151
|
Gao YM, Pun SH, Du M, Mak PU, Vai MI. Simple electrical model and initial experiments for intra-body communications. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:697-700. [PMID: 19963723 DOI: 10.1109/iembs.2009.5332704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Intra-Body Communication(IBC) is a short range "wireless" communication technique appeared in recent years. This technique relies on the conductive property of human tissue to transmit the electric signal among human body. This is beneficial for devices networking and sensors among human body, and especially suitable for wearable sensors, telemedicine system and home health care system as in general the data rates of physiologic parameters are low. In this article, galvanic coupling type IBC application on human limb was investigated in both its mathematical model and related experiments. The experimental results showed that the proposed mathematical model was capable in describing the galvanic coupling type IBC under low frequency. Additionally, the calculated result and experimental result also indicated that the electric signal induced by the transmitters of IBC can penetrate deep into human muscle and thus, provide an evident that IBC is capable of acting as networking technique for implantable devices.
Collapse
|
152
|
Pun SH, Gao YM, Mak PU, Du M, Vai MI. Modeling for intra-body communication with bone effect. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:693-6. [PMID: 19963722 DOI: 10.1109/iembs.2009.5332703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Intra-body communication (IBC) is a new, different "wireless" communication technique based on the human tissue. This short range "wireless" communication technology provides an alternative solution to wearable sensors, home health system, telemedicine and implanted devices. The development of the IBC enables the possibilities of providing less complexity and convenient communication methodologies for these devices. By regarding human tissue as communication channel, IBC making use of the conductivities properties of human tissue to send electrical signal from transmitter to receiver. In this paper, the authors proposed a new mathematical model for galvanic coupling type IBC based on a human limb. Starting from the electromagnetic theory, the authors treat human tissue as volume conductor, which is in analogous with the bioelectric phenomena analysis. In order to explain the mechanism of galvanic coupling type technique of IBC, applying the quasi-static approximation, the governing equation can be reduced to Laplace Equation. Finally, the analytical model is evaluated with on-body measurement for testing its performance. The comparison result shows that the developed mathematical model can provide good approximation for galvanic coupling type IBC on human limb under low operating frequencies.
Collapse
|
153
|
Zhu MJ, Du M, Nathanielsz PW, Ford SP. Maternal obesity up-regulates inflammatory signaling pathways and enhances cytokine expression in the mid-gestation sheep placenta. Placenta 2010; 31:387-91. [PMID: 20185176 DOI: 10.1016/j.placenta.2010.02.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 01/28/2010] [Accepted: 02/03/2010] [Indexed: 01/13/2023]
Abstract
Obesity in pregnant women is a growing public health concern. The placenta is a source of cytokines which can induce maternal gestational insulin resistance and alter nutrient transport to the fetus. Obesity induces placental inflammation at term, but the impact of obesity on placental inflammation earlier in pregnancy has not been defined. Using sheep as an experimental model, we hypothesized that maternal obesity (MO) would induce inflammation in the cotyledonary (COT) tissue of the placentome by mid-gestation. Nonpregnant ewes were randomly assigned to a control (C, 100% of NRC recommendations) or obese (OB, 150% of NRC) group from 60 days before conception to 75 day of gestation (dG), when ewes were necropsied and placental COT tissue collected for analyses. Free fatty acids content, triglyceride and cholesterol content were higher (P < 0.05) in the fetal plasma of OB compared to C ewes on day 75. MO increased mRNA levels of toll-like receptor (TLR) 2 (P < 0.05) and TLR4 (P = 0.06), macrophage markers cluster of differentiation (CD)11b (P = 0.06), CD14 and CD68 (P < 0.05), and proinflammatory cytokines tumor necrosis factor (TNF)alpha (P < 0.01), interleukin (IL)-6 (P < 0.05), IL-8(P < 0.01) and IL-18 (P = 0.06), in COT tissue. Inflammatory c-Jun N-terminal kinase (JNK)/c-Jun and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) signaling pathways were up-regulated (P < 0.05) in COT of OB ewes. In conclusion, MO enhanced the placental inflammatory response in OB ewes at mid-gestation, possibly as a result of increased TLR4 and free fatty acids.
Collapse
|
154
|
Worth L, Andersson B, Kazerooni R, Petropoulos D, Kelly S, Lee D, Du M, Madden T, deLima M, Champlin R, Cooper L. Thiotepa (TT), Busulfan (Bu), And Clofarabine (Clo) As A Conditioning Therapy For Allogeneic Hematopoetic Stem Cell Transplant For Patients With High Risk Malignancies: Early Response And Engraftment Data. Biol Blood Marrow Transplant 2010. [DOI: 10.1016/j.bbmt.2009.12.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
155
|
Zhao JX, Yan X, Tong JF, Means WJ, McCormick RJ, Zhu MJ, Du M. Mouse AMP-activated protein kinase gamma3 subunit R225Q mutation affecting mouse growth performance when fed a high-energy diet. J Anim Sci 2009; 88:1332-40. [PMID: 20023137 DOI: 10.2527/jas.2009-2376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Rendement Napole (RN) genotype widely exists in Hampshire pigs. Recently, RN gene was identified as a R200Q mutation in AMP-activated protein kinase (AMPK) gamma3 subunit. The effect of RN genotype on the growth performance of animals and the underlying mechanisms remain controversial. Using transgenic mice carrying an analogous R225Q mutation, the objective of this study was to study the role of RN gene in the growth performance of animals at different energy levels. Wild-type (WT) mice and those with the RN mutation were assigned to 4 groups: 1) WT plus normal diet, 2) RN plus normal diet, 3) WT plus high-energy diet, and 4) RN plus high-energy diet. Mice were weaned at 21 d old and fed the trial diets for 1 mo and then killed for carcass measurements. The pH of postmortem muscle from RN mice was less (P < 0.01) than that from WT mice. No difference in growth performance was observed when mice were fed a normal diet. When fed a high-energy diet, RN mice showed a greater fat accumulation (WT vs. RN, 1.11 vs. 1.63 g for gonadal fat and 1.40 vs. 1.84 g for subcutaneous fat; P < 0.05). Muscle weight was also increased (WT vs. RN, 0.27 vs. 0.30 g for gastrocnemius muscle; P < 0.05). The food consumption was greater in RN compared with WT mice (2.95 vs. 2.49 g; P < 0.05). The AMPK content and its downstream target, acetyl-CoA carboxylase (ACC), content were greater in RN mice (P < 0.05). The phosphorylation of ACC at Ser 79, a site exclusively phosphorylated by AMPK, was increased (P < 0.05), showing greater AMPK activity in RN mouse muscle. No difference in muscle fiber composition and mitochondrial content was observed between WT and RN mice. High fat diet downregulates protein kinase B but upregulates extracellular signal-regulated kinase signaling. In conclusion, the R225Q mutation has no major effect on the growth performance of animals fed a normal diet; a high-energy diet increased fatness in RN mice, likely due to their greater consumption of feed compared with WT mice.
Collapse
|
156
|
Du M, Tong J, Zhao J, Underwood KR, Zhu M, Ford SP, Nathanielsz PW. Fetal programming of skeletal muscle development in ruminant animals. J Anim Sci 2009; 88:E51-60. [PMID: 19717774 DOI: 10.2527/jas.2009-2311] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Enhancing skeletal muscle growth is crucial for animal agriculture because skeletal muscle provides meat for human consumption. An increasing body of evidence shows that the level of maternal nutrition alters fetal skeletal muscle development, with long-term effects on offspring growth and performance. Fetal skeletal muscle development mainly involves myogenesis (i.e., muscle cell development), but also involves adipogenesis (i.e., adipocyte development) and fibrogenesis (i.e., fibroblast development). These tissues in fetal muscle are mainly derived from mesenchymal stem cells (MSC). Shifting the commitment of MSC from myogenesis to adipogenesis increases intramuscular fat (i.e., marbling), improving the quality grade of meats. Strong experimental evidence indicates that Wingless and Int (Wnt)/beta-catenin signaling regulates MSC differentiation. Upregulation of Wnt/beta-catenin promotes myogenesis, and downregulation enhances adipogenesis. A lack of nutrients in early to midgestation reduces the formation of secondary muscle fibers in ruminant animals. Nutrient deficiency during mid- to late gestation decreases the number of intramuscular adipocytes and muscle fiber sizes. Knowledge of this regulatory mechanism will allow the development of strategies to enhance muscle growth and marbling in offspring, especially in the setting of nutrient deficiency.
Collapse
|
157
|
Xing XJ, Rui Q, Du M, Wang DY. Exposure to lead and mercury in young larvae induces more severe deficits in neuronal survival and synaptic function than in adult nematodes. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 56:732-741. [PMID: 19288233 DOI: 10.1007/s00244-009-9307-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 03/01/2009] [Indexed: 05/27/2023]
Abstract
In the present study, we investigated the possibly neurotoxic effects of metal (Pb and Hg) exposure at different developmental stages on neuronal loss in the GABAergic nervous system and synaptic functions in the nematode Caenorhabditis elegans. Our data suggest that neuronal survival in GABAergic neurons and cholinergic transmission were relatively stable during development in nematodes. Moreover, neurodegeneration, as shown by the neuronal loss and dorsal/ventral cord gaps, was more severely induced by Pb and Hg exposure at the L1 through L3 larval stages than at the L4 larval and young-adult stages. Similarly, pre- and postsynaptic functions were more severely impaired by Pb and Hg exposure at the L1 through L3 larval stages than at the L4 larval and young-adult stages. Furthermore, both aldicarb and levamisole resistance were significantly correlated with neuronal loss, dorsal cord gap, and ventral cord gap in Pb- and Hg-exposed nematodes, suggesting that neuronal survival was noticeably correlated with synaptic function in metal-exposed nematodes during development. Therefore, younger (L1-L3) larvae show more sensitivity to neurotoxicity of neuronal survival and synaptic function than L4 larvae and young adult nematodes.
Collapse
|
158
|
Liu F, Yin J, Du M, Yan P, Xu J, Zhu X, Yu J. Heat-stress-induced damage to porcine small intestinal epithelium associated with downregulation of epithelial growth factor signaling. J Anim Sci 2009; 87:1941-9. [PMID: 19213704 DOI: 10.2527/jas.2008-1624] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Extreme heat during certain days of the summer renders pigs susceptible to severe heat stress, which negatively affects their growth performance. We hypothesized that such heat stress impaired the small intestinal mucosa, a site responsible for nutrient absorption. To simulate heat stress, Chinese experimental mini-pigs were treated with 5 h of continual 40 degrees C temperature each day for 10 d in succession. Pigs were killed at 1, 3, 6 and 10 d after treatment, and small intestinal epithelia were sampled for histochemical examination and biochemical analyses. The duodenum and jejunum were seriously damaged within 3 d of initiation of treatment. Subsequent study of the process of jejunum recovery showed that the initiation of recovery started within 6 d following heat stress. Such damage was associated with the downregulation of epithelial growth factor signaling. In conclusion, heat stress induced short-term damage to the epithelium of porcine intestine. Because the intestinal epithelium is crucial for nutrient uptake, such damage should partially account for the impairment of growth performance of pigs under heat stress.
Collapse
|
159
|
Du M, Zhang ZH, Guo W, Fu XJ. Cocrystallization of a pharmaceutical agent pamoic acid with piperazine or 4,4′-bipyridyl. Acta Crystallogr A 2008. [DOI: 10.1107/s0108767308084705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
160
|
Nam K, Ahn D, Du M, Jo C. Lipid Oxidation, Color, Volatiles, and Sensory Characteristics of Aerobically Packaged and Irradiated Pork with Different Ultimate pH. J Food Sci 2008. [DOI: 10.1111/j.1365-2621.2001.tb16109.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
161
|
Underwood KR, Means WJ, Du M. Caspase 3 is not likely involved in the postmortem tenderization of beef muscle1. J Anim Sci 2008; 86:960-6. [DOI: 10.2527/jas.2007-0549] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
162
|
Tong J, Zhu MJ, Underwood KR, Hess BW, Ford SP, Du M. AMP-activated protein kinase and adipogenesis in sheep fetal skeletal muscle and 3T3-L1 cells. J Anim Sci 2008; 86:1296-305. [PMID: 18344293 DOI: 10.2527/jas.2007-0794] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Marbling, or i.m. fat, is an important factor determining beef quality. Both adipogenesis and hypertrophy of existing adipocytes contribute to enhanced marbling. We hypothesized that the fetal stage is important for the formation of i.m. adipocytes and that AMP-activated protein kinase (AMPK) has a key role in adipogenesis during this stage. The objective of this study was to assess the role of AMPK in adipogenesis in fetal sheep muscle and 3T3-L1 cells. Nonpregnant ewes were randomly assigned to a control (Con, 100% of NRC recommendations, n = 7) or overfed (OF, 150% of NRC, n = 7) diet from 60 d before to 75 d after conception, when the ewes were killed. The fetal LM was collected at necropsy for biochemical analyses. The activity of AMPK was less in the fetal muscle of OF sheep. The expression of peroxisome proliferator-activated receptor (PPAR)gamma, a marker of adipogenesis, was greater in OF fetal muscle compared with Con fetal muscle. To further show the role of AMPK in adipogenesis, we used 3T3-L1 cells. The 3T3-L1 cells were incubated in a standard adipogenic medium for 24 h and 10 d. Activation of AMPK by 5-aminoimidazole-4-car-boxamide-1-beta-d-ribonucleoside dramatically inhibited the expression of PPARgamma and reduced the presence of adipocytes after 10 d of differentiation. Inhibition of AMPK by compound C enhanced the expression of PPARgamma. In conclusion, these data show that AMPK activity is inversely related to adipogenesis in fetal sheep muscle and 3T3-L1 cells.
Collapse
|
163
|
Du Y, Du M, Qiao Y, Dai J, Xu J, Yang P. Ce(4+) doped TiO2 thin films: Characterization and photocatalysis. COLLOID JOURNAL 2007. [DOI: 10.1134/s1061933x0706004x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
164
|
Zhu MJ, Du M, Hess BW, Nathanielsz PW, Ford SP. Periconceptional Nutrient Restriction in the Ewe Alters MAPK/ERK1/2 and PI3K/Akt Growth Signaling Pathways and Vascularity in the Placentome. Placenta 2007; 28:1192-9. [PMID: 17586041 DOI: 10.1016/j.placenta.2007.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 04/20/2007] [Accepted: 05/03/2007] [Indexed: 01/02/2023]
Abstract
This study evaluated the role of MAPK/ERK1/2 and/or PI3K/Akt signaling pathways in modulating ovine placentomal vascularity in response to periconceptional maternal nutrient restriction. Ewes were randomly assigned to be nutrient restricted (NR, 50% NRC recommendation, N=7) or control fed (CF, 100% NRC recommendation, N=7) from 60 +/- 2 days before to 30 days after conception (day 0). From day 31 of gestation, all ewes (CF and NR) were fed the control diet until necropsy on day 78. On day 78 of gestation, NR ewes exhibited greater vascularity in both caruncular (CAR) and cotyledon (COT) tissues than CF ewes. Akt or ERK1/2 content in CAR and COT arterial tissue did not differ across dietary treatment. The activated forms, phosphorylated Akt and phosphorylated ERK1/2, were significantly increased in COT but not CAR arterial tissues of NR ewes compared to those of CF ewes (P<0.05). For both CF and NR ewes, phosphorylated Akt and phosphorylated ERK1/2 content in COT are higher (P<0.05) than those in CAR arterial tissues. Immunohistochemical staining revealed cytoplasmic and nuclear localization of Akt, phosphorylated Akt, ERK1/2 and phosphorylated ERK1/2, with phosphorylated Akt and phosphorylated-ERK1/2 specifically localized in trophoblast cells, while binucleate cells remained unstained. In placentomal blood vessels, Akt, phosphorylated Akt, ERK1/2 and phosphorylated ERK1/2 were localized to both endothelium and smooth muscle cells. These findings demonstrate for the first time that periconceptional NR increases vascular density in both COT than CAR tissues of the ovine placentome, and that the MAPK/ERK1/2 and/or PI3K/Akt signaling pathways are increased in NR COT but not NR CAR arterial tissues.
Collapse
|
165
|
Huang Y, Zhuang S, Du M. Risk factors of nosocomial infection with extended-spectrum beta-lactamase-producing bacteria in a neonatal intensive care unit in China. Infection 2007; 35:339-45. [PMID: 17721736 DOI: 10.1007/s15010-007-6356-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 04/24/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND To study risk factors of neonatal nosocomial infection caused by extended-spectrum beta-lactamase (ESBL)-producing bacteria in a neonatal intensive care unit (NICU). PATIENTS AND METHODS A retrospective cohort study was conducted in a university hospital NICU in south China. Medical records of neonatal nosocomial infection caused by Escherichia coli or Klebsiella pneumoniae were reviewed. Twenty-two neonates infected with ESBL-producing bacteria (case patients) were compared with 17 patients infected with non-ESBL producing strains (controls). Univariable and multivariable logistic regression were performed to analyze risk factors for infection with ESBL-producing strains. The spectrum of antimicrobial resistance of ESBL-positive E. coli or K. pneumoniae was also examined. RESULTS Both univariable and multivariable logistic regression analysis revealed that preterm low birth weight, prolonged mechanical ventilation (> or = 7 days) and prior use of third-generation cephalosporins were risks factors for ESBL-producing E. coli or K. pneumoniae infection (p < 0.05), with an odd ratio of 6.43 (95% CI: 1.51-27.44; p = 0.017), 7.50 (95% CI: 1.38-40.88; p = 0.017) and 9.00 (95% CI: 1.65-49.14; p = 0.008) respectively. However, the length of hospital stay before isolation of pathogens, endotracheal intubation, presence of a central venous catheter, days on third-generation cephalosporins and prior use of beta-lactamase inhibitors were not statistically significant (p > 0.05). Resistance of ESBL-positive strains to piperacillin, tobramycin, aztreonam and cephalosporins was significantly higher than that of ESBL-negative ones (p < 0.05). ESBL-producing strains appeared susceptible to carbapenem, fluoroquinolones, and beta-lactamase inhibitor combination piperacillin-tazobactam. CONCLUSIONS Preterm low birth weight, prolonged mechanical ventilation and prior use of third-generation cephalosporins are risks factors for nosocomial infection with ESBL-producing bacteria in NICU.
Collapse
|
166
|
Shen QW, Underwood KR, Means WJ, McCormick RJ, Du M. The halothane gene, energy metabolism, adenosine monophosphate-activated protein kinase, and glycolysis in postmortem pig longissimus dorsi muscle1. J Anim Sci 2007; 85:1054-61. [PMID: 17202397 DOI: 10.2527/jas.2006-114] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The presence of the halothane gene results in PSE meat. However, the exact mechanisms linking the halothane gene and the incidence of PSE meat remain unclear. We hypothesize that the presence of the halothane gene accelerates energy consumption in postmortem muscle, which activates adenosine monophosphate-activated protein kinase (AMPK), leading to enhanced glycolysis and PSE meat. To test our hypothesis, energy status, AMPK activity, and glycolysis in the postmortem LM of the halothane gene carrier and halothane-negative pigs were compared. The results showed that the presence of the halothane gene accelerated energy depletion in postmortem muscle immediately after exsanguination, leading to rapid and early depletion of ATP, as shown by an increase in the (adenosine monophosphate + inosine monophosphate):ATP ratio in postmortem LM. In addition, an early AMPK activation was observed in LM from halothane carriers. The fructose-2,6-diphosphate concentration in postmortem LM was well correlated with AMPK activation. To be a potent stimulator of phosphofructose kinase, the increase in fructose-2,6-diphosphate is expected to activate phosphofructose kinase, a key enzyme controlling glycolysis, leading to enhanced glycolysis and early accumulation of lactic acid. In summary, this study showed that the presence of the halothane gene induced early energy depletion, which could be a primary reason causing AMPK activation, leading to accelerated glycolysis and an increased incidence of PSE meat. However, AMPK might also be activated by other mechanisms besides energy depletion, which warrants further studies.
Collapse
|
167
|
Du M, Shen QW, Zhu MJ, Ford SP. Leucine stimulates mammalian target of rapamycin signaling in C2C12 myoblasts in part through inhibition of adenosine monophosphate-activated protein kinase1. J Anim Sci 2007; 85:919-27. [PMID: 17178807 DOI: 10.2527/jas.2006-342] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) signaling is one of the main signaling pathways controlling protein synthesis. Leucine treatment upregulates mTOR signaling, which enhances protein synthesis; however, the mechanisms are not well understood. Herein, treatment of C2C12 myoblast cells with leucine enhanced the phosphorylation of mTOR and ribosomal protein S6 kinase. Leucine treatment also decreased the adenosine monophosphate/ATP ratio in myoblasts by 36.4 +/- 9.1% (P < 0.05) and reduced the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) alpha subunit at Thr172 (28.6 +/- 4.9% reduction, P < 0.05) and inhibited AMPK activity (43.6 +/- 3.5% reduction, P < 0.05). In addition, leucine increased the phosphorylation of mTOR at Ser2448 by 63.5 +/- 10.0% (P < 0.05) and protein synthesis by 30.6 +/- 6.1% (P < 0.05). Applying 5-aminoimidazole-4-carbox-amide 1-beta-d-ribonucleoside, an activator of AMPK, abolished the stimulation of mTOR signaling by leucine, showing that AMPK negatively controls mTOR signaling. To further show the role of AMPK in mTOR signaling, myoblasts expressing a dominant negative AMPKalpha subunit were employed. Negative myoblasts had very low AMPK activity. The activation of mTOR induced by leucine in these cells was abated, showing that AMPK contributed to mTOR activation. In conclusion, leucine stimulates mTOR signaling in part through AMPK inhibition. This study implicates AMPK as an important target for nutritional management to enhance mTOR signaling and protein synthesis in muscle cells, thereby increasing muscle growth.
Collapse
|
168
|
Zhu MJ, Du M, Hess BW, Means WJ, Nathanielsz PW, Ford SP. Maternal nutrient restriction upregulates growth signaling pathways in the cotyledonary artery of cow placentomes. Placenta 2006; 28:361-8. [PMID: 16822544 DOI: 10.1016/j.placenta.2006.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 03/30/2006] [Accepted: 04/01/2006] [Indexed: 10/24/2022]
Abstract
This study evaluated the role of MAPK/ERK1/2 and/or PI3-K/Akt signaling pathways in modulating bovine placentomal vascularity in response to maternal nutrient restriction. Beef cows were randomly assigned to control fed (Control, n=15, 100% of requirements) or nutrient restricted (NR, n=15, 50% requirements) diets from day 30 to day 125 of gestation. Ten cows from each dietary group were necropsied on day 125 (approximately 45% gestation), and the remaining cows in each diet group were then fed control diets and necropsied on day 250 (approximately 90% gestation). At day 125 of gestation, NR cows exhibited increased (P=0.06) COT vascularity, improved (P<0.05) placentome efficiency (fetal weight/placentomal weight), and increased (P<0.05) phosphorylated Akt and ERK1/2 in COT arteries compared to Control cows. By day 250, however, treatment differences in COT vascularity and phosphorylated Akt and ERK1/2 in COT arteries were lost. On both gestational days, no treatment difference was observed in the levels of phosphorylated Akt or ERK1/2 in CAR arteries. CAR vascularity was similar across treatment on day 125, but tended to be greater (P<0.10) in NR than Control cows on day 250. These data suggest that conceptuses react to an early gestational nutrient restriction by up-regulating COT growth signaling pathways associated with angiogenesis, and that these compensations do not persist to term.
Collapse
|
169
|
Li SY, Yang X, Ceylan-Isik AF, Du M, Sreejayan N, Ren J. Cardiac contractile dysfunction in Lep/Lep obesity is accompanied by NADPH oxidase activation, oxidative modification of sarco(endo)plasmic reticulum Ca2+-ATPase and myosin heavy chain isozyme switch. Diabetologia 2006; 49:1434-46. [PMID: 16612592 DOI: 10.1007/s00125-006-0229-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 02/13/2006] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Obesity is an independent risk factor for heart diseases but the underlying mechanism is not clear. This study examined cardiac contraction, oxidative stress, oxidative modification of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and the myosin heavy chain (MHC) isoform switch in obese mice. METHODS Mechanical properties were evaluated in ventricular myocytes from C57BL/6J lean and Lep/Lep obese mice (formerly known as ob/ob mice), including peak shortening (PS), time to 50 or 90% PS, time to 50 or 90% relengthening (TR50, TR90), maximal velocity of shortening/relengthening (+/-dL/dt), intracellular Ca2+ and its decay (tau). Oxidative stress, lipid peroxidation, protein damage and SERCA activity were assessed by glutathione/glutathione disulfide, malondialdehyde, protein carbonyl and 45Ca2+ uptake, respectively. NADPH oxidase was determined by immunoblotting. RESULTS Myocytes from Lep/Lep mice displayed depressed PS and +/- dL/dt, prolonged TR50, TR90, elevated resting [Ca2+]i, prolonged tau, reduced contractile capacity at high stimulus frequencies and diminished responsiveness to extracellular Ca2+ compared with lean controls. Cardiac glutathione/glutathione disulfide was decreased whereas malondialdehyde, protein carbonyl, membrane p47(phox) and membrane gp91(phox) were increased in the Lep/Lep group. SERCA isoenzyme 2a was markedly modified by oxidation in Lep/Lep hearts and associated with decreased 45Ca2+ uptake. The MHC isozyme displayed a shift from the alpha to the beta isoform in Lep/Lep hearts. Short-term incubation of angiotensin II with myocytes mimicked the mechanical defects, SERCA oxidation and 45Ca2+ uptake seen in Lep/Lep myocytes. Incubation of the NADPH oxidase inhibitor apocynin with Lep/Lep myocytes alleviated contractile defects without reversing SERCA oxidation or activity. CONCLUSIONS/INTERPRETATION These data indicate that obesity-related cardiac defects may be related to NADPH oxidase activation, oxidative damage to SERCA and the MHC isozyme switch.
Collapse
|
170
|
Zhu M, Mendonca A, Min B, Lee E, Nam K, Park K, Du M, Ismail H, Ahn D. Effects of Electron Beam Irradiation and Antimicrobials on the Volatiles, Color, and Texture of Ready-to-eat Turkey Breast Roll. J Food Sci 2006. [DOI: 10.1111/j.1365-2621.2004.tb10702.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
171
|
Levin JI, Chen JM, Laakso LM, Du M, Schmid J, Xu W, Cummons T, Xu J, Jin G, Barone D, Skotnicki JS. Acetylenic TACE inhibitors. Part 3: Thiomorpholine sulfonamide hydroxamates. Bioorg Med Chem Lett 2006; 16:1605-9. [PMID: 16426848 DOI: 10.1016/j.bmcl.2005.12.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 12/05/2005] [Accepted: 12/07/2005] [Indexed: 11/29/2022]
Abstract
A series of thiomorpholine sulfonamide hydroxamate TACE inhibitors, all bearing propargylic ether P1' groups, was explored. In particular, compound 5h has excellent in vitro potency against isolated TACE enzyme and in cells, oral activity in a model of TNF-alpha production and a collagen-induced arthritis model, was selected as a clinical candidate for the treatment of RA.
Collapse
|
172
|
Liang H, Cao W, Du M, Kim Y, Herman W, Lee C. Ultrafast photo-conductivity in BAMH-PPV polymer thin-films. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2005.11.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
173
|
Shen QW, Jones CS, Kalchayanand N, Zhu MJ, Du M. Effect of dietary α-lipoic acid on growth, body composition, muscle pH, and AMP-activated protein kinase phosphorylation in mice1. J Anim Sci 2005; 83:2611-7. [PMID: 16230659 DOI: 10.2527/2005.83112611x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of alpha-lipoic acid (ALA) on the growth, body composition, postmortem AMP-activated protein kinase (AMPK) activation, and 24-h muscle pH were investigated. Thirty male C57BL/6J mice were fed diets containing 0, 0.5, or 1.0% ALA (DM basis). At the end of the 3-wk feeding trial, carcass weights decreased (P < 0.05) 14 and 30% for mice fed 0.5 and 1.0% ALA, respectively, compared with the 0% group, with decreases in BW as the levels of dietary ALA increased. This change in carcass weight occurred because carcass fat content for mice receiving 0.5 and 1.0% ALA was 7.32 and 8.09% lower (P < 0.05), respectively, than for the 0% ALA treatment, and because gonadal fat decreased (P < 0.05) 85% in mice fed 1.0% ALA compared with those fed 0% ALA. Dietary ALA caused a slight increase (P < 0.05) in carcass moisture content, with no (P = 0.07) effect on protein and ash content. Furthermore, ALA supplement decreased (P < 0.05) ADFI (DM basis) from 4.3 g/d for 0% ALA-fed mice to 3.4 g/d for 1.0% ALA-fed mice. At 20 min postmortem, pH was greater (P < 0.05) in muscle of mice fed 1.0% ALA than in muscle of mice fed 0% ALA. Ultimate (24-h) pH values differed (P < 0.05) among treatments, and mean values were 5.83, 6.08, and 6.29 for 0, 0.5, and 1.0% ALA, respectively. Phosphorylation of AMPK alpha subunit at Thr172, an indicator of AMPK activation, was decreased (P < 0.05) in muscle of ALA-treated mice at 20 min postmortem. Because AMPK has a crucial role in the control of glycolysis, the reduction in AMPK activation decreases glycolysis, and thereby increases the ultimate pH of postmortem muscle. In summary, dietary ALA supplement can decrease fat accumulation in mice, and because ALA increased muscle pH at 20 min and 24 h postmortem, these results suggest that dietary ALA supplementation might decrease carcass fatness and prevent the development of PSE pork and poultry. However, further research is required to test the effects of ALA in swine and poultry.
Collapse
|
174
|
Levin JI, Chen JM, Laakso LM, Du M, Du X, Venkatesan AM, Sandanayaka V, Zask A, Xu J, Xu W, Zhang Y, Skotnicki JS. Acetylenic TACE inhibitors. Part 2: SAR of six-membered cyclic sulfonamide hydroxamates. Bioorg Med Chem Lett 2005; 15:4345-9. [PMID: 16084720 DOI: 10.1016/j.bmcl.2005.06.072] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 06/09/2005] [Accepted: 06/13/2005] [Indexed: 11/28/2022]
Abstract
The SAR of a series of potent sulfonamide hydroxamate TACE inhibitors bearing a butynyloxy P1' group was explored. In particular, compound 5k has excellent in vitro potency against TACE enzyme and in cells, and oral activity in an in vivo model of TNF-alpha production and a collagen-induced arthritis model.
Collapse
|
175
|
Zhu MJ, Mendonca A, Ismail HA, Du M, Lee EJ, Ahn DU. Impact of antimicrobial ingredients and irradiation on the survival of Listeria monocytogenes and the quality of ready-to-eat turkey ham. Poult Sci 2005; 84:613-20. [PMID: 15844819 DOI: 10.1093/ps/84.4.613] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Irradiation is an effective technology in eliminating Listeria monocytogenes, but it induces quality changes in meat products at or above specific radiation doses. To minimize irradiation-induced quality changes, only low irradiation doses are recommended. However, low-dose irradiation provides a chance for some pathogens to survive and proliferate during prolonged storage. To solve this problem, antimicrobial ingredients [2% sodium lactate (SL), 0.1% sodium diacetate (SDA), 0.1% potassium benzoate (PB)] and low-dose irradiation were combined and tested for their effects on the growth of L. monocytogenes and meat quality. The log10 reductions of L. monocytogenes in hams following exposure to 1.0 to 2.5 kGy of irradiation ranged from 2.0 to 5.0. The D10 values were 0.52 kGy for control ham or ham with PB, SL, or PB + SL; 0.49 kGy for ham with SL+SDA; and 0.48 kGy for ham with PB + SL + SDA (PSS). Addition of SL + SDA or PB + SL in combination with 1.0 kGy of irradiation was effective in suppressing the growth of L. monocytogenes for about 6 wk when stored at 4 degrees C, whereas 2.0 kGy of irradiation was listeriostatic. Ham irradiated with 1 kGy in combination with PSS was listeriostatic throughout storage. SL increased firmness of turkey hams, and sensory panelists noted that the saltiness was a little higher in products containing SL, but its overall impact on quality was minimal. Amounts of benzene were detected in irradiated hams with PB, showing PB was not fit as an antimicrobial ingredient for irradiated foods. In conclusion, 2% SL and 0.1% SDA in combination with low-dose irradiation were effective in ensuring the safety of ready-to-eat meat products against L. monocytogenes.
Collapse
|