse
|
173
|
Wopereis S, Morava E, Grünewald S, Adamowicz M, Huijben KMLC, Lefeber DJ, Wevers RA. Patients with unsolved congenital disorders of glycosylation type II can be subdivided in six distinct biochemical groups. Glycobiology 2005; 15:1312-9. [PMID: 16037491 DOI: 10.1093/glycob/cwj017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Defects in the biosynthesis of N- and core 1 O-glycans may be found by isoelectric focusing (IEF) of plasma transferrin and apolipoprotein C-III (apoC-III). We hypothesized that IEF of transferrin and apoC-III in combination with sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of apoC-III may provide a classification for congenital disorders of glycosylation (CDG) patients. We analyzed plasma from 22 patients with eight different and well-characterized CDG subtypes and 19 cases with unsolved CDG. Transferrin IEF (TIEF) has been used to distinguish between N-glycan assembly (type 1 profile) and processing (type 2 profile) defects. We differentiated two different CDG type 2 TIEF profiles: The "asialo profile" characterized by elevated levels of asialo- and monosialotransferrin and the "disialo profile" characterized by increased levels of disialo- and trisialotransferrin. ApoC-III IEF gave two abnormal profiles ("apoC-III(0)" and "apoC-III(1)" profiles). The results for the eight established CDG forms exactly matched the theoretical expectations, providing a validation for the study approach. The combination of the three electrophoretic techniques was not additionally informative for the CDG-Ix patients as they had normal apoC-III IEF patterns. However, the CDG-IIx patients could be further subdivided into six biochemical subgroups. The robustness of the methodology was supported by the fact that three patients with similar clinical features ended in the same subgroup and that another patient, classified in the "CDG-IIe subgroup," turned out to have a similar defect. Dividing the CDG-IIx patients in six subgroups narrows down drastically the options of the primary defect in each of the subgroups and will be helpful to define new CDG type II defects.
Collapse
|
174
|
Ellerbroek PM, Lefeber DJ, van Veghel R, Scharringa J, Brouwer E, Gerwig GJ, Janbon G, Hoepelman AIM, Coenjaerts FEJ. O-acetylation of cryptococcal capsular glucuronoxylomannan is essential for interference with neutrophil migration. THE JOURNAL OF IMMUNOLOGY 2005; 173:7513-20. [PMID: 15585878 DOI: 10.4049/jimmunol.173.12.7513] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The capsular polysaccharide glucuronoxylomannan (GXM) of Cryptococcus neoformans has been shown to interfere with neutrophil migration. Although several receptors have been implied to mediate this process, the structural perspectives are unknown. Here, we assess the contribution of 6-O-acetylation and xylose substitution of the (1-->3)-alpha-d-mannan backbone of GXM, the variable structural features of GXM, to the interference with neutrophil migration. We compare chemically deacetylated GXM and acetyl- or xylose-deficient GXM from genetically modified strains with wild-type GXM in their ability to inhibit the different phases of neutrophil migration. Additionally, we verify the effects of de-O-acetylation on neutrophil migration in vivo. De-O-acetylation caused a dramatic reduction of the inhibitory capacity of GXM in the in vitro assays for neutrophil chemokinesis, rolling on E-selectin and firm adhesion to endothelium. Genetic removal of xylose only marginally reduced the ability of GXM to reduce firm adhesion. In vivo, chemical deacetylation of GXM significantly reduced its ability to interfere with neutrophil recruitment in a model of myocardial ischemia (65% reduction vs a nonsignificant reduction in tissue myeloperoxidase, respectively). Our findings indicate that 6-O-acetylated mannose of GXM is a crucial motive for the inhibition of neutrophil recruitment.
Collapse
|
175
|
Lefeber DJ, Benaissa-Trouw B, Vliegenthart JFG, Kamerling JP, Jansen WTM, Kraaijeveld K, Snippe H. Th1-directing adjuvants increase the immunogenicity of oligosaccharide-protein conjugate vaccines related to Streptococcus pneumoniae type 3. Infect Immun 2004; 71:6915-20. [PMID: 14638780 PMCID: PMC308892 DOI: 10.1128/iai.71.12.6915-6920.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oligosaccharide (OS)-protein conjugates are promising candidate vaccines against encapsulated bacteria, such as Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pneumoniae. Although the effects of several variables such as OS chain length and protein carrier have been studied, little is known about the influence of adjuvants on the immunogenicity of OS-protein conjugates. In this study, a minimal protective trisaccharide epitope of Streptococcus pneumoniae type 3 conjugated to the cross-reacting material of diphtheria toxin was used for immunization of BALB/c mice in the presence of different adjuvants. Subsequently, half of the mice received a booster immunization with conjugate alone. Independent of the use and type of adjuvant, all mice produced long-lasting anti-polysaccharide type 3 (PS3) antibody levels, which provided full protection against challenge with pneumococcal type 3 bacteria. All adjuvants tested increased the anti-PS3 antibody levels and opsonic capacities as measured by an enzyme-linked immunosorbent assay and an in vitro phagocytosis assay. The use of QuilA or a combination of the adjuvants CpG and dimethyl dioctadecyl ammonium bromide resulted in the highest phagocytic capacities and the highest levels of Th1-related immunoglobulin G (IgG) subclasses. Phagocytic capacity correlated strongly with Th1-associated IgG2a and IgG2b levels, to a lesser extent with Th2-associated IgG1 levels, and weakly with thiocyanate elution as a measure of avidity. Thus, the improved immunogenicity of OS-protein conjugates was most pronounced for Th1-directing adjuvants.
Collapse
|