151
|
Shirota G, Maeda E, Namiki Y, Bari R, Ino K, Torigoe R, Abe O. Pediatric 320-row cardiac computed tomography using electrocardiogram-gated model-based full iterative reconstruction. Pediatr Radiol 2017; 47:1463-1470. [PMID: 28667349 PMCID: PMC5608791 DOI: 10.1007/s00247-017-3901-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/05/2017] [Accepted: 05/09/2017] [Indexed: 12/03/2022]
Abstract
BACKGROUND Full iterative reconstruction algorithm is available, but its diagnostic quality in pediatric cardiac CT is unknown. OBJECTIVE To compare the imaging quality of two algorithms, full and hybrid iterative reconstruction, in pediatric cardiac CT. MATERIALS AND METHODS We included 49 children with congenital cardiac anomalies who underwent cardiac CT. We compared quality of images reconstructed using the two algorithms (full and hybrid iterative reconstruction) based on a 3-point scale for the delineation of the following anatomical structures: atrial septum, ventricular septum, right atrium, right ventricle, left atrium, left ventricle, main pulmonary artery, ascending aorta, aortic arch including the patent ductus arteriosus, descending aorta, right coronary artery and left main trunk. We evaluated beam-hardening artifacts from contrast-enhancement material using a 3-point scale, and we evaluated the overall image quality using a 5-point scale. We also compared image noise, signal-to-noise ratio and contrast-to-noise ratio between the algorithms. RESULTS The overall image quality was significantly higher with full iterative reconstruction than with hybrid iterative reconstruction (3.67±0.79 vs. 3.31±0.89, P=0.0072). The evaluation scores for most of the gross structures were higher with full iterative reconstruction than with hybrid iterative reconstruction. There was no significant difference between full and hybrid iterative reconstruction for the presence of beam-hardening artifacts. Image noise was significantly lower in full iterative reconstruction, while signal-to-noise ratio and contrast-to-noise ratio were significantly higher in full iterative reconstruction. CONCLUSION The diagnostic quality was superior in images with cardiac CT reconstructed with electrocardiogram-gated full iterative reconstruction.
Collapse
|
152
|
Power SP, Moloney F, Twomey M, James K, O’Connor OJ, Maher MM. Computed tomography and patient risk: Facts, perceptions and uncertainties. World J Radiol 2016; 8:902-915. [PMID: 28070242 PMCID: PMC5183924 DOI: 10.4329/wjr.v8.i12.902] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/29/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023] Open
Abstract
Since its introduction in the 1970s, computed tomography (CT) has revolutionized diagnostic decision-making. One of the major concerns associated with the widespread use of CT is the associated increased radiation exposure incurred by patients. The link between ionizing radiation and the subsequent development of neoplasia has been largely based on extrapolating data from studies of survivors of the atomic bombs dropped in Japan in 1945 and on assessments of the increased relative risk of neoplasia in those occupationally exposed to radiation within the nuclear industry. However, the association between exposure to low-dose radiation from diagnostic imaging examinations and oncogenesis remains unclear. With improved technology, significant advances have already been achieved with regards to radiation dose reduction. There are several dose optimization strategies available that may be readily employed including omitting unnecessary images at the ends of acquired series, minimizing the number of phases acquired, and the use of automated exposure control as opposed to fixed tube current techniques. In addition, new image reconstruction techniques that reduce radiation dose have been developed in recent years with promising results. These techniques use iterative reconstruction algorithms to attain diagnostic quality images with reduced image noise at lower radiation doses.
Collapse
|
153
|
Pelt DM, De Andrade V. Improved tomographic reconstruction of large-scale real-world data by filter optimization. ADVANCED STRUCTURAL AND CHEMICAL IMAGING 2016; 2:17. [PMID: 28003954 PMCID: PMC5135727 DOI: 10.1186/s40679-016-0033-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/22/2016] [Indexed: 11/10/2022]
Abstract
In advanced tomographic experiments, large detector sizes and large numbers of acquired datasets can make it difficult to process the data in a reasonable time. At the same time, the acquired projections are often limited in some way, for example having a low number of projections or a low signal-to-noise ratio. Direct analytical reconstruction methods are able to produce reconstructions in very little time, even for large-scale data, but the quality of these reconstructions can be insufficient for further analysis in cases with limited data. Iterative reconstruction methods typically produce more accurate reconstructions, but take significantly more time to compute, which limits their usefulness in practice. In this paper, we present the application of the SIRT-FBP method to large-scale real-world tomographic data. The SIRT-FBP method is able to accurately approximate the simultaneous iterative reconstruction technique (SIRT) method by the computationally efficient filtered backprojection (FBP) method, using precomputed experiment-specific filters. We specifically focus on the many implementation details that are important for application on large-scale real-world data, and give solutions to common problems that occur with experimental data. We show that SIRT-FBP filters can be computed in reasonable time, even for large problem sizes, and that precomputed filters can be reused for future experiments. Reconstruction results are given for three different experiments, and are compared with results of popular existing methods. The results show that the SIRT-FBP method is able to accurately approximate iterative reconstructions of experimental data. Furthermore, they show that, in practice, the SIRT-FBP method can produce more accurate reconstructions than standard direct analytical reconstructions with popular filters, without increasing the required computation time.
Collapse
|
154
|
Maeda E, Tomizawa N, Kanno S, Yasaka K, Kubo T, Ino K, Torigoe R, Ohtomo K. Subjective and objective evaluation of 10-30% dose reduced coronary artery phantom scans reconstructed with Forward projected model-based Iterative Reconstruction SoluTion (FIRST). Data Brief 2016; 10:210-214. [PMID: 27995156 PMCID: PMC5154964 DOI: 10.1016/j.dib.2016.11.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022] Open
Abstract
The data presented in this articles are related to the research article entitled “The feasibility of Forward-projected model-based Iterative Reconstruction SoluTion (FIRST) for coronary 320-row computed tomography angiography: a pilot study” (E. Maeda, N. Tomizawa, S. Kanno, K. Yasaka, T. Kubo, K. Ino, R. Torigoe, K. Ohtomo, 2016) [1]. This article describes subjective and objective evaluations of 2 mm–4 mm coronary artery phantom scanned with 100% dose and reconstructed with hybrid iterative reconstruction, and 90%, 80% and 70% dose reconstructed with full iterative reconstruction.
Collapse
|
155
|
Effect of the forward-projected model-based iterative reconstruction solution algorithm on image quality and radiation dose in pediatric cardiac computed tomography. Pediatr Radiol 2016; 46:1663-1670. [PMID: 27531216 DOI: 10.1007/s00247-016-3676-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/22/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Some iterative reconstruction algorithms are useful for reducing the radiation dose in pediatric cardiac CT. A new iterative reconstruction algorithm (forward-projected model-based iterative reconstruction solution) has been developed, but its usefulness for radiation dose reduction in pediatric cardiac CT is unknown. OBJECTIVE To investigate the effect of the new algorithm on CT image quality and on radiation dose in pediatric cardiac CT. MATERIALS AND METHODS We obtained phantom data at six dose levels, as well as pediatric cardiac CT data, and reconstructed CT images using filtered back projection, adaptive iterative dose reduction 3-D (AIDR 3-D) and the new algorithm. We evaluated phantom image quality using physical assessment. Four radiologists performed visual evaluation of cardiac CT image quality. RESULTS In the phantom study, the new algorithm effectively suppressed noise in the low-dose range and moderately generated modulation transfer function, yielding a higher signal-to-noise ratio compared with filtered back projection or AIDR 3-D. When clinical cardiac CT was performed, images obtained by the new method had less perceived image noise and better tissue contrast at similar resolution compared with AIDR 3-D images. CONCLUSION The new algorithm reduced image noise at moderate resolution in low-dose CT scans and improved the perceived quality of cardiac CT images to some extent. This new algorithm might be superior to AIDR 3-D for radiation dose reduction in pediatric cardiac CT.
Collapse
|
156
|
Lambert L, Banerjee R, Votruba J, El-Lababidi N, Zeman J. Ultra-low-dose CT Imaging of the Thorax: Decreasing the Radiation Dose by One Order of Magnitude. Indian J Pediatr 2016; 83:1479-1481. [PMID: 27278240 DOI: 10.1007/s12098-016-2175-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
Computed tomography (CT) is an indispensable tool for imaging of the thorax and there is virtually no alternative without associated radiation burden. The authors demonstrate ultra-low-dose CT of the thorax in three interesting cases. In an 18-y-old girl with rheumatoid arthritis, CT of the thorax identified alveolitis in the posterior costophrenic angles (radiation dose = 0.2 mSv). Its resolution was demonstrated on a follow-up scan (4.2 mSv) performed elsewhere. In an 11-y-old girl, CT (0.1 mSv) showed changes of the right collar bone consistent with chronic recurrent multifocal osteomyelitis. CT (0.1 mSv) of a 9-y-old girl with mucopolysaccharidosis revealed altogether three hamartomas, peribronchial infiltrate, and spine deformity. In some indications, the radiation dose from CT of the thorax can approach that of several plain radiographs. This may help the pediatrician in deciding whether "gentle" ultra-low-dose CT instead of observation or follow-up radiographs will alleviate the uncertainty of the diagnosis with little harm to the child.
Collapse
|
157
|
Efficacy of model-based iterative reconstruction technique in non-enhanced CT of the renal tracts for ureteric calculi. Emerg Radiol 2016; 24:133-138. [PMID: 27770319 DOI: 10.1007/s10140-016-1454-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to assess the efficacy of model-based iterative reconstruction (MBIR), statistical iterative reconstruction (SIR), and filtered back projection (FBP) image reconstruction algorithms in the delineation of ureters and overall image quality on non-enhanced computed tomography of the renal tracts (NECT-KUB). This was a prospective study of 40 adult patients who underwent NECT-KUB for investigation of ureteric colic. Images were reconstructed using FBP, SIR, and MBIR techniques and individually and randomly assessed by two blinded radiologists. Parameters measured were overall image quality, presence of ureteric calculus, presence of hydronephrosis or hydroureters, image quality of each ureteric segment, total length of ureters unable to be visualized, attenuation values of image noise, and retroperitoneal fat content for each patient. There were no diagnostic discrepancies between image reconstruction modalities for urolithiasis. Overall image qualities and for each ureteric segment were superior using MBIR (67.5 % rated as 'Good to Excellent' vs. 25 % in SIR and 2.5 % in FBP). The lengths of non-visualized ureteric segments were shortest using MBIR (55.0 % measured 'less than 5 cm' vs. ASIR 33.8 % and FBP 10 %). MBIR was able to reduce overall image noise by up to 49.36 % over SIR and 71.02 % over FBP. MBIR technique improves overall image quality and visualization of ureters over FBP and SIR.
Collapse
|
158
|
Computer-aided detection (CAD) of solid pulmonary nodules in chest x-ray equivalent ultralow dose chest CT - first in-vivo results at dose levels of 0.13mSv. Eur J Radiol 2016; 85:2217-2224. [PMID: 27842670 DOI: 10.1016/j.ejrad.2016.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/07/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To determine the value of computer-aided detection (CAD) for solid pulmonary nodules in ultralow radiation dose single-energy computed tomography (CT) of the chest using third-generation dual-source CT at 100kV and fixed tube current at 70 mAs with tin filtration. METHODS 202 consecutive patients undergoing clinically indicated standard dose chest CT (1.8±0.7 mSv) were prospectively included and scanned with an additional ultralow dose CT (0.13±0.01 mSv) in the same session. Standard of reference (SOR) was established by consensus reading of standard dose CT by two radiologists. CAD was performed in standard dose and ultralow dose CT with two different reconstruction kernels. CAD detection rate of nodules was evaluated including subgroups of different nodule sizes (<5, 5-7, >7mm). Sensitivity was further analysed in multivariable mixed effects logistic regression. RESULTS The SOR included 279 solid nodules (mean diameter 4.3±3.4mm, range 1-24mm). There was no significant difference in per-nodule sensitivity of CAD in standard dose with 70% compared to 68% in ultralow dose CT both overall and in different size subgroups (all p>0.05). CAD led to a significant increase of sensitivity for both radiologists reading the ultralow dose CT scans (all p<0.001). In multivariable analysis, the use of CAD (p<0.001), and nodule size (p<0.0001) were independent predictors for nodule detection, but not BMI (p=0.933) and the use of contrast agents (p=0.176). CONCLUSIONS Computer-aided detection of solid pulmonary nodules using ultralow dose CT with chest X-ray equivalent radiation dose has similar sensitivities to those from standard dose CT. Adding CAD in ultralow dose CT significantly improves the sensitivity of radiologists.
Collapse
|
159
|
Langton JEN, Lam HI, Cowan BR, Occleshaw CJ, Gabriel R, Lowe B, Lydiard S, Greiser A, Schmidt M, Young AA. Estimation of myocardial strain from non-rigid registration and highly accelerated cine CMR. Int J Cardiovasc Imaging 2016; 33:101-107. [PMID: 27624468 DOI: 10.1007/s10554-016-0978-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/08/2016] [Indexed: 12/01/2022]
Abstract
Sparsely sampled cardiac cine accelerated acquisitions show promise for faster evaluation of left-ventricular function. Myocardial strain estimation using image feature tracking methods is also becoming widespread. However, it is not known whether highly accelerated acquisitions also provide reliable feature tracking strain estimates. Twenty patients and twenty healthy volunteers were imaged with conventional 14-beat/slice cine acquisition (STD), 4× accelerated 4-beat/slice acquisition with iterative reconstruction (R4), and a 9.2× accelerated 2-beat/slice real-time acquisition with sparse sampling and iterative reconstruction (R9.2). Radial and circumferential strains were calculated using non-rigid registration in the mid-ventricle short-axis slice and inter-observer errors were evaluated. Consistency was assessed using intra-class correlation coefficients (ICC) and bias with Bland-Altman analysis. Peak circumferential strain magnitude was highly consistent between STD and R4 and R9.2 (ICC = 0.876 and 0.884, respectively). Average bias was -1.7 ± 2.0 %, p < 0.001, for R4 and -2.7 ± 1.9 %, p < 0.001 for R9.2. Peak radial strain was also highly consistent (ICC = 0.829 and 0.785, respectively), with average bias -11.2 ± 18.4 %, p < 0.001, for R4 and -15.0 ± 21.2 %, p < 0.001 for R9.2. STD circumferential strain could be predicted by linear regression from R9.2 with an R2 of 0.82 and a root mean squared error of 1.8 %. Similarly, radial strain could be predicted with an R2 of 0.67 and a root mean squared error of 21.3 %. Inter-observer errors were not significantly different between methods, except for peak circumferential strain R9.2 (1.1 ± 1.9 %) versus STD (0.3 ± 1.0 %), p = 0.011. Although small systematic differences were observed in strain, these were highly consistent with standard acquisitions, suggesting that accelerated myocardial strain is feasible and reliable in patients who require short acquisition durations.
Collapse
|
160
|
Laqmani A, Avanesov M, Butscheidt S, Kurfürst M, Sehner S, Schmidt-Holtz J, Derlin T, Behzadi C, Nagel HD, Adam G, Regier M. Comparison of image quality and visibility of normal and abnormal findings at submillisievert chest CT using filtered back projection, iterative model reconstruction (IMR) and iDose 4™. Eur J Radiol 2016; 85:1971-1979. [PMID: 27776648 DOI: 10.1016/j.ejrad.2016.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/04/2016] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To compare both image quality and visibility of normal and abnormal findings at submillisievert chest CT (smSv-CT) using filtered back projection (FBP) and the two different iterative reconstruction (IR) techniques iterative model reconstruction (IMR) and iDose4™. MATERIALS AND METHODS This institutional review board approved study was based on retrospective interpretation of clinically indicated acquired data. The requirement to obtain informed consent was waived. 81 patients with suspected pneumonia underwent smSv-CT (Brilliance iCT, Philips Healthcare; mean effective dose: 0.86±0.2mSv). Data were reconstructed using FBP and two different IR techniques iDose4™ and IMR (Philips Healthcare) at various iteration levels. Objective image noise (OIN) was measured. Two experienced readers independently assessed all images for image noise, image appearance and visibility of normal anatomic and abnormal findings. A random intercept model was used for statistical analysis. RESULTS Compared to FBP and iDose4™, IMR reduced OIN up to 88% and 72%, respectively (p<0.001). A mild blotchy image appearance was seen in IMR images, affecting diagnostic confidence. iDose4™ images provided satisfactory to good image quality for visibility of normal and abnormal findings and were superior to FBP (p<0.001). IMR images were significantly inferior for visibility of normal structures compared to iDose4™, while being superior for visibility of abnormal findings except for reticular pattern (p<0.001). CONCLUSION IMR results for visibility of normal and abnormal lung findings are heterogeneous, indicating that IMR may not represent a priority technique for clinical routine. iDose4™ represents a suitable method for evaluation of lung tissue at submillisievert chest CT.
Collapse
|
161
|
Choi AD, Leifer ES, Yu J, Shanbhag SM, Bronson K, Arai AE, Chen MY. Prospective evaluation of the influence of iterative reconstruction on the reproducibility of coronary calcium quantification in reduced radiation dose 320 detector row CT. J Cardiovasc Comput Tomogr 2016; 10:359-63. [PMID: 27591767 PMCID: PMC7458582 DOI: 10.1016/j.jcct.2016.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Coronary artery calcium (CAC) predicts coronary heart disease events and is important for individualized cardiac risk assessment. This report assesses the interscan variability of CT for coronary calcium quantification using image acquisition with standard and reduced radiation dose protocols and whether the use of reduced radiation dose acquisition with iterative reconstruction (IR; "reduced-dose/IR ") allows for similar image quality and reproducibility when compared to standard radiation dose acquisition with filtered back projection (FBP; "standard-dose/FBP") on 320-detector row computed tomography (320-CT). METHODS 200 consecutive patients (60 ± 9 years, 59% male) prospectively underwent two standard- and two reduced-dose acquisitions (800 total scans, 1600 reconstructions) using 320 slice CT and 120 kV tube voltage. Automated tube current modulation was used and for reduced-dose scans, prescribed tube current was lowered by 70%. Image noise and Agatston scores were determined and compared. RESULTS Regarding stratification by Agatston score categories (0, 1-10, 11-100, 101-400, >400), reduced-dose/IR versus standard-dose/FBP had excellent agreement at 89% (95% CI: 86-92%) with kappa 0.86 (95% CI: 0.81-0.90). Standard-dose/FBP rescan agreement was 93% (95% CI: 89-96%) with kappa = 0.91 (95% CI: 0.86-0.95) while reduced-dose/IR rescan agreement was similar at 91% (95% CI: 87-94%) with kappa 0.88 (95% CI: 0.83-0.93). Image noise was significantly higher but clinically acceptable for reduced-dose/IR (18 Hounsfield Unit [HU] mean) compared to standard-dose/FBP (16 HU; p < 0.0001). Median radiation exposure was 74% lower for reduced- (0.37 mSv) versus standard-dose (1.4 mSv) acquisitions. CONCLUSION Rescan agreement was excellent for reduced-dose image acquisition with iterative reconstruction and standard-dose acquisition with filtered back projection for the quantification of coronary calcium by CT. These methods make it possible to reduce radiation exposure by 74%. CLINICAL TRIAL REGISTRATION URL: https://clinicaltrials.gov/ct2/show/NCT01621594. UNIQUE IDENTIFIER NCT01621594.
Collapse
|
162
|
Botsikas D, Barnaure I, Terraz S, Becker CD, Kalovidouri A, Montet X. Value of liver computed tomography with iodixanol 270, 80 kVp and iterative reconstruction. World J Radiol 2016; 8:693-699. [PMID: 27551339 PMCID: PMC4965353 DOI: 10.4329/wjr.v8.i7.693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/20/2016] [Accepted: 05/11/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the image quality of hepatic multidetector computed tomography (MDCT) with dynamic contrast enhancement.
METHODS: It uses iodixanol 270 mg/mL (Visipaque 270) and 80 kVp acquisitions reconstructed with sinogram affirmed iterative reconstruction (SAFIRE®) in comparison with a standard MDCT protocol. Fifty-three consecutive patients with known or suspected hepatocellular carcinoma underwent 55 CT examinations, with two different four-phase CT protocols. The first group of 30 patients underwent a standard 120 kVp acquisition after injection of Iohexol 350 mg/mL (Accupaque 350®) and reconstructed with filtered back projection. The second group of 25 patients underwent a dual-energy CT at 80-140 kVp with iodixanol 270. The 80 kVp component of the second group was reconstructed iteratively (SAFIRE®-Siemens). All hyperdense and hypodense hepatic lesions ≥ 5 mm were identified with both protocols. Aorta and portal vessels/liver parenchyma contrast to noise ratio (CNR) in arterial phase, hypervascular lesion/liver parenchyma CNR in arterial phase, hypodense lesion/liver parenchyma CNR in portal and late phase were calculated in both groups.
RESULTS: Aorta/liver and focal lesions altogether/liver CNR were higher for the second protocol (P = 0.0078 and 0.0346). Hypervascular lesions/liver CNR was not statistically different (P = 0.86). Hypodense lesion/liver CNR in the portal phase was significantly higher for the second group (P = 0.0107). Hypodense lesion/liver CNR in the late phase was the same for both groups (P = 0.9926).
CONCLUSION: MDCT imaging with 80 kVp with iterative reconstruction and iodixanol 270 yields equal or even better image quality.
Collapse
|
163
|
Wenz H, Maros ME, Meyer M, Gawlitza J, Förster A, Haubenreisser H, Kurth S, Schoenberg SO, Groden C, Henzler T. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT. Eur J Radiol Open 2016; 3:182-90. [PMID: 27504476 PMCID: PMC4969238 DOI: 10.1016/j.ejro.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 11/16/2022] Open
Abstract
Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose. Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT. State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques.
Objectives To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. Methods 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1–5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Results Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1–5) when compared to sequential cCT with a mean SNR improvement of 44.77% (p < 0.0001). Conclusions Spiral cCT combined with ATCM and IR allows for significant-radiation dose reduction including a reduce eye lens organ-dose when compared to a tilted sequential cCT while improving subjective and objective image quality.
Collapse
Key Words
- ASPECTS, Alberta Stroke Program Early CT score
- ATCM, automated tube current modulation
- Automatic tube current modulation
- DSCT, dual-source computed tomography
- FBP, filtered back projection
- HU, hounsfield units
- ICRP, International Commission on Radiological Protection
- IR, iterative image reconstruction
- Iterative reconstruction
- MDCT, multi-detector computed tomography
- NC, caudate nucleus
- ND, normally distributed data
- NI, non-inferiority analysis
- Organ-specific-radiation dose
- SNR, signal-to-noise ratios
- Sequential cranial CT
- Spiral cranial CT
- WM, white matter
- cCT, cranial CT
- cCT, cranial computed tomography
Collapse
|
164
|
Park JH, Kim B, Kim MS, Kim HJ, Ko Y, Ahn S, Karul M, Fletcher JG, Lee KH. Comparison of filtered back projection and iterative reconstruction in diagnosing appendicitis at 2-mSv CT. Abdom Radiol (NY) 2016; 41:1227-36. [PMID: 27315093 DOI: 10.1007/s00261-015-0632-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE To compare radiologists' diagnostic performance and confidence, and subjective image quality between filtered back projection (FBP) and iterative reconstruction (IR) at 2-mSv appendiceal CT. METHODS The institutional review board approved this retrospective study and waived the requirement for informed consent. We included 107 adolescents and young adults (age, 29.8 ± 8.5 years; 64 females) undergoing 2-mSv CT for suspected appendicitis. Appendicitis was pathologically confirmed in 42 patients. Seven readers with different experience levels independently reviewed the CT images reconstructed using FBP and IR (iDose(4), Philips). They rated both the likelihood of appendicitis and subjective image quality on 5-point Likert scales. Diagnostic confidence was assessed using the likelihood of appendicitis, proportion of indeterminate interpretations, and 3-point normal appendix visualization score. We used receiver operating characteristic analyses, Wilcoxon's signed-rank tests, and McNemar's tests. RESULTS The pooled area under the receiver operating characteristic curve (AUC) was 0.96 for both FBP and IR (95% CI for the difference, -0.02, 0.02; P = 0.73). The AUC difference was not significant in any of the individual readers (P ≥ 0.21). For the majority of the readers, the diagnostic confidence was not significantly different between the two reconstruction methods. Subjective image quality tended to be higher with IR for all readers (P ≤ 0.70), showing significant differences for four readers (P ≤ 0.040). CONCLUSION When diagnosing appendicitis at 2-mSv CT in adolescents and young adults, FBP and IR were comparable in radiologists' diagnostic performance and confidence while IR exhibited higher subjective image quality than FBP.
Collapse
|
165
|
Nguyen VG, Lee SJ. GPU-accelerated iterative reconstruction from Compton scattered data using a matched pair of conic projector and backprojector. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 131:27-36. [PMID: 27265046 DOI: 10.1016/j.cmpb.2016.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Iterative reconstruction from Compton scattered data is known to be computationally more challenging than that from conventional line-projection based emission data in that the gamma rays that undergo Compton scattering are modeled as conic projections rather than line projections. In conventional tomographic reconstruction, to parallelize the projection and backprojection operations using the graphics processing unit (GPU), approximated methods that use an unmatched pair of ray-tracing forward projector and voxel-driven backprojector have been widely used. In this work, we propose a new GPU-accelerated method for Compton camera reconstruction which is more accurate by using exactly matched pair of projector and backprojector. METHODS To calculate conic forward projection, we first sample the cone surface into conic rays and accumulate the intersecting chord lengths of the conic rays passing through voxels using a fast ray-tracing method (RTM). For conic backprojection, to obtain the true adjoint of the conic forward projection, while retaining the computational efficiency of the GPU, we use a voxel-driven RTM which is essentially the same as the standard RTM used for the conic forward projector. RESULTS Our simulation results show that, while the new method is about 3 times slower than the approximated method, it is still about 16 times faster than the CPU-based method without any loss of accuracy. CONCLUSIONS The net conclusion is that our proposed method is guaranteed to retain the reconstruction accuracy regardless of the number of iterations by providing a perfectly matched projector-backprojector pair, which makes iterative reconstruction methods for Compton imaging faster and more accurate.
Collapse
|
166
|
Lv P, Liu J, Chai Y, Yan X, Gao J, Dong J. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience. Eur Radiol 2016; 27:374-383. [PMID: 27097790 DOI: 10.1007/s00330-016-4349-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. METHODS One hundred and sixty patients were randomly divided into two scan protocols (n = 80 each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. RESULTS Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. CONCLUSION Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. KEY POINTS • Automatic spectral imaging protocol selection provides appropriate scan protocols. • Abdominal CT is feasible using spectral imaging and 300 mgI/kg contrast agent. • 50-keV monochromatic images with 50 % ASIR provide optimal image quality.
Collapse
|
167
|
Fleischmann D, Chin AS, Molvin L, Wang J, Hallett R. Computed Tomography Angiography: A Review and Technical Update. Radiol Clin North Am 2016; 54:1-12. [PMID: 26654388 DOI: 10.1016/j.rcl.2015.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The principles of computed tomography angiography (CTA) remain the following with modern-day computed tomography (CT): high-resolution volumetric CT data acquisition, imaging at maximum contrast medium enhancement, and subsequent angiographic two- and three-dimensional visualization. One prerequisite for adapting CTA to ever evolving CT technology is understanding the principle rules of contrast medium enhancement. Four key rules of early arterial contrast dynamics can help one understand the relationship between intravenously injected contrast medium and the resulting time-dependent arterial enhancement. The technical evolution of CT has continued with many benefits for CT angiography. Well-informed adaptations of CTA principles allow for leveraging of these innovations for the benefit of patients with cardiovascular diseases.
Collapse
|
168
|
Third-generation dual-source 70-kVp chest CT angiography with advanced iterative reconstruction in young children: image quality and radiation dose reduction. Pediatr Radiol 2016; 46:462-72. [PMID: 26739141 DOI: 10.1007/s00247-015-3510-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/27/2015] [Accepted: 11/12/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Many technical updates have been made in multi-detector CT. OBJECTIVE To evaluate image quality and radiation dose of high-pitch second- and third-generation dual-source chest CT angiography and to assess the effects of different levels of advanced modeled iterative reconstruction (ADMIRE) in newborns and children. MATERIALS AND METHODS Chest CT angiography (70 kVp) was performed in 42 children (age 158 ± 267 days, range 1-1,194 days). We evaluated subjective and objective image quality, and radiation dose with filtered back projection (FBP) and different strength levels of ADMIRE. For comparison were 42 matched controls examined with a second-generation 128-slice dual-source CT-scanner (80 kVp). RESULTS ADMIRE demonstrated improved objective and subjective image quality (P < .01). Mean signal/noise, contrast/noise and subjective image quality were 11.9, 10.0 and 1.9, respectively, for the 80 kVp mode and 11.2, 10.0 and 1.9 for the 70 kVp mode. With ADMIRE, the corresponding values for the 70 kVp mode were 13.7, 12.1 and 1.4 at strength level 2 and 17.6, 15.6 and 1.2 at strength level 4. Mean CTDIvol, DLP and effective dose were significantly lower with the 70-kVp mode (0.31 mGy, 5.33 mGy*cm, 0.36 mSv) compared to the 80-kVp mode (0.46 mGy, 9.17 mGy*cm, 0.62 mSv; P < .01). CONCLUSION The third-generation dual-source CT at 70 kVp provided good objective and subjective image quality at lower radiation exposure. ADMIRE improved objective and subjective image quality.
Collapse
|
169
|
A Practice Quality Improvement Project: Reducing Dose of Routine Chest CT Imaging in a Busy Clinical Practice. J Digit Imaging 2016; 29:622-6. [PMID: 26992381 DOI: 10.1007/s10278-016-9877-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The purpose of this report is to describe our experience with the implementation of a practice quality improvement (PQI) project in thoracic imaging as part of the American Board of Radiology Maintenance of Certification process. The goal of this PQI project was to reduce the effective radiation dose of routine chest CT imaging in a busy clinical practice by employing the iDose(4) (Philips Healthcare) iterative reconstruction technique. The dose reduction strategy was implemented in a stepwise process on a single 64-slice CT scanner with a volume of 1141 chest CT scans during the year. In the first annual quarter, a baseline effective dose was established using the standard filtered back projection (FBP) algorithm protocol and standard parameters such as kVp and mAs. The iDose(4) technique was then applied in the second and third annual quarters while keeping all other parameters unchanged. In the fourth quarter, a reduction in kVp was also implemented. Throughout the process, the images were continually evaluated to assure that the image quality was comparable to the standard protocol from multiple other scanners. Utilizing a stepwise approach, the effective radiation dose was reduced by 23.62 and 43.63 % in quarters two and four, respectively, compared to our initial standard protocol with no perceived difference in diagnostic quality. This practice quality improvement project demonstrated a significant reduction in the effective radiation dose of thoracic CT scans in a busy clinical practice.
Collapse
|
170
|
Goebel J, Nensa F, Bomas B, Schemuth HP, Maderwald S, Gratz M, Quick HH, Schlosser T, Nassenstein K. Real-time SPARSE-SENSE cardiac cine MR imaging: optimization of image reconstruction and sequence validation. Eur Radiol 2016; 26:4482-4489. [PMID: 26960537 DOI: 10.1007/s00330-016-4301-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/25/2015] [Accepted: 02/22/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Improved real-time cardiac magnetic resonance (CMR) sequences have currently been introduced, but so far only limited practical experience exists. This study aimed at image reconstruction optimization and clinical validation of a new highly accelerated real-time cine SPARSE-SENSE sequence. METHODS Left ventricular (LV) short-axis stacks of a real-time free-breathing SPARSE-SENSE sequence with high spatiotemporal resolution and of a standard segmented cine SSFP sequence were acquired at 1.5 T in 11 volunteers and 15 patients. To determine the optimal iterations, all volunteers' SPARSE-SENSE images were reconstructed using 10-200 iterations, and contrast ratios, image entropies, and reconstruction times were assessed. Subsequently, the patients' SPARSE-SENSE images were reconstructed with the clinically optimal iterations. LV volumetric values were evaluated and compared between both sequences. RESULTS Sufficient image quality and acceptable reconstruction times were achieved when using 80 iterations. Bland-Altman plots and Passing-Bablok regression showed good agreement for all volumetric parameters. CONCLUSIONS 80 iterations are recommended for iterative SPARSE-SENSE image reconstruction in clinical routine. Real-time cine SPARSE-SENSE yielded comparable volumetric results as the current standard SSFP sequence. Due to its intrinsic low image acquisition times, real-time cine SPARSE-SENSE imaging with iterative image reconstruction seems to be an attractive alternative for LV function analysis. KEY POINTS • A highly accelerated real-time CMR sequence using SPARSE-SENSE was evaluated. • SPARSE-SENSE allows free breathing in real-time cardiac cine imaging. • For clinically optimal SPARSE-SENSE image reconstruction, 80 iterations are recommended. • Real-time SPARSE-SENSE imaging yielded comparable volumetric results as the reference SSFP sequence. • The fast SPARSE-SENSE sequence is an attractive alternative to standard SSFP sequences.
Collapse
|
171
|
Knowledge-based iterative model reconstruction: comparative image quality and radiation dose with a pediatric computed tomography phantom. Pediatr Radiol 2016; 46:303-15. [PMID: 26546568 DOI: 10.1007/s00247-015-3486-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/10/2015] [Accepted: 10/19/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND CT of pediatric phantoms can provide useful guidance to the optimization of knowledge-based iterative reconstruction CT. OBJECTIVE To compare radiation dose and image quality of CT images obtained at different radiation doses reconstructed with knowledge-based iterative reconstruction, hybrid iterative reconstruction and filtered back-projection. MATERIALS AND METHODS We scanned a 5-year anthropomorphic phantom at seven levels of radiation. We then reconstructed CT data with knowledge-based iterative reconstruction (iterative model reconstruction [IMR] levels 1, 2 and 3; Philips Healthcare, Andover, MA), hybrid iterative reconstruction (iDose(4), levels 3 and 7; Philips Healthcare, Andover, MA) and filtered back-projection. The noise, signal-to-noise ratio and contrast-to-noise ratio were calculated. We evaluated low-contrast resolutions and detectability by low-contrast targets and subjective and objective spatial resolutions by the line pairs and wire. RESULTS With radiation at 100 peak kVp and 100 mAs (3.64 mSv), the relative doses ranged from 5% (0.19 mSv) to 150% (5.46 mSv). Lower noise and higher signal-to-noise, contrast-to-noise and objective spatial resolution were generally achieved in ascending order of filtered back-projection, iDose(4) levels 3 and 7, and IMR levels 1, 2 and 3, at all radiation dose levels. Compared with filtered back-projection at 100% dose, similar noise levels were obtained on IMR level 2 images at 24% dose and iDose(4) level 3 images at 50% dose, respectively. Regarding low-contrast resolution, low-contrast detectability and objective spatial resolution, IMR level 2 images at 24% dose showed comparable image quality with filtered back-projection at 100% dose. Subjective spatial resolution was not greatly affected by reconstruction algorithm. CONCLUSION Reduced-dose IMR obtained at 0.92 mSv (24%) showed similar image quality to routine-dose filtered back-projection obtained at 3.64 mSv (100%), and half-dose iDose(4) obtained at 1.81 mSv.
Collapse
|
172
|
Murphy KP, Crush L, O’Neill SB, Foody J, Breen M, Brady A, Kelly PJ, Power DG, Sweeney P, Bye J, O’Connor OJ, Maher MM, O’Regan KN. Feasibility of low-dose CT with model-based iterative image reconstruction in follow-up of patients with testicular cancer. Eur J Radiol Open 2016; 3:38-45. [PMID: 27069978 PMCID: PMC4811850 DOI: 10.1016/j.ejro.2016.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 12/22/2022] Open
Abstract
PURPOSE We examine the performance of pure model-based iterative reconstruction with reduced-dose CT in follow-up of patients with early-stage testicular cancer. METHODS Sixteen patients (mean age 35.6 ± 7.4 years) with stage I or II testicular cancer underwent conventional dose (CD) and low-dose (LD) CT acquisition during CT surveillance. LD data was reconstructed with model-based iterative reconstruction (LD-MBIR). Datasets were objectively and subjectively analysed at 8 anatomical levels. Two blinded clinical reads were compared to gold-standard assessment for diagnostic accuracy. RESULTS Mean radiation dose reduction of 67.1% was recorded. Mean dose measurements for LD-MBIR were: thorax - 66 ± 11 mGy cm (DLP), 1.0 ± 0.2 mSv (ED), 2.0 ± 0.4 mGy (SSDE); abdominopelvic - 128 ± 38 mGy cm (DLP), 1.9 ± 0.6 mSv (ED), 3.0 ± 0.6 mGy (SSDE). Objective noise and signal-to-noise ratio values were comparable between the CD and LD-MBIR images. LD-MBIR images were superior (p < 0.001) with regard to subjective noise, streak artefact, 2-plane contrast resolution, 2-plane spatial resolution and diagnostic acceptability. All patients were correctly categorised as positive, indeterminate or negative for metastatic disease by 2 readers on LD-MBIR and CD datasets. CONCLUSIONS MBIR facilitated a 67% reduction in radiation dose whilst producing images that were comparable or superior to conventional dose studies without loss of diagnostic utility.
Collapse
|
173
|
Yasaka K, Katsura M, Hanaoka S, Sato J, Ohtomo K. High-resolution CT with new model-based iterative reconstruction with resolution preference algorithm in evaluations of lung nodules: Comparison with conventional model-based iterative reconstruction and adaptive statistical iterative reconstruction. Eur J Radiol 2016; 85:599-606. [PMID: 26860673 DOI: 10.1016/j.ejrad.2016.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To compare the image quality of high-resolution computed tomography (HRCT) for evaluating lung nodules reconstructed with the new version of model-based iterative reconstruction and spatial resolution preference algorithm (MBIRn) vs. conventional model-based iterative reconstruction (MBIRc) and adaptive statistical iterative reconstruction (ASIR). MATERIALS AND METHODS This retrospective clinical study was approved by our institutional review board and included 70 lung nodules in 58 patients (mean age, 71.2±10.9years; 34 men and 24 women). HRCT of lung nodules were reconstructed using MBIRn, MBIRc and ASIR. Objective image noise was measured by placing the regions of interest on lung parenchyma. Two blinded radiologists performed subjective image analyses. RESULTS Significant improvements in the following points were observed in MBIRn compared with ASIR (p<0.005): objective image noise (24.4±8.0 vs. 37.7±10.4), subjective image noise, streak artifacts, and adequateness for evaluating internal characteristics and borders of nodules. The sharpness of small vessels and bronchi and diagnostic acceptability with MBIRn were significantly better than with MBIRc and ASIR (p<0.008). CONCLUSION HRCT reconstructed with MBIRn provides diagnostically more acceptable images for the detailed analyses of lung nodules compared with MBIRc and ASIR.
Collapse
|
174
|
One-mSv CT colonography: Effect of different iterative reconstruction algorithms on radiologists' performance. Eur J Radiol 2016; 85:641-8. [PMID: 26860679 DOI: 10.1016/j.ejrad.2015.12.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 12/24/2022]
Abstract
PURPOSE To analyze the effect of different reconstruction algorithms on image noise and radiologists' performance at ultra-low dose CT colonography (CTC) in human subjects. MATERIALS AND METHODS This retrospective study had institutional review board approval, with waiver of the need to obtain informed consent. CTC and subsequent colonoscopy were performed at the same day in 28 patients. CTC was scanned at the supine/prone positions using 120/100kVp and fixed 10mAs, and reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR), and model-based IR (Veo) algorithms. Size-specific dose estimates (SSDE) and effective radiation doses were recorded. Image noise was compared among the three datasets using repeated measures analysis of variance (ANOVA). Per-polyp sensitivity and figure-of-merits were compared among the datasets using the McNemar test and jackknife alternative free-response receiver operating characteristic (JAFROC) analysis, respectively, by one novice and one expert reviewer in CTC. RESULTS Mean SSDE and effective radiation dose of CTC were 1.732mGy and 1.002mSv, respectively. Mean image noise at supine/prone position datasets was significantly lowest with Veo (17.2/13.3), followed by ASIR (52.4/38.9) and FBP (69.9/50.8) (P<0.0001). Forty-two polyps in 25 patients were reference polyps. For both readers, per-polyp sensitivity of all 42 polyps was highest with Veo reconstruction (81.0%, 64.3%), followed by ASIR (73.8%, 54.8%) and FBP (57.1%, 50.0%) with statistical significance between Veo and FBP for reader 1 (P=0.002). JAFROC analysis revealed that the figure-of-merit for the detection of polyps was highest with Veo (0.917, 0.786), followed by ASIR (0.881, 0.750) and FBP (0.750, 0.746) with statistical significances between Veo or ASIR and FBP for reader 1 (P<0.05). CONCLUSION One-mSv CTC was not feasible using the standard FBP algorithm. However, diagnostic performance expressed as per-polyp sensitivity and figures-of-merit can be improved with the application of IR algorithms, particularly Veo.
Collapse
|
175
|
Kazantsev D, Guo E, Kaestner A, Lionheart WRB, Bent J, Withers PJ, Lee PD. Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2016; 24:207-219. [PMID: 27002902 PMCID: PMC4929339 DOI: 10.3233/xst-160546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 12/14/2015] [Accepted: 02/07/2016] [Indexed: 06/05/2023]
Abstract
X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In this paper, we propose a novel iterative reconstruction algorithm with a nonlocal regularization term to account for time-evolving datasets. The aim of the proposed nonlocal penalty is to collect the maximum relevant information in the spatial and temporal domains. With the proposed sparsity seeking approach in the temporal space, the computational complexity of the classical nonlocal regularizer is substantially reduced (at least by one order of magnitude). The presented reconstruction method can be directly applied to various big data 4D (x, y, z+time) tomographic experiments in many fields. We apply the proposed technique to modelled data and to real dynamic X-ray microtomography (XMT) data of high resolution. Compared to the classical spatio-temporal nonlocal regularization approach, the proposed method delivers reconstructed images of improved resolution and higher contrast while remaining significantly less computationally demanding.
Collapse
|