151
|
Krasnow C, Rechcigl N, Olson J, Schmitz L, Jeffers SN. First Report of Stem and Foliage Blight of Chrysanthemum Caused by Phytophthora drechsleri in the United States. PLANT DISEASE 2021; 105:3765. [PMID: 33944579 DOI: 10.1094/pdis-03-21-0631-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chrysanthemum (Chrysanthemum × morifolium) plants exhibiting stem and foliage blight were observed in a commercial nursery in eastern Oklahoma in June 2019. Disease symptoms were observed on ~10% of plants during a period of frequent rain and high temperatures (26-36°C). Dark brown lesions girdled the stems of symptomatic plants and leaves were wilted and necrotic. The crown and roots were asymptomatic and not discolored. A species of Phytophthora was consistently isolated from the stems of diseased plants on selective V8 agar (Lamour and Hausbeck 2000). The Phytophthora sp. produced ellipsoid to obpyriform sporangia that were non-papillate and persistent on V8 agar plugs submerged in distilled water for 8 h. Sporangia formed on long sporangiophores and measured 50.5 (45-60) × 29.8 (25-35) µm. Oospores and chlamydospores were not formed by individual isolates. Mycelium growth was present at 35°C. Isolates were tentatively identified as P. drechsleri using morphological characteristics and growth at 35°C (Erwin and Ribeiro 1996). DNA was extracted from mycelium of four isolates, and the internal transcribed spacer (ITS) region was amplified using universal primers ITS 4 and ITS 6. The PCR product was sequenced and a BLASTn search showed 100% sequence similarity to P. drechsleri (GenBank Accession Nos. KJ755118 and GU111625), a common species of Phytophthora that has been observed on ornamental and vegetable crops in the U.S. (Erwin and Ribeiro 1996). The gene sequences for each isolate were deposited in GenBank (accession Nos. MW315961, MW315962, MW315963, and MW315964). These four isolates were paired with known A1 and A2 isolates on super clarified V8 agar (Jeffers 2015), and all four were mating type A1. They also were sensitive to the fungicide mefenoxam at 100 ppm (Olson et al. 2013). To confirm pathogenicity, 4-week-old 'Brandi Burgundy' chrysanthemum plants were grown in 10-cm pots containing a peat potting medium. Plants (n = 7) were atomized with 1 ml of zoospore suspension containing 5 × 103 zoospores of each isolate. Control plants received sterile water. Plants were maintained at 100% RH for 24 h and then placed in a protected shade-structure where temperatures ranged from 19-32°C. All plants displayed symptoms of stem and foliage blight in 2-3 days. Symptoms that developed on infected plants were similar to those observed in the nursery. Several inoculated plants died, but stem blight, dieback, and foliar wilt were primarily observed. Disease severity averaged 50-60% on inoculated plants 15 days after inoculation. Control plants did not develop symptoms. The pathogen was consistently isolated from stems of symptomatic plants and verified as P. drechsleri based on morphology. The pathogenicity test was repeated with similar results. P. drechsleri has a broad host range (Erwin and Ribeiro 1996; Farr et al. 2021), including green beans (Phaseolus vulgaris), which are susceptible to seedling blight and pod rot in eastern Oklahoma. Previously, P. drechsleri has been reported on chrysanthemums in Argentina (Frezzi 1950), Pennsylvania (Molnar et al. 2020), and South Carolina (Camacho 2009). Chrysanthemums are widely grown in nurseries in the Midwest and other regions of the USA for local and national markets. This is the first report of P. drechsleri causing stem and foliage blight on chrysanthemum species in the United States. Identifying sources of primary inoculum may be necessary to limit economic loss from P. drechsleri.
Collapse
|
152
|
Zhou H, Yang SF, Wang SM, Yao K, Ye XY, Gao Q. First Report of Rhizoctonia solani AG-2-2 IIIB Causing Foliar Blight on Bletilla striata in China. PLANT DISEASE 2021; 105:2716. [PMID: 33851863 DOI: 10.1094/pdis-02-21-0270-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bletilla striata (Thunb.) Rchb. f. (Orchidaceae), a perennial plant, is a traditional Chinese herb (known as baiji) used to treat hemorrhage, scalding injuries, gastric ulcers, pulmonary diseases, and inflammation (Zu et al. 2019). In May 2019, foliar blight symptoms were observed on approximately 25% of B. striata (cv. Guiji No.1) plants in three plantations (∼4.5 hectares in total) in Ziyuan County, Guangxi Province, China. Initial symptoms were light brown, irregular, water-soaked spots on the plant leaves. Several spots often merged, forming large, irregular, lesions that extended onto the stem after a week and led to leaf abscission, and even plant death. To determine the causal agent, 5-mm squares cut from the margin of 6 infected leaves were surface disinfected in 1% sodium hypochlorite solution for 2 min, rinsed three times with sterile distilled water, plated on potato dextrose agar (PDA), and incubated at 28°C (12-h light-dark cycle) for 3 days. The emerging hyphal tip of a single mycelium was transferred to PDA to obtain pure cultures of the isolates. Twenty isolates were obtained, and 10 isolates (50%) were initially white before turning light brown (∼4 days). Septate hyphae were 4.29 to 10.75 μm (average 6.42 μm) in diameter and branched at right angles with a constriction at the origin of the branch point. Staining with 1% safranin O and 3% KOH solution (Bandoni 1979) revealed multinucleated cells (3 to 9 nuclei per cell, n = 142). This morphology was typical of Rhizoctonia solani Kühn (Meyer et al. 1990). For species confirmation by molecular identification, three isolates (BJ101.6, BJ101.11, and BJ102.2) were cultured on PDA for 4 days, then DNA was extracted from the mycelium using the CTAB method (Guo et al. 2000), and the ribosomal ITS1-5.8S-ITS2 region was amplified by PCR using the universal fungal primers ITS1 and ITS4 (White et al. 1990). Internal transcribed spacer (ITS) sequences of strains BJ101.6, BJ101.11, and BJ102 (deposited in GenBank under accession nos MT406271, MT892815, and MT892814, respectively) had over 99% similarity with those of R. solani AG-2-2 IIIB in GenBank (accession nos JX913810 and AB054858) (Carling et al. 2002; Hong et al. 2012). Phylogenetic analysis using ITS sequences showed that the isolates clustered monophyletically with strains of R. solani AG-2-2 IIIB. The AG of the isolates was confirmed by their ability to grow well on PDA at 35°C, which separates AG-2-2 IIIB from AG-2-2 IV (Inokuti et al. 2019). Based on morphological characteristics and nucleotide sequence analysis, the isolates were identified as R. solani AG-2-2 IIIB. Pathogenicity was tested using 1.5-year-old B. striata (cv. Guiji No.1) plants grown in a perlite and peat moss mixture (1:3) in 7-cm pots. Healthy leaves on plants were inoculated with an aqueous suspension (approximately 1 × 105 hyphal fragments/mL, 100 μL) prepared from cultures of strains BJ101.6, BJ101.11, and BJ102.2, each isolate was inoculated onto three plants; three other plants with sterile water served as controls. All plants were enclosed in transparent plastic bags and incubated in a greenhouse at 28°C for 14 days (12-h photoperiod). Three days post-inoculation, leaves exposed to the mycelial fragments had symptoms similar to those originally observed in the field. No symptoms were detected on control plants. Experiments were replicated three times with similar results. To fulfill Koch's postulates, R. solani AG-2-2 IIIB was re-isolated on PDA from symptomatic leaves and confirmed by sequencing, whereas no fungus was isolated from the control plants. To our knowledge, this is the first report of R. solani AG-2-2 IIIB causing foliar blight on B. striata in China, and these findings will be useful for further control strategies and research.
Collapse
|
153
|
Mao YF, Chen H, Jin L, Wang M, Zheng XR, Chen F. First Report of Wilt of European hornbeam (Carpinus betulus L.) Caused by Fusarium oxysporum in China. PLANT DISEASE 2021; 105:3759. [PMID: 33834853 DOI: 10.1094/pdis-12-20-2617-pdn] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
European hornbeam (Carpinus betulus L.) has been used as an important ornamental species for urban landscaping since the Italian Renaissance (Rocchi et al. 2010). In May 2019, 15% of 3000 C. betulus trees with wilted leaves and root rot were observed in a field (about 26 ha) in Pizhou, Jiangsu Province, China. Internal discoloration of the stem began with brown to black discoloration of the vascular system and gradually spread to inward areas. Roots and stems from symptomatic plants were washed free of soil, surface sterilized with 0.8% NaOCl, rinsed three times in sterile H2O, and blotted dry with a paper towel. Small segments (0.5-cm-long) were cut from the discolored vascular tissues, and then put on potato dextrose agar (PDA) at 25°C in darkness. After 4 days, fungal colonies were observed on the PDA. Pure cultures were obtained by monosporic isolation, and 9 morphologically similar fungal isolates (EJ-1 to EJ-9) were obtained. All purified cultures were incubated on PDA at 25°C in darkness as the initial isolation. Colonies of the 9 isolates on PDA displayed entire margins and showed abundant pink aerial mycelia initially and turned to light violet with age. Microconidia were elliptical or oval in shape, 0 septate, (5.2-)8.7(-12.5) × (3.5-)3.6(-5.5) µm. Macroconidia were falciform, 0-4 septate, and straight to slightly curved with a notched foot cell, (17.1-)20.5(-28.4) × (3.8-)4.1(-4.6) µm. These morphological characteristics resemble Fusarium oxysporum (Leslie and Summerell 2006). Genomic DNA of each isolate was extracted from mycelia using a CTAB method (Mo¨ller et al. 1992). The RPB2, TEF1 and cmdA genes were amplified and sequenced with the primers 5f2/7c (Liu et al. 2000), EF-1Ha/EF-2Tb (Carbone and Kohn 1999) and Cal228F/CAL2Rd (Groenewald et al. 2013), respectively. The sequences were deposited in GenBank (Table 1). A maximum likelihood phylogenetic analysis based on RPB2, TEF1 and cmdA sequences using MEGA7 revealed that the isolates were placed in the F. oxysporum species complex with 98% bootstrap support. Based on the morphological and molecular characters, all 9 isolates were identified as F. oxysporum. A pathogenicity experiment was conducted using 30 2-year-old C. betulus seedlings potted in sterile peat, 27 for inoculation (3 replicate plants per isolate) and 3 for a negative control. The treated plants were planted in the peat mixed with 50 ml of a conidial suspension of each isolate respectively. The negative control was inoculated with sterilized water. Conidia were harvested from colonized plates of PDA using sterilized water and adjusted to a concentration of 1×107 conidia/ml. All 30 seedlings were incubated in a greenhouse at 25°C with a relative humidity of 80% and a 12-h photoperiod. The inoculated seedlings displayed wilt symptoms within 30 to 40 days, and eventually died within 75 to 85 days after inoculation. Control plants remained symptomless. F. oxysporum was successfully reisolated from the vascular tissues of symptomatic plants, and sequences of RPB2, TEF1 and cmdA of re-isolates matched those of the original isolates. No pathogen was isolated from the tissues of control plants. The experiment was repeat twice with the similar results, fulfilling Koch's postulates. F. oxysporum is an important soil-borne pathogen and can cause disease in many economic plants, such as yellowwood (Graney et al. 2016), hickory (Zhang et al. 2015) and larch (Rolim et al. 2020). To our knowledge, this is the first report of wilt on C. betulus caused by F. oxysporum in China.
Collapse
|
154
|
Colmán A, Costa H, Lima IM, Barreto RW. First report of Dematophora bunodes causing root rot of taro ( Colocasia esculenta ) and leatherleaf fern ( Rumohra adiantiformis) in Brazil. PLANT DISEASE 2021; 105:3298. [PMID: 33819103 DOI: 10.1094/pdis-02-21-0332-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colocasia esculenta, taro (T), is a major staple food crop in the tropics, including Brazil. Rumohra adiantiformis, leatherhead fern (LF), is broadly cultivated for its ornamental fronds that are used as a component of flower arrangements. Soft root rot of T and LF, and accompanying rapid plant wilt and death, was observed in plantations in Espírito Santo (Brazil), at Venda Nova do Imigrante, in April 2014 (LF) and July 2015 (T). Great losses were observed. Firstly, a few individual scattered plants showed symptoms of disease in the plantations, then aggregates of plants and, after a few seasons, the majority of the plants in the field died before harvest, leading to the abandonment of the activity by farmers. A white mycelial matt was observed on the crown and roots ofying T and LF plants. Infected corms become necrotic and dark brown mycelial strands were observed internally in tissues. Diseased organs were carefully washed and surface sterilized in 10% sodium hypochlorite. Samples of tissue were removed from the boundary of necrotic tissues and placed on potato dextrose-agar (PDA) plates and incubated at 23±2 C in the dark. Homogeneous mycelial colonies were isolated from both T and LF and, upon observation of microscope mounts under an Olympus BX 53 light microscope, pear-shaped hyphal swellings at the septae (Castro et al. 2013) were observed. . A representative isolate from each host was deposited in the local culture collection as COAD 2911 (LF isolate) and COAD 2912 (T isolate). Additionally, DNA was extracted from each culture using the Wizard Genomic DNA Purification Kit (Promega) and the internal transcriptional spacer region was PCR amplified using the primers ITS5 and ITS1 (White et al. 1990). The amplicons were sequenced by MACROGEN (http://www.macrogen.com). Consensus sequences were deposited in GenBank: MW561595 (LF), MW561596 (T). Consensus regions were compared against other sequences available in Genbank. A BLASTn analysis resulted in LF and T sequences respectively 99% (526/531bp) and 98% (412/420 bp) identity with that of Dematophora bunodes (MN984619). Additionally, a phylogenetic analysis of a selected sequence alignment was performed on the CIPRES webportal (Miller et al., 2010) using MrBayes v.3.1.1 (Ronquist & Huelsenbeck, 2003). A phylogenetic tree was generated showing that the placement of LF and T isolates is in D. bunodes (Wittstein et al. 2020). Pathogenicity tests were performed for LF and T isolates against their original hosts. For inoculum, bags of twice-autoclaved parboiled rice were seeded separately with each isolate, which were allowed to colonize the rice for two weeks. Four healthy young LF and T plants were utilized. Two extra healthy plants grown in the same conditions, but not inoculated, served as controls. Thirty g of Dematophora-colonized rice was placed in direct contact with stems or roots of each LF or T plant. Plants were maintained in a dew chamber for 48 h after inoculation and then transferred to a greenhouse bench. All inoculated plants developed wilt and root rot and died after 15-20 days. Controls remained healthy. White mycelial colonies were formed over tissues of diseased LF and T and upon observation under the microscope, typical pear-shaped swellings were observed in slides prepared from newly obtained pure cultures from LF and T. Dematophora bunodes (formerly Rosellinia bunnodes) has a worldwide distribution and is well known as a polyphagous plant pathogen (Farr and Rossman, 2020) but has never been reported as a pathogen either of LF or T before in Brazil and worldwide. Its report on LF and T further expands an already large host-range and resolves the etiology of the disease on LF and T.
Collapse
|
155
|
Chen CX, Wu YF, Gong HH, Lin YJ, Chen CY. First Report of Binucleate Rhizoctonia AG-L Causing Root and Stem Rot of Wishbone Flower ( Torenia fournieri) in Taiwan. PLANT DISEASE 2021; 105:3304. [PMID: 33754863 DOI: 10.1094/pdis-11-20-2428-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wishbone flower (Torenia fournieri L.) is a common ornamental plant for flower bed in Taiwan. In August 2018, root and stem rot of wishbone flower occurred on the flower bed in the campus of National Chung Hsing University, Taichung city, with 100% incidence. Symptoms were dark brown discoloration of basal stems and brown necrosis of roots. Lesions from base of stems were excised into 5 mm long fragments, which were then surface sterilized in 1% sodium hydrochloride for 1 min, rinsed in sterile distilled water, dried on filter paper and thereafter placed onto 2% water agar. After 24 h, hyphae characteristic of Rhizoctonia (Sneh et al. 1991) appeared and dominated in every isolation. Hyphal tips were transferred to potato dextrose agar (PDA). After 5 days of incubation at 28°C, characteristic brown colonies of Rhizoctonia (Sneh et al. 1991) were observed. Hyphal width was 4.29±0.52 μm. No sclerotia were visibly present after 21 days of growth on PDA at 28°C. Hyphae were stained by 0.3% safranin-O and 1% KOH. There were two nuclei in each hyphal compartment, suggesting a binucleate Rhizoctonia fungus. ITS sequence has been used as the best tool to identify specific anastomosis group (AG) of Rhizoctonia as shown by Sharon et al. (2006, 2008). ITS sequence was amplified using the primers Bd1a and ITS4 (Goka et al. 2009; White et al. 1990). Blast search analysis of this acquired sequence (acc. no. LC498494) revealed the highest similarity (98.75 to 99.83%) with the reference sequences (acc. nos. AB286934, AB286933, and AB196653) of binucleate Rhizoctonia AG-L, namely Ceratobasidium sp. AG-L. Pathogenicity test was carried out using seedlings of 4-week-old wishbone flower each grown in a pot of 6.35 cm diameter. To prepare the inoculum, a PDA agar block (6 mm in diameter) excised from the growing front of 5-day-old colony was transferred into a flask with 200 ml of potato dextrose broth (PDB) incubated in a shaker at 26°C and 120 rpm for 6 days. The PDB broth was then blended into slurry. Ten pots each with a seedling were inoculated by pouring 50 ml of slurry onto the potting medium. Five pots were served as the controls by pouring PDB only. Pots were maintained in a greenhouse (26 to 33°C). Three days after inoculation, all inoculated plants exhibited symptom of root and stem rot. The same fungus was reisolated and confirmed by sequencing rDNA-ITS. This is the first report of root and stem rot of wishbone flower caused by binucleate Rhizoctonia AG-L in Taiwan and in the world. Although this is the second cases, since Wang and Hsieh (1993), for binucleate Rhizoctonia AG-L to be pathogenic, this study shows that this fungus has the potential to cause damages and is worth of further investigations.
Collapse
|
156
|
Ma YM, Zhou JL, Hu Z, Zhong J, Zhu JZ. First report of Epicoccum sorghinum causing leaf spot on Hemerocallis citrina in China. PLANT DISEASE 2021; 105:2251. [PMID: 33630682 DOI: 10.1094/pdis-10-20-2144-pdn] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hemerocallis citrina Baroni, also called yellow flower vegetable (huang hua cai in Chinese), is belonging to the family Xanthorrhoeaceae and is widely planted in China, the Korea Peninsula and Japan for ornamental purposes and vegetable value. In addition, they could also be used as a traditional Chinese medicinal and modern medicinal plant (Du et al. 2014). In August 2019, a leaf spot disease was observed on H. citrina plants in Zhejiang Province of China, with approximately 85% incidence in almost 700 ha. Symptoms were firstly displayed as small, water-soaked, pale chlorotic spots, with yellow halos enlarged into large fusiform spots with brown edge and gray centers. Later, infected leaves were badly damaged and became wilted. Small pieces of infected tissue were excised from the margin of necrotic lesions, surface disinfected with 70% ethanol for 8s, 0.1% HgCl2 for 1 min, rinsed with sterile distilled water for three times, and incubated on potato dextrose agar (PDA, amended with 100 mg/L streptomycin sulfate) at 26°C in the dark. Fungal colonies with similar cultural morphology were consistently obtained from repeated isolations. When cultured on PDA, colonies were villose, regular, grayish-green, and turned gray-brown, with the reverse side became reddish-brown. Chlamydospores were gray, unicellular or multicellular, nearly spherical, 11 to 27 × 10 to 23 μm. Pycnidia and conidia were produced on PDA when the fungal colonies were exposed to ultraviolet light for 12 h with a distance of 40 cm to the late source. Pycnidia were brown, mostly spheroid, and measured 90 to 138 × 120 to 210 μm. Conidia were hyaline, ellipsoidal, unicellular, aseptate, 4.3 to 5.5 × 1.8 to 2.4 μm. These morphological characteristics agreed with the descriptions of Epicoccum sorghinum (Zhou et al. 2018). The DNA of a representative strain HHC6-2 was extracted using CTAB method and the rDNA internal transcribed spacer (ITS), actin (ACT) and β-tubulin (TUB) genes were amplified and sequenced, using the primers ITS4/ITS5 (White et al. 1990), ACT512F/ACT783R (Carbone and Kohn 1999) and Bt-1/Bt-2 (Glass and Donaldson 1995), respectively. BLASTn searches of the resulting ITS, ACT and TUB sequences (accession nos. MW073403, MW080522, MW080521) revealed 98.58 to 100% identity to the E. sorghinum sequences (MT125854, MN956831 and MF987525). The pathogenicity test was carried out by inoculation of potted H. citrina plants using conidial suspensions. H. citrina seedlings were planted in pots with sterilized soil. Before inoculation, leaves were surface-disinfected with 70% ethanol and sterile distilled water. Leaves were inoculated by placing small droplets of conidial suspensions (105 conidia/ml) on one side of the midvein, and 3 to 5 drops were used per leaf. Sterile water was used as control. All the inoculated plants were placed in humid chambers at 25°C for 48h, and then maintained in a greenhouse at 25°C with a 16 h day-8 h night cycle. The pathogenicity assays were performed twice with three replications. Four days after inoculation, yellow to brown spots resembling those observed in the fields developed on the inoculated leaves. However, no symptoms were observed on the controls. E. sorghinum was re-isolated and identified based on morphological and molecular techniques as described above. To our knowledge, this is the first report of E. sorghinum causing leaf spot on H. citrina. It seems to be a threat for H. citrina planting in China and should be considered in order to reduce losses caused by this disease. This study might provide the basis for diagnosis and control of the disease.
Collapse
|
157
|
Elliott M, Rollins L, Bourret T, Chastagner G. First report of leaf blight caused by Phytophthora ramorum on periwinkle (Vinca minor) in Washington State, USA. PLANT DISEASE 2021; 105:2023. [PMID: 33560879 DOI: 10.1094/pdis-08-20-1721-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytophthora ramorum (Werres, De Cock & Man in't Veld) was recovered from symptomatic foliage of periwinkle at a botanical garden in WA in March 2015. Symptoms were tan colored lesions with a dark brown margin visible on both surfaces of the leaf and were found on wounds or around leaf margins. Periwinkle is native to Europe and is commonly used for ground cover in ornamental landscapes. It is known to be invasive in US forests near the urban/wildland interface. Potential spread of P. ramorum into WA forests is of regulatory concern, as well as long distance spread to other states via nursery stock (7 CFR §301.92-2). Phytophthora ramorum was isolated from symptomatic foliage by excising leaf pieces 4-6 mm in diameter and surface-sterilizing in 0.6% sodium hypochlorite followed by two rinses in sterile water. Leaf pieces were plated on PARP medium (Ferguson and Jeffers 1999) and after 2-3 days at 20°C, slow-growing dense colonies with coralloid hyphae were isolated onto V8 agar. Colony morphology and chlamydospore production were consistent with descriptions of P. ramorum (Werres et al. 2001), except that the isolate was slower growing and had irregular, non-wildtype morphology (Elliott et al. 2018) compared to other isolates of P. ramorum. ITS and COX1 regions of mycelial DNA was amplified and sequenced to confirm the identity of P. ramorum using primers ITS1/ITS4 (White et al. 1990) and COX1F1/COX1R1 (Van Poucke et al. 2012). Sequences were submitted to GenBank (accession nos. ITS MT031975, COX1 MT031974). BLAST results showed at least 98% similarity with sequences of P. ramorum (ITS, MN540640 [98%]; COX1, EU124920 [100%]), and belonged to the NA1 clonal lineage. Pathogenicity of P. ramorum to periwinkle was confirmed by completing Koch's Postulates. Inoculum was grown on V8 agar plates at 20°C for two weeks until sporangia were abundant. A zoospore suspension was produced by flooding plates with 7 ml sterile water, incubating for 2 hours at 5°C, then for an additional hour at 24°C. Zoospores were observed under the microscope and quantified with a hemocytometer, then diluted to 2 x 105 zoospores/ml. A 10 µl droplet of inoculum was placed at one wounded and one unwounded site on six leaves on each of four plants. In addition, a set of four plants was inoculated by dipping foliage on one branch per plant into the zoospore suspension for 30 seconds. A set of four control plants were mock inoculated in the same manner using sterile water. The trial was repeated once. Inoculated plant materials were incubated in a moist chamber for 3-5 days and free moisture was present on foliage upon removal. Plants were held in a biocontainment chamber (USDA-APHIS permit # 65857) at 20C and symptom development assessed after 7 days (Figure S1). . Symptoms developed on foliage inoculated using both methods in both trials. Phytophthora ramorum was isolated once from droplet inoculated foliage at a wounded site on one plant. Reisolation onto PARP and then V8 agar was conducted from surface-sterilized symptomatic tissue and the presence of P. ramorum confirmed by observation of colony morphology and chlamydospore production. The presence of P. ramorum was also confirmed with DNA extraction from symptomatic foliage from plants from each of the two trials followed by PCR and sequencing of the COX1 gene (EU124920, 100%) (Figure S2). None of the water-inoculated controls were positive for P. ramorum. Low isolation success could be attributed to reduced pathogenicity due to being a non-wildtype isolate. Acknowledgements This work was supported by the USDA National Institute of Food and Agriculture, McIntire-Stennis project 1019284 and USDA APHIS Cooperative Agreement AP17PPQS&T00C070.
Collapse
|
158
|
Zhang Y, Zhou J, Zhan B, Li S, Zhang Z. First report of peach leaf pitting-associated virus (PLPaV), plum bark necrosis stem pitting-associated virus (PBNSPaV), and mume virus A (MuVA) from Mei (Prunus mume) in China. PLANT DISEASE 2021; 105:2259. [PMID: 33554663 DOI: 10.1094/pdis-11-20-2521-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mei (Prunus mume Sieb. et Zucc.), widely distributed in East Asian countries for both fruiting- and flowering-purposes, is susceptible to viral infections (Marais et al. 2018). Infection by plum bark necrosis stem pitting-associated virus (PBNSPaV) or little cherry virus 2 (LChV-2) possibly caused overall yield loss in mei in Japan due to incomplete flower development, low fruit bearing rate, and interveinal chlorosis (Numaguchi et al. 2019). Virus-like disease showing mosaic, interveinal chlorosis, vein clearing, or necrotic spot on leaf was observed in mei trees in Beijing, Wuhan, Wuxi, and Nanjing in spring and early summer from 2017 to 2018. Symptomatic leaves collected from the four regions were pooled as two samples for RNA-sequencing (RNA-seq) analysis. After ribosomal RNA (rRNA)-depletion, total RNA extracted by TRNzol reagent (TIANGEN, China) was subjected to library construction using NEBNext Ultra RNA Library Prep Kit (NEB, MA, USA) and sequenced on an Illumina Hiseq 4000 (Novogene, China). Sequencing data was filtered, screened, and assembled as described previously (Zhou et al. 2020) to generate contigs, following by BLAST-x/n search in viral genomes in GenBank. We identified >300 contigs (208-10756 nt) homologous to Asian prunus virus 1 and Asian prunus virus 2 (APV1 and 2), mume virus A (MuVA), PBNSPaV, and peach leaf pitting-associated virus (PLPaV), with 71-100% of nucleotide sequence identity values. APV1 and 2 have been reported in mei in China (Wang et al. 2018), here, we focused on the other three viruses. Contigs homologous to these three viruses were further assembled into three scaffolds of 14,224 nt, 1107 nt, and 753 nt for PBNSPaV, MuVA, and PLPaV, respectively. The scaffold of PBNSPaV (MW217574) nearly covered the whole genome of the isolate VIC3 from Australia (LC523039.1) (Kinoti et al. 2020) with 92.30% of sequence identity; the scalffold of MuVA (MW217572) covered 14.50% of the genome of the isolate pm14 from Japan (NC 040568.1) (Marais et al.2018) with 98.47% sequence identity; the scaffold of PLPaV (MW217573) covered 15.26% of the genome of the isolate XJ-6 from peach (KY867750.1) (He et al. 2017) with 85.23% sequence identity. Presence of the three viruses were verified by RT-PCR detection using designed specific primers for PBNSPaV (Forward: 5'-CAACAAAACTCCCACAGCGG-3 [positions 4014-4033, NC_009992.1] / Reverse: 5'-GCCAAAAGAAGTGCTGGTGG-3' [positions 4659-4640, NC_009992.1]), MuVA (Forward: 5'-AAGAGAATTACTTCAATGCCCTC-3' [positions 171-194, NC_040568.1] / Reverse: 5'-GATATCCAAGATACGATTAGCCAG-3' [positions 533-510, NC_040568.1]), and PLPaV (Forward: 5'-GCTATATCTCAACAACTGCAAGAA-3 [positions 5798-5821, KY867750.1] / Reverse: 5'- GAGTGATACATAGTCCACAGAGAT-3'[ positions 6045-6022, KY867750.1]). The amplified 626, 350 and 251 bp fragments of PBNSPaV, MuVA and PLPaV had 91.47%, 98.07% and 81.89% sequence identity to their respective reference sequences. This is the first report of PBNSPaV and MuVA infecting mei in China, and more importantly, the first report of a new host for PLPaV. In addition, 30 collected leaf samples from Nanjing and Wuhan were analyzed by RT-PCR and 15, 6, and 5 samples tested positive to PLPaV, PBNSPaV, and MuVA, respectively. Although it is difficult to link a particular virus with the observed symptoms due to mixed infections, the symptoms were significantly associated with viral infection because almost all symptomatic leaf samples were virus(es)-positive. Further studies would be required to determine the distribution and impact of these viruses on mei trees and other stone fruits species and to understand the possibility that mei trees may play a role in PLPaV epidemiology.
Collapse
|
159
|
Gu CY, Pan R, Abid M, Zang HY, Yang X, Chen Y. First Report of Blackleg DiseaseCaused by Epicoccum sorghinumon on Lavender (Lavandula stoechas) in China. PLANT DISEASE 2021; 105:2733. [PMID: 33496606 DOI: 10.1094/pdis-10-20-2280-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lavender (Lavandula angustifolia Mill) is an ornamental plant and worldwidely grown for its aromatic and pharmacological qualities. In June 2020, the symptoms of blackleg disease on lavender plants were observed, with more than 50% incidence in Chaohu city (117°38'19.12″N, 31°47'18.94″W) of Anhui Province, China. The disease symptoms progressed from stem wilt and necrosis to prolonged necrosis and bending of leaves, and all infected lavender plants died eventually. Ten necrotic stem lesions werecollectedfrom ten independent plants for the isolation of pathogen. All samples were washed in 70% ethanol for 1 minute, rinsed twice in sterile distilled water and placed on water agar (WA) plates containing 30 mg/liter of kanamycin. All 16 fungal isolates were transferred onto potato dextrose agar (PDA) and incubated at 26°C for 5 days, and all fungal colonies were isolated consistently, which produced redish-gray mycelium at 26°C with a 12-h photoperiod on PDA media. They developed black pycnidia with abundant hyaline, unicellular, oval shaped conidia (4.5 to 5.9 × 2.1 to 2.5 μm) after 14 days. DNA was extracted (10-day-old culture) using the Fungal DNA Mini Kit (Omega Bio-tek, China), according to the manufacturer's protocol. The internal transcribed spacer (ITS), beta-tubulin (β-tub) and translation elongation factor 1-alpha (tef1-α) genes of three isolates were amplified using the primers: ITS1/ITS4 (White et al. 1990), Bt2a/Bt2b (Glass et al. 1995) and EF1-728F/EF1-986R (Carbone et al. 1999), respectively. The ITS(MT883331), β-tub(MT896891) andtef1-α (MT874165) genes were sequenced and analyzed through BLASTn. The ITS sequence showed 99.81% with Epicoccum sorghinum (GenBank Accession No. MK020690.1). The β-tub and tef1-α showed 100% homology with Epicoccum sorghinum (GenBank AccessionMN554062.1 and MN512426.1), respectively. To complete Koch's postulates, pathogenicity tests were performed by spraying the fungal spore suspension (1×105 CFU/ml) prepared from 14-day-old cultures onto needling wounded stems of 1-year-old potted healthy L. angustifolia plants. The healthy plants were sprayed with sterilized water onto needling wounded stems served as negative control. Wilting and stem necrosis were observed 5 days afterinoculation and incubation in a growth chamber at 26°C, with a 12-h photoperiod. All fungal infected plants died after 10 days, while, the control plants remained healthy. The fungus was re-isolated from the lesions of the inoculated plants and verified. Based on morphological characteristics, sequence analysis and pathogenicity test, the pathogen was identified as E. sorghinum. The pathogen has been observed previously on many plants such as tea (Bao et al. 2019) and taro (Liu et al. 2018), in China. To our knowledge, this is the first report of E. sorghinum causing blackleg disease of lavender in China and worldwide.
Collapse
|
160
|
Wang F, Tang T, Guo J, Guo X, Duan Y, You J. Occurrence of Stem Blight Caused by Pseudomonas extremorientalis on Pinellia ternata in China. PLANT DISEASE 2021; 105:1851. [PMID: 33461319 DOI: 10.1094/pdis-10-20-2244-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pinellia ternata is a perennial herbaceous plant, which tubers can be used for anti-inflammatory and has a significant position in Traditional Chinese Medicine (Marki et al. 1987). In April 2020, bacterial stem blight first occurred on P. ternata in Jingmen City (30°32'N, 111°51'E), Hubei Province, China. In the follow-up investigation, the disease also appeared in plantations of P. ternata in Qianjiang City, Tianmen City. Initial symptoms showed orange-red streak on the stem, then progressed into chlorotic and water-soaked lesions, which caused roots to be necrotic and leaves to stunting, fading, and wilting. In the end, the leaves withered, the stems rotted completely, and the incidence of plant collapse reached 20~30%. To isolate the plant pathogenic bacteria, twenty P. ternata plant samples with distinct chlorotic stem symptoms were obtained from two fields in Jingmen City. Symptomatic samples were cut to 1-cm-long pieces by sterile scalpel, then were streaked onto nutrient agar medium and grow at 28℃ for 48 h. Four pure typical aerobic, gram-negative bacteria were isolated by characterized with transparent, smooth, round, convex surfaces. The isolated colonies did not produce fluorescent pigments on King's B medium. In addition, the isolates were positive for nitrate reduction, arabinose, mannitol, D-ribose, sucrose, D-sorbitol, and were negative for gelatin liquefaction, rhamnose, D-glucose, D-melibiose. These characteristics were identified as Pseudomonas extremorientalis (Ivanova et al. 2002). One representative colony ZJH1 was selected randomly for further verification. The 16s rRNA, gyrB, and rpoD regions were obtained with primers 27F/1492R (Weisburg et al. 1991), gyrB-Fps/ gyrB-Rps, and rpoD-Fps/ rpoD-Rps, respectively (Sarkar and Guttman. 2004). These sequences were deposited in GenBank as accession nos. MT459234.1, MT469887.1 and MT469886.1, which revealed 99% homology with P. extremorientalis strain BS2774 (accession nos. LT629708.1). The pathogenicity of P. extremorientalis strain ZJH1 was confirmed by using 3-month-old, healthy, greenhouse-grown P. ternata plants. The stems were stabbed and inoculated 10 μL of the bacterial suspension (108 CFU / ml), inoculating the same amount of sterile water as a control, repeated 5 times for each treatment. The plants were cultivated in a greenhouse at 28 °C and a humidity of 80%. Three days later, the stems showed necrosis, followed by the withered leaves and died plants, whereas the control had no symptoms. P. extremorientalis were reisolated and verified again from symptomatic plants, which was consistent with Koch's postulates. This experiment was repeated thrice to get the same result. To our knowledge, this is the first report of bacterial stem blight caused by P. extremorientalis on P. ternata in China. Stem blight caused by P. extremorientalis poses a significant threat to yield and marketability of P. ternata. Further research on selecting resistant variety and effective chemical control is needed. References: Ivanova, E. P., et al. 2002. Int J Syst Evol Micr. 2113:2120. https://doi.org/10.1099/00207713-52-6-2113 Marki, T., et al. 1987. Planta Med. 53:412. Sarkar, S. F., Guttman, D. S. 2004. Appl. Environ. Microbiol. 70:1999. https://doi.org/10.1128/AEM.70.4.1999-2012.2004 Weisburg, W. G., et al. 1991. J. Bacteriol. 173:697. https://doi.org/10.1128/jb.173.2.697-703.1991 F. F. Wang and Y. J. You contributed equally to this work. The author(s) declare no conflict of interest. Funding: National Modern Agricultural Industrial Technology System (grant no. CARS-21), Technology R&D Program of Enshi Tujia and Miao Autonomous Prefecture (grant no. D20190015), Science Funds for Young Scholar of Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences (grant no. 2019ZYCJJ01), Key R&D Program of Hubei Province (grant no. 2020BCA059), Key Technology R&D Projects of Hubei Agricultural Science and Technology Innovation Center (grant no. 2020-620-000-002-04).
Collapse
|
161
|
Mao YF, Jin L, Chen H, Zheng XR, Wang M, Chen F. First report of leaf spot disease caused by Stemphylium eturmiunum on American sweetgum ( Liquidambar styraciflua L.) in China. PLANT DISEASE 2021; 105:1560. [PMID: 33434040 DOI: 10.1094/pdis-09-20-1877-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
American sweetgum (Liquidambar styraciflua L.) is an important tree for landscaping and wood processing. In recent years, leaf spots on American sweetgum with disease incidence of about 53% were observed in about 1200 full grown plants in a field (about 8 ha) located in Pizhou, Jiangsu Province, China. Initially, dense reddish-brown spots appeared on both old and new leaves. Later, the spots expanded into dark brown lesions with yellow halos. Symptomatic leaf samples from different trees were collected and processed in the laboratory. For pathogen isolation, leaf sections (4×4mm) removed from the lesion margin were surface sterilized with 75% ethanol for 20s and then sterilized in 2% NaOCl for 30s, rinsed three times in sterile distilled water, incubated on potato dextrose agar (PDA) at 25 °C in the darkness. After 5 days of cultivation, the pure culture was obtained by single spore separation. 6 isolate samples from different leaves named FXA1 to FXA6 shared nearly identical morphological features. The isolate FXA1 (codes CFCC 54675) was deposited in the China Center for Type Culture Collection. On the PDA, the colonies were light yellow with dense mycelium, rough margin, and reverse brownish yellow. Conidiophores (23-35 × 6-10 µm) (n=60) were solitary, straight to flexuous. Conidia (19-34 × 10-21 µm) (n=60) were single, muriform, oblong, mid to deep brown, with 1 to 6 transverse septa. These morphological characteristics resemble Stemphylium eturmiunum (Simmons 2001). Genomic DNA was extracted from mycelium following the CTAB method. The ITS region, gapdh, and cmdA genes were amplified and sequenced with the primers ITS5/ITS4 (Woudenberg et al. 2017), gpd1/gpd2 (Berbee et al. 1999), and CALDF1/CALDR2 (Lawrence et al. 2013), respectively. A maximum likelihood phylogenetic analysis based on ITS, gapdh and cmdA (accession nos. MT898502-MT898507, MT902342-MT902347, MT902336-MT902341) sequences using MEGA 7.0 revealed that the isolates were placed in the same clade as S. eturmiunum with 98% bootstrap support. All seedlings for pathogenicity tests were enclosed in plastic transparent incubators to maintain high relative humidity (90%-100%) and incubated in a greenhouse at 25°C with a 12-h photoperiod. For pathogenicity, the conidial suspension (105 spores/ml) of each isolate was sprayed respectively onto healthy leaves of L. styraciflua potted seedlings (2-year-old, 3 replicate plants per isolate). As a control, 3 seedlings were sprayed with sterile distilled water. After 7 days, dense reddish-brown spots were observed on all inoculated leaves. In another set of tests, healthy plants (3 leaves per plant, 3 replicate plants per isolate) were wound-inoculated with mycelial plugs (4×4mm) and inoculated with sterile PDA plugs as a control. After 7 days, brown lesions with light yellow halo were observed on all inoculation sites with the mycelial plugs. Controls remained asymptomatic in the entire experiment. The pathogen was reisolated from symptomatic tissues and identified as S. eturmiunum but was not recovered from the control. The experiment was repeated twice with the similar results, fulfilling Koch's postulates. S. eturmiunum had been reported on tomato (Andersen et al. 2004), wheat (Poursafar et al. 2016), garlic (L. Fu et al. 2019) but not on woody plant leaves. To our knowledge, this is the first report of S. eturmiunum causing leaf spot on L. styraciflua in the world. This disease poses a potential threat to American sweetgum and wheat in Pizhou.
Collapse
|
162
|
Tang T, Wang F, Guo J, Guo X, Duan Y, You J. Fusarium acuminatum Associated with Root Rot of Ophiopogon japonicus (Linn. f.) in China. PLANT DISEASE 2020; 105:1860. [PMID: 33373289 DOI: 10.1094/pdis-11-20-2344-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ophiopogon japonicus (Linn. f.) is a perennial evergreen in the Liliaceae family that is cultivated in many provinces of China due to its high medicinal and economic value . In April 2019, an unknown root rot disease was observed on the rhizomes of O. japonicus in a commercial production field in Xiangyang City (30.83° N, 112.53° E), Hubei Province. Disease incidence was approximately 10-20%. Symptoms included chlorosis, drooping and rolling of the leaves followed by rapid death of entire plant. Infected roots appeared to be softened, necrotic, and shriveled with reddish fungal growth. Infected tissues were disinfested on surface with 75% ethanol for 30 s and 0.1% HgCl2 for 1 min, rinsed with sterile distilled water, and dried. Small pieces (2 mm × 2 mm) were then excised from disinfested tissue and incubated on potato dextrose agar (PDA) medium at 25 ℃ in the dark. After 3 days of incubation, six isolates with 75% of isolation rate and same colony morphology were sub-cultured and purified by hyphal tip isolation. Purified cultures grew rapidly and media plates (70×70 mm ) were covered with hyphae after 3 to 4 days. Cultures were initially white and became pink or red over 5 days. Microconidia were not observed. Macroconidia were produced from monophialides on branched conidiophores, which were slender, equilaterally curved, and measured 32.5 to 53.5 μm in length and 3.5 to 5.1 μm in width, with three to five septa. All strains were preliminarily identified as Fusarium acuminatum (Eslie and Summerell 2006) on the basis of morphology. To confirm the identity of the pathogen, molecular identification was performed with strain MD1. Following DNA extraction, PCR was performed using the TSINGKE 2×T5 Direct PCR Mix kit. Target areas of amplification were internal transcribed spacer (ITS), RNA polymerase second largest subunit (RPB2) and beta-tubulin gene (TUB2) regions of rDNA, using ITS1,4 (Yin et al. 1990) , RPB2-5f2/7cr (O'Donnell et al. 2010)and Btu-F-F01, Btu-F-R01 primers(Wang et al. 2014), respectively. Nucleotide sequences were deposited in NCBI (GenBank MT525360.1; MW164629; MT588110.1). BLAST analysis of the ITS sequence had 100% similarity to a 517 bp portion of F. acuminatum sequence in GenBank (MK764994.1) ;RPB2 sequence had 100% similarity to a 687 bp portion of F. acuminatum sequence in GenBank (HM068330.1) and TUB2 sequence had 99% similarity to a 964 bp portion of F. acuminatum sequence in GenBank (KT965741.1). A pathogenicity test was performed in laboratory on O. japonicus roots with isolate MD1. Mycelial plugs (5 mm) were excised from the margin of colony cultured for 5 days, and placed on three-years-old tuberous roots covered with wet sterile cotton and kept at 25℃, under 80% relative humidity. Controls were inoculated with non-colonized PDA plugs (5 mm). All treatments had three replicate plants. On incolated plants, white hyphae covered on O. japonicus roots 3 DPI became pink and by 5 DPI, roots had rot symptoms. By comparision, the control plants had no symptoms. The pathogen was reisolated from the inoculated roots and exhibited same morphological characteristics and ITS sequence as those of F. acuminatum. F. acuminatum was reported to cause fruit rot on postharvest pumpkin and Vaccinium corymbosum in China (Li et al. 2019; Wang et al. 2016).To our knowledge, this is the first report of root rot caused by F. acuminatum on O. japonicus in China.
Collapse
|
163
|
Hahn MH, Gelain J, Pereira WV, Martinha D, May De Mio LL, Duarte HDSS. Occurrence of Plasmopara destructor causing Downy Mildew on Impatiens walleriana in Brazil. PLANT DISEASE 2020; 105:1572. [PMID: 33325744 DOI: 10.1094/pdis-07-20-1519-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Impatiens walleriana (Balsaminaceae), popularly known as Impatiens, is an African succulent and a popular ornamental plant worldwide (GBIF, 2019). In Brazil it is broadly grown indoors and outdoors, including in public parks of Curitiba, State of Paraná (Viezzer et al. 2018). In September 2018, I. walleriana plants showing typical downy mildew symptoms were observed in wastelands and gardens in Curitiba. The symptoms included adaxial chlorotic leaf spots with abundant white sporulation on abaxial side (Supplementary figure 1). The disease led to severe defoliation of the plants and the incidence of the plant disease varied from 20 to 80% of plants in an area ranging from 400 to 40,000 m2. A representative sample was deposited in herbarium of the Museu Botânico Municipal de Curitiba (MBM 331601). The following morphology was observed: Sporangiophores (n = 30), hyaline, thin walled, emerging through stomata, 407.3 to 551.1 μm long, slightly swollen base, first branch at 165.8 to 324.7 μm from base, end branches 5.1 to 13.1 μm long, sporangia (n = 50) hyaline, thin-walled subglobose to ovoid, from 12.8 to 21.9 μm x 12.5 to 17.9 μm, slightly papillate. Due to morphological and genetic variations within the species Plasmopara obducens, Görg et al. (2017) proposed the new species P. velutina and P. destructor. The morphology of the Curitiba specimen was equivalent to that described for P. destructor (Görg et al. 2017). DNA was extracted from LEMIDPRTf-19-02 isolate and the ITS1 and cox2 regions were PCR amplified as described in Görg et al. (2017). The resulting sequences were deposited in GenBank (ITS1, MT680628; cox2, MT952335). A BLASTn analysis of the sequences revealed 100% homology with ITS (MF372742) and cox2 (MF372728) sequences of type strain of P. destructor (GLM-F107554). A Bayesian phylogenetic analysis was performed to compare the sequences from this study with reference sequences for P. obducens, P. destructor and P. velutina (Görg et al. 2017; Salgado-Salazar et al. 2018). The oomycete from Curitiba grouped in a reliable clade with P. destructor (Supplementary figure 2). Pathogenicity was carried out by ex vivo and in vivo tests. For ex vivo, stems with approximately four healthy leaves of I. walleriana (n = 10) were embedded in aluminum grid inside of gerbox with the stem bases immersed in distilled water. The inoculation of five stems was carried out by spraying a suspension with 6 x 104 sporangia mL-1 on the abaxial side of the leaves. Five stems with leaves inoculated with sterile water were used as controls. They were incubated in a growth chamber in the dark for 48 h at 20 °C and another 12 days in a 12 h light photoperiod. The confirmation of pathogenicity in plants (in vivo) was obtained with the inoculation of I. walleriana seedlings (one-month old) grown in 2 dm3 aluminum pots. The inoculation methodology and number of plants were the same as the stems test. After the inoculation, plants were incubated in a growth chamber for 48 h in the dark at 20 °C with 100% RH with nebulization, and another 10 days at a photoperiod of 12 hours of light. For both tests, abundant sporulation was observedwith morphology equivalent to Plasmopara destructor described by Görg et al. (2017). No disease developed on control plants. To our knowledge, this is the first report of P. destructor on I. walleriana in Brazil (Farr and Rossman 2019, Silva et al. 2019) representing a potential loss to flower production and a reduction in flowering period in public gardens and parks.
Collapse
|
164
|
Zhu M, Ji J, Duan X, Li Y. First Report of Golovinomyces cichoracearum Causing Powdery Mildew on Zinnia elegans in China. PLANT DISEASE 2020; 105:1213. [PMID: 33289410 DOI: 10.1094/pdis-11-20-2333-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zinnia elegans, common zinnia, is an annual plant with highly ornamental values. It is widely planted in many nurseries, city parks, universities and home gardens in China. From August to October 2020, powdery mildew-like signs and symptoms were observed on leaves of Z. elegans growing on the campus of Henan Normal University, Henan Province, China. White powdery colonies in circular- or irregularly shaped-lesions were abundant on both surfaces of leaves and covered up to 95 % of the leaf area. Any infected leaves were chlorotic, deformed or senescence. More than 70 % of the monitored Z. elegans plants showed these signs and symptoms. Conidiophores (n = 20) were 100 to 200 × 9 to 13 μm and composed of foot cells, followed by straight cells and conidia. Mycelial appressoria were single and nipple-shaped. The oval-shaped conidia (n = 30) were 22 to 36 × 12 to 18 μm, with a length/width ratio of 1.4 to 2.7, and produced germ tubes from the polar ends of the spore. No chasmothecia were found. Based on these morphological characteristics, the pathogen was initially identified morphologically as Golovinomyces cichoracearum (Braun and Cook 2012). Structures of the pathogen were scraped from infected leaves and total genomic DNA was isolated using the method previously described by Zhu et al. (2019). The internal transcribed spacer (ITS) region of rDNA was amplified by PCR using the primers ITS1/ITS4 (White et al. 1990) and the amplicon was sequenced by Invitrogen (Shanghai, China). The sequence for the fungus was deposited into GenBank under Accession No. MW029904 and was 99.83 % identical (595/596 bp) to G. cichoracearum on Symphyotrichum novi-belgii (HM769725)(Mørk et al. 2011). To perform pathogenicity analysis, leaf surfaces of five healthy plants were fixed in a settling tower and then inoculated by blowing fungal conidia from mildew-infested leaves using pressurized air. Five non-inoculated plants served as a control. The inoculated and non-inoculated plants were separately maintained in two growth chambers (humidity, 60 %; light/dark, 16 h/8 h; temperature, 18 ℃). Eleven- to twelve-days post-inoculation, powdery mildew signs were conspicuous on inoculated plants, while control plants remained healthy. Similar results were obtained by conducting two repeated pathogenicity assays. Thus, based on the morphological characteristics and molecular analysis, the pathogen was identified and confirmed as G. cichoracearum. This pathogen has been reported on Z. elegans in India, Israel, Jordan, Korea, Nepal, Sri Lanka, Switzerland, and Turkey (Farr and Rossman 2020). To our best knowledge, this is the first report of G. cichoracearum on Z. elegans in China. The sudden outbreak of powdery mildew caused by G. cichoracearum on Z. elegans may adversely impact the plant health and ornamental value in China. Therefore, the confirmation of G. cichoracearum infecting Z. elegans expands the understanding of this pathogen and provides the fundamental knowledge for future powdery mildew control.
Collapse
|
165
|
Castroagudin V, Shishkoff N, Stanley O, Whitesell R, Olson T, Crouch JA. First report: Co-infection of Sarcococca hookeriana (sweetbox) by Coccinonectria pachysandricola and Calonectria pseudonaviculata causes a foliar disease of sweetbox in Pennsylvania. PLANT DISEASE 2020; 105:1568. [PMID: 33258432 DOI: 10.1094/pdis-06-20-1198-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sweetbox (Sarcococca hookeriana) are high value ornamental shrubs susceptible to disease caused by Calonectria pseudonaviculata (Cps) and Coccinonectria pachysandricola (Cpa) (Malapi-Wight et al. 2016; Salgado-Salazar et al. 2019). In July 2018, 18-month old sweetbox with leaf spots and defoliation were observed in a residential landscape in Lancaster County, Pennsylvania. Small tan leaf spots grew to cover half of the leaf, developing a concentric banding with dark brown rings and a yellow halo (Sup. Doc. 1: Sup. Fig. 1). The symptoms agreed with those of Cpa disease of sweetbox reported from Washington D.C. (Salgado-Salazar et al. 2019). Diseased plants were located ~1.5 m from Buxus sempervirens with boxwood blight. Morphological and genetic characterization of isolated fungi and pathogenicity tests followed Salgado-Salazar et al. (2019) (Sup. Doc. 2). White to salmon pink spore masses developed on the abaxial leaf surface after humid chamber incubation. Two distinct fungal cultures were recovered (JAC 18-61, JAC 18-79) on potato dextrose agar (Fisher Scientific, Pittsburg, PA). JAC 18-61 presented cultural and morphological characteristics as described for Cps (Crous et al. 2002). JAC 18-79 produced flat, filamentous, light salmon colonies with tan centers and white filiform borders containing pale pink sporodochia, verticillate and simple conidiophores (x̄: 61.8 ± 20.12 µm, N = 20) with lateral, cylindrical phialides (x̄ = 18.1 ± 5.83 x 2.4 ± 0.7 µm, N = 20), and ellipsoid, hyaline conidia without septa (x̄ = 15.2 ± 1.9 x 3.3 ± 0.7 µm, N = 20). Sexual structures and chlamydospores were not observed. The characteristics of JAC 18-79 agree with those reported for Cpa (Salgado-Salazar et al. 2019). Bidirectional sequencing of the ITS, beta-TUB, and RPB1 and RPB2 regions was performed as described (Salgado-Salazar et al. 2019). BLASTn comparisons against NCBI GenBank revealed JAC 18-61 sequences (MT318150 and MT328399) shared 100% identity with Cps sequences (JX535321 and JX535307 from isolate CB002). Sequences from JAC 18-79 (MT318151, MT341237 to MT341239) were 100% identical to Cpa sequences (MH892596, MH936775, MH936703 from isolate JAC 16-20 and JF832909, isolate CBS 128674). The genome of JAC 18-79 was sequenced and yielded an assembly of 26.3 Mb (204 contigs > 1000 bases, N50 = 264.3 kb, 92x coverage, JABAHV0000000000) that contained the MAT1-2 mating-type idiomorph and shared 98.9% similarity with Cpa BPI910731. Isolate JAC 18-61 (Cps) caused lesions on wounded and unwounded sweetbox and boxwood leaves (Sup. Table 1). In general, JAC 18-79 (Cpa) infected only wounded leaves of both hosts; however, in one trial, one unwounded sweetbox and two unwounded boxwood plants developed lesions, possibly due to the presence of natural wounds. Control plants did not develop symptoms. These results diverge to some degree from previous reports of Cpa infecting unwounded sweetbox and not infecting wounded boxwood (Salgado-Salazar et al. 2019). These results indicate that virulence variation among Cpa isolates might occur. Plating of symptomatic tissue and examination of spores fulfilled Koch's postulates for both pathogens. To our knowledge, this is the first report of Cpa blight on sweetbox in Pennsylvania, and the second U.S. report of the disease. This is also the first report of co-infection of Cpa and Cps on diseased sweetbox foliage. Given the capacity of Cpa to infect both sweetbox and boxwood, inspection for Cpa on both hosts is advisable.
Collapse
|
166
|
Zhou LY, Yang SF, Wang SM, Lv JW, Wan WQ, Li YH, Zhou H. Identification of Fusarium ipomoeae as the causative agent of leaf spot disease in Bletilla striata in China. PLANT DISEASE 2020; 105:1204. [PMID: 33258424 DOI: 10.1094/pdis-09-20-1974-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bletilla striata (Thunb.) Rchb. f. (Orchidaceae) is traditionally used for hemostasis and detumescence in China. In April 2019, a leaf spot disease on B. striata was observed in plant nurseries in Guilin, Guangxi Province, China, with an estimated incidence of ~30%. Initial symptoms include the appearance of circular or irregular brown spots on leaf surfaces, which progressively expand into large, dark brown, necrotic areas. As lesions coalesce, large areas of the leaf die, ultimately resulting in abscission. To isolate the pathogen, representative samples exhibiting symptoms were collected, leaf tissues (5 × 5 mm) were cut from the junction of diseased and healthy tissue, surface-disinfected in 1% sodium hypochlorite solution for 2 min, rinsed three times in sterile water, plated on potato dextrose agar (PDA) medium, and incubated at 28°C (12-h light-dark cycle) for 3 days. Hyphal tips from recently germinated spores were transferred to PDA to obtain pure cultures. Nine fungal isolates with similar morphological characteristics were obtained. Colonies on PDA were villose, had a dense growth of aerial mycelia and appeared pinkish white from above and greyish orange at the center and pinkish-white at the margin on the underside. Macroconidia were smooth, and hyaline, with a dorsiventral curvature, hooked to tapering apical cells, and 3- to 5-septate. Three-septate macroconidia were 21.2 to 32.1 × 2.4 to 3.9 μm (mean ± SD: 26.9 ± 2.5 × 3.2 ± 0.4 μm, n = 30); 4-septate macroconidia were 29.5 to 38.9 × 3.0 to 4.3 μm (mean ± SD: 33.5 ± 2.6 × 3.6 ± 0.3 μm, n = 40); and 5-septate macroconidia were 39.3 to 55.6 × 4.0 to 5.4 μm (mean ± SD: 48.0 ± 3.9 × 4.5 ± 0.3 μm, n = 50). These morphological characteristics were consistent with F. ipomoeae, a member of the Fusarium incarnatum-equiseti species complex (FIESC) (Wang et al. 2019). To confirm the fungal isolate's identification, the genomic DNA of the single-spore isolate BJ-22.3 was extracted using the CTAB method (Guo et al. 2000). The internal transcribed space (ITS) region of rDNA, translation elongation factor-1 alpha (TEF-1α), and partial RNA polymerase second largest subunit (RPB2) were amplified using primer pairs [ITS1/ITS4 (White et al. 1990), EF-1/EF-2 (O'Donnell et al. 1998), and 5f2/11ar (Liu, Whelen et al. 1999, Reeb, Lutzoni et al. 2004), respectively]. The ITS (MT939248), TEF-1α (MT946880), and RPB2 (MT946881) sequences of the BJ-22.3 isolate were deposited in GenBank. BLASTN analysis of these sequences showed over 99% nucleotide sequence identity with members of the FIESC: the ITS sequence showed 99.6% identity (544/546 bp) to F. lacertarum strain NRRL 20423 (GQ505682); the TEF-1α sequence showed 99.4% similarity (673/677 bp) to F. ipomoeae strain NRRL 43637 (GQ505664); and the RPB2 sequence showed 99.6% identity (1883/1901 bp) to F. equiseti strain GZUA.1657 (MG839492). Phylogenetic analysis using concatenated sequences of ITS, TEF-1α, and RPB2 showed that BJ-22.3 clustered monophyletically with strains of F. ipomoeae. Therefore, based on morphological and molecular characteristics, the isolate BJ-22.3 was identified as F. ipomoeae. To verify the F. ipomoeae isolate's pathogenicity, nine 1.5-year-old B. striata plants were inoculated with three 5 × 5 mm mycelial discs of strain BJ-22.3 from 4-day-old PDA cultures. Additionally, three control plants were inoculated with sterile PDA discs. The experiments were replicated three times. All plants were enclosed in transparent plastic bags and incubated in a greenhouse at 26°C for 14 days. Four days post-inoculation, leaf spot symptoms appeared on the inoculated leaves, while no symptoms were observed in control plants. Finally, F. ipomoeae was consistently re-isolated from leaf lesions from the infected plants. To our knowledge, this is the first report of F. ipomoeae causing leaf spot disease on B. striata in China. The spread of this disease might pose a serious threat to the production of B. striata. Growers should implement disease management to minimize the risks posed by this pathogen.
Collapse
|
167
|
Liu Y, Vasiu S, Daughtrey ML, Filiatrault M. First Report of Dickeya dianthicola causing blackleg on New Guinea Impatiens (Impatiens hawkeri) in New York State, USA. PLANT DISEASE 2020; 105:1192-1192. [PMID: 33200972 DOI: 10.1094/pdis-09-20-2020-pdn] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
New Guinea impatiens (NGI), Impatiens hawkeri, has a $54-million wholesale market value in the United States (National Agricultural Statistics Service, 2019) and is highly resistant to Impatiens downy mildew (Plasmopara obducens) according to growers' experience (Warfield, 2011). In March 2019, NGI cv. Petticoat White in a New York greenhouse showed wilting, black stem streaks and vascular discoloration, with a 20% disease incidence. Symptomatic tissue pieces were added to sterile water in a test tube and streaks made on potato dextrose agar (PDA). After incubation at 26oC for two days, the most abundant colony type (mucoid, pale yellow) was transferred to PDA. One representative colony was selected and labeled as isolate 67-19. A single colony of isolate 67-19 was transferred to lysogeny broth (LB) (Bertani, 1951) and cultured at 28oC. Genomic DNA was extracted and polymerase chain reaction (PCR) performed using the 16S rRNA gene universal primers fD2 and rP1 resulting in a partial 16S rRNA amplicon (Weisburg et al., 1991). Basic Local Alignment Search Tool (BLASTn) analysis (Altschul et al., 1990) showed 99% identity with sequences of species belonging to Dickeya. Different primer sets have been developed to detect and identify the genus Dickeya and its various species (Pritchard et al., 2013). The primer sets used for genus identification, dnaX (Sławiak et al., 2009), Df/Dr (Laurila et al., 2010) and ADE1/ADE2 (Nassar et al., 1996), resulted in 500-bp, 133-bp, and 420-bp amplicons, respectively. Results suggested the bacterium was a Dickeya sp. To determine whether the species could be D. dianthicola, the specific primer set DIA-A was used (Pritchard et al., 2013) and the expected product of 150-bp was obtained. BLASTn results showed that the partial dnaX sequence (GenBank accession MT895847) of isolate 67-19 had 99% identity with the sequence of D. dianthicola strain RNS04.9 isolated in 2004 from potato (Solanum tuberosum) in France (GenBank accession CP017638.1). Therefore, this isolate 67-19 was designated as D. dianthicola. The complete genome of D. dianthicola strain 67-19 was generated using Nanopore and Illumina sequencing (GenBank accession CP051429) (Liu et al., 2020). Average nucleotide identity (ANI) determined by FastANI (v1.1) (Jain et al., 2018) showed 97.43% identity between the genome of D. dianthicola strain 67-19 and that of D. dianthicola strain NCPPB 453 (GenBank accession GCA_000365305.1), isolated in 1957 from carnation (Dianthus caryophyllus) in the UK. The pathogenicity of D. dianthicola strain 67-19 was shown on NGI cultivars Petticoat White and Tamarinda White. In July 2020, sterile toothpicks were used to make wounds and to transfer bacteria from a 48-hr PDA culture of D. dianthicola strain 67-19 to the stems of four plants of each cultivar. Four plants of each cultivar were mock inoculated similarly and all wound sites were wrapped with Parafilm before placing plants on a greenhouse bench. Ten days later, stems inoculated with D. dianthicola strain 67-19 showed necrotic lesions similar to the original symptoms, while control plants did not show symptoms. One month after inoculation, bacteria were re-isolated from all symptomatic stems. PCR was performed on the re-isolated bacteria as described. The dnaX sequence (GenBank accession MT895847) was confirmed to match that of D. dianthicola strain 67-19 (GenBank accession CP051429) 100% and fragments of the expected size were amplified (Liu et al., 2020). Stab inoculations of strain 67-19 into potato stems and tubers also resulted in blackleg and soft rot symptoms at the sites of inoculation, while mock-inoculated stem and tuber showed no symptoms. The sequence of the dnaX gene of the re-isolated bacterium from inoculated potatoes was confirmed to match that of D. dianthicola strain 67-19. To our knowledge, this is the first report of blackleg of New Guinea impatiens caused by D. dianthicola in the United States and worldwide. Since the disease caused by D. dianthicola poses a significant threat to the ornamentals and potato industries (Charkowski et al., 2020), further research on genome biology, epidemiology and management options is needed. LITERATURE CITED Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215:403-410. Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology 62:293-300. Charkowski, A., Sharma, K., Parker, M.L., Secor, G.A., and Elphinstone, J. 2020. Bacterial diseases of potato. Pages 351-388 in: The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind, H. Campos and O. Ortiz, eds. Springer International Publishing, Cham. Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., and Aluru, S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications 9:5114. Laurila, J., Hannukkala, A., Nykyri, J., Pasanen, M., Hélias, V., Garlant, L., and Pirhonen, M. 2010. Symptoms and yield reduction caused by Dickeya spp. strains isolated from potato and river water in Finland. European Journal of Plant Pathology 126:249-262. Liu, Y., Helmann, T., Stodghill, P., and Filiatrault, M. 2020. Complete genome sequence resource for the necrotrophic plant-pathogenic bacterium Dickeya dianthicola 67-19 isolated from New Guinea Impatiens. Plant Disease. https://doi.org/10.1094/PDIS-09-20-1968-A. Nassar, A., Darrasse, A., Lemattre, M., Kotoujansky, A., Dervin, C., Vedel, R., and Bertheau, Y. 1996. Characterization of Erwinia chrysanthemi by pectinolytic isozyme polymorphism and restriction fragment length polymorphism analysis of PCR-amplified fragments of pel genes. Applied and Environmental Microbiology 62:2228-2235. National Agricultural Statistics Service. 2019. Floriculture crops 2018 summary. ISSN: 1949-0917. https://downloads.usda.library.cornell.edu/usda-esmis/files/0p0966899/rr1728124/76537c134/floran19.pdf Pritchard, L., Humphris, S., Saddler, G.S., Parkinson, N.M., Bertrand, V., Elphinstone, J.G., and Toth, I.K. 2013. Detection of phytopathogens of the genus Dickeya using a PCR primer prediction pipeline for draft bacterial genome sequences. Plant Pathology 62:587-596. Sławiak, M., van Beckhoven, J.R.C.M., Speksnijder, A.G.C.L., Czajkowski, R., Grabe, G., and van der Wolf, J.M. 2009. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. European Journal of Plant Pathology 125:245-261. Warfield, C.Y. (2011). Downy Mildew of Impatiens. In GrowerTalks. https://www.growertalks.com/Article/?articleid=18921 Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173:697-703.
Collapse
|
168
|
Qu XJ, Fan SJ. First report of the parasitic invasive weed field dodder ( Cuscuta campestris) parasitizing the confamilial invasive weed common morning-glory ( Ipomoea purpurea) in Shandong, China. PLANT DISEASE 2020; 105:1230. [PMID: 33151815 DOI: 10.1094/pdis-09-20-1934-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Common morning-glory (Ipomoea purpurea (L.) Roth, Convolvulaceae), an annual herbaceous vine native to South America, was first recorded to be cultivated in China in 1890, and since then it has invaded all provinces of China. It was one of the 18 alien invasive species in China (MEE. 2014). As an invasive weed, it can readily invade dry lands, orchards, and nurseries and compete for sunlight by wrapping other plants. On 20 September 2019 and 18 July 2020, I. purpurea was found to be parasitized by a dodder species (also Convolvulaceae) in Lushan Mountain (36°21'N, 118°3'E, 569 m elevation), Shandong province, China (Fig. S1). Within and area of ca. 100 m2, dozens of individuals of common morning-glory were parasitized by the leafless stems of dodder. After removal of the haustrial connection of the dodder stem from the I. purpurea stem, brownish black lesions around uneven holes were visible on the I. purpurea stem, with broken haustoria clearly visible to our naked eye remaining in the I. purpurea stem (Fig. S1). Anatomical results showed that the haustoria of dodder penetrate I. purpurea stem and xylem elements connect the vascular systems of both the parasitic and host plant (Fig. S1). Based on morphological characteristics of stems, inflorescences, calyx, corolla, stamens, and capsules as described in Costea et al. (2006), this dodder was identified as Cuscuta campestris Yunck. (i.e., field dodder). Field dodder is readily distinguished from C. chinensis and C. australis in China by the capsules with persistent corollas enveloping 1/3 or less of its base and the spreading and inflexed corolla lobes with acute to acuminate apices. In order to further confirm the identity of the species, total genomic DNA was extracted and sequenced using genome-skimming method as described in Qu et al. (2019). An 831-bp region of 18S-ITS1-5.8S-ITS2-26S for the dodder studied was assembled, examined, and deposited in GenBank under accession number MN718805. The new sequence has 100% similarity with other available sequences of C. campestris (accession number: KT383104, KT383150, KY968857). Phylogenetic analysis also placed the new dodder accession with other accessions of C. campestris (Fig. S2a). In addition, the plastome sequence of the dodder studied was assembled (86,727 bp in length) and deposited in GenBank under accession number MN708214, and a BLAST analysis found that it was 99.98% similar to that of C. gronovii (accession number: AM711639). The plastome of C. gronovii was published by Funk et al. (2007). However, Costea et al. (2015) indicated that Funk et al. (2007) misidentified C. campestris as C. gronovii. Furthermore, our phylogenetic tree strongly supported the identification of the dodder studied as C. campestris (Fig. S2b). Therefore, the dodder on common morning-glory in Shandong province was finally identified as C. campestris according to morphological and molecular evidence. The specimen of C. campestris on I. purpurea was deposited at the herbarium of the College of Life Sciences, Shandong Normal University (voucher number: 092012B). Field dodder, the second most common dodder species in North America, is the most widespread Cuscuta weed in the world and has been found in Africa, Asia, Australia, Europe, and South America (Holm et al. 1997). To our knowledge, this is the first report of the parasitic invasive weed C. campestris parasitizing the invasive weed I. purpurea in Shandong of China. This is also the first report of Cuscuta species parasitizing confamilial Ipomoea species, which is especially noteworthy given that the genus Cuscuta is sister to the genus Ipomoea. This study provides a good model for exploring gene flow between species of closely related genera with different lifestyle. Another implication of this study is that customs and departments of inspection and quarantine need to quarantine the seeds or plants of both dodders and common morning-glories.
Collapse
|
169
|
He AG, Chen J, Hu ZX, Zhong J, Zhu JZ. First Report of Damping-off on Sedum plumbizincicola Caused by Rhizoctonia solani AG 2-1 in China. PLANT DISEASE 2020; 105:701-701. [PMID: 33084545 DOI: 10.1094/pdis-08-20-1849-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sedum plumbizincicola X.H. Guo et S.B. Zhou sp. nov. is a plant species of the family Crassulaceae that has the ability to hyperaccumulate cadmium and zinc in high concentrations (Liu et al. 2017). In April of 2018 and 2019, a disease of damping-off was observed on S. plumbizincicola seedlings in a nursery in Changsha (28°13'N; 112°56'E), the Hunan Province of China, in which nearly 1 million seedlings were planted. Approximately 40% of the surveyed plants were infected. The affected plants displayed water-soaking on the shoots and stems, and chlorosis on the leaves. As the disease spread upward, leaf stalks or the whole plants became wilted and collapsed. Five diseased stem and leaf samples were collected. Symptomatic tissues were excised and surface sterilized with 70% ethanol for 10 s, and 0.1% HgCl2 for 2 min, washed with sterile distilled water for three times, and then cultured on potato dextrose agar (PDA) at 26°C in darkness. Fungal colonies were similar in morphology: white, light gray to brown, with hyphae branched at nearly right angles, septa near the branching point and constrictions at the base of hyphal branches. After 10 days, white-gray to brown sclerotia were produced. The morphological characteristics were consistent with those of Rhizoctonia solani J.G. Kühn (Sneh et al. 1991). Genomic DNA of a representative isolate was extracted using the cetyltrimethylammonium bromide method. The internal transcribed spacer (ITS) region of rDNA was amplified and sequenced with the primer pairs ITS4/ITS5 (White et al. 1990). When analyzed by the BLASTn program, the ITS sequence (GenBank Accession No. MN961664) had 100% identity to the corresponding gene sequence of R. solani anastomosis group (AG) 2-1(Accession Nos: LC202869.1 and MH862641.1). In addition, primers Rhsp1/ITS4B and Rhsp2/ITS1F specific for R. solani, and AG21sp/ITS4B specific for R. solani AG 2-1 were also used (Salazar et al. 2000). Results revealed that our isolate was R. solani AG 2-1. Pathogenicity was confirmed via in vivo inoculation of one-month-old S. plumbizincicola seedlings in sterilized nursery soil with four representative isolates. For each pot, five 5-mm-diameter mycelial plugs from 7-days old colonies on PDA were placed in the soil near the base of the stems. Plants inoculated with agar plugs without mycelium served as controls. The inoculated plants were kept in a growth chamber at 25°C with a 12/12 h light/dark cycle. Pathogenicity tests were performed twice, with three replicative potted plants for each isolate in each test. Approximately 25 days after inoculation, the damping-off symptoms resembling those observed in the field were displayed on the inoculated plants, while no obvious symptoms were observed on the control plants. R. solani was re-isolated from all infected plants and molecularly characterized, thus confirming Koch's postulates. R. solani has been previously reported as the pathogen of damping-off disease in many plants, such as canola (Paulitz et al. 2006) and oat (Zhang et al. 2016). However, to the best of our knowledge, this is the first report of R. solani causing damping-off of S. plumbizincicola in China. S. plumbizincicola is widely planted for heavy metal pollution treatment in China. The occurrence of this disease could seriously affect the production of the seedlings, and management strategies should be developed.
Collapse
|
170
|
Xiao YT, Shen YM, Wang CJ, Huang TC. First Report of Podosphaera xanthii Causing Powdery Mildew on Zinnia elegans in Taiwan. PLANT DISEASE 2020; 105:1201-1201. [PMID: 33079025 DOI: 10.1094/pdis-06-20-1263-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zinnia elegans L., known as common zinnia, is an annual flowering plant belonging to the Asteraceae family and native to North America. The plant has colorful flowers and is one of the popular ornamental bedding plants for gardening. In March 2020, powdery mildew symptoms were observed in a zinnia floral field with an incidence of >70% in Dacun Township, Changhua County, Taiwan. The symptoms were spotted on the stems, flower petals and leaves which appeared as irregular colonies and white patches on the surfaces. When disease progressed, most of the plant surfaces were covered by the white fungal colonies and became yellowish. Under microscopic examination, hyphal appressoria of the fungus were indistinct or slightly nipple-shaped. The conidiophores were unbranched, erect, straight, smooth to slightly rough, 75.0 to 200.0 × 10.0 to 15.0 µm (n=10), composed of a cylindrical, flexuous foot cell, 40.0 to 100.0 × 8.8 to 15.0 µm (n=10), and following 1 to 5 shorter cells. The conidia were ellipsoid to ovoid, 25.0 to 37.5 × 15.0 to 23.8 µm (n=60), with an average length-to-width ratio of 1.8 and contained fibrosin bodies. No chasmothecia were found. Three voucher specimens (TNM Nos. F0033680, F0033681, and F0033682) were deposited in the National Museum of Natural Science, Taichung City, Taiwan. To confirm the identification, the internal transcribed spacer (ITS) regions of the three specimens were amplified using primer pairs ITS1/PM6 and PM5/ITS4 (Shen et al. 2015) and sequenced from both ends. The resulting sequences were deposited in GenBank under Accession Nos. MT568609, MT568610, and MT568611. The sequences were identical to each other and shared a 100% identity with that of Podosphaera xanthii MUMH 338 on Z. elegans from Japan (Accession No. AB040355) (Ito and Takamatsu 2010) over a 475 bp alignment. Accordingly, the fungus was identified as P. xanthii (Castagne) U. Braun & Shishkoff (Braun and Cook 2012) based on its morphological and molecular characters. Pathogenicity was demonstrated through inoculation by gently pressing naturally infected leaves onto leaves of three healthy potted common zinnia that had been sprayed with 0.02% Tween 20. Additional three non-inoculated plants treated in the same way without inoculating the powdery mildew served as the controls. Powdery mildew colonies were observed on inoculated leaves after 10 days at room temperature, later the diseased leaves became yellowish and deteriorated. The morphological traits of the fungus on the inoculated leaves were similar to those of the first observed. In addition, the ITS sequence from a colony on the inoculated leaves was 100% identical to MT568609-MT568611, fulfilling the Koch's postulates. All the controls remained symptomless. Z. elegans is known to be a host for different species of powdery mildew in the genus Erysiphe, Golovinomyces, and Podosphaera (Farr and Rossman 2020). In Taiwan, powdery mildew has been briefly reported on zinnia without detailed descriptions (Hsieh 1983). This study confirmed P. xanthii as a causal agent of powdery mildew in Taiwan and the awareness of the disease may benefit the floral industry. To our knowledge, this is the first confirmed report of P. xanthii on Z. elegans in Taiwan.
Collapse
|
171
|
Xu D, Zeng Y, Zhang J, Xu J, Qiao F. First report of powdery mildew of crape jasmine ( Tabernaemontana divaricata) caused by Erysiphe elevata in China. PLANT DISEASE 2020; 105:1203-1203. [PMID: 33048597 DOI: 10.1094/pdis-08-20-1717-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Crape jasmine (Tabernaemontana divaricata) is a popular flowering shrub widely grown in southern China. Its leaves and roots are used in Chinese traditional medicine. In December, 2019, powdery mildew symptoms were observed on five crape jasmine shrubs on the campus of Shenzhen Polytechnic (22°35'N; 113°56'E), in Guangdong province. Approximately 45% of leaves were infected. Symptoms initially appeared as circular to irregular white patches on the leaf petiole, and subsequently coalesced to develop into abundant hyphal growth on both sides of the leaves, which soon wilted. Hyphae were septate, branched, with simple kidney-shaped to moderately lobed appressoria. Conidia formed singly, ellipsoid-ovoid to subcylindrical, 27-37 × 14-20 μm (mean 32±2.5 × 17±1.6 μm), with a length/width ratio varying from 1.3 to 2.4. Conidiophores were erect, unbranched, consisted of two cells, 60 to 84 μm long (mean 73±4 μm), and with straight to severely kinked cylindrical foot-cells at the base, 29-35 × 3-7 μm (mean 32±3 × 6±2 μm). Chasmothecia were not observed on sampled plants. These morphological characteristics were typical to the conidial stage of the genus Erysiphe (Braun and Cook, 2012). For molecular identification, genomic DNA was extracted from conidia washed from infected leaves and using Fungal DNA Kit (Omega Bio-tek Inc., Guangzhou, China). Semi-nested PCR amplification of the internal transcribed spacer (ITS) region of rDNA was conducted by using primer sets P3 (Kusaba et al., 1995)/ITS5 and ITS5/ITS4 (White et al., 1990) for the first and second reactions, respectively. BLASTn analysis of the obtained 719 bp sequence (GenBank Accession No. MT802112) showed 99.7% identity with those of E. elevata (KY660910, MH985631, MK253282). On the basis of morphological and molecular analyses, the fungus was identified as Erysiphe elevata. To confirm pathogenicity, infected leaves were gently pressed onto healthy leaves of three healthy plants in separate pots, and three noninoculated plants were used as controls. All plants were maintained in a greenhouse at 25 ℃, and relative humidity of 50 to 65%. After 11 days, similar disease symptoms were observed on the inoculated plants while no symptoms developed on control plants. The fungus observed on the inoculated shrubs was identical morphologically to that o the original infected leaves. E. elevata is a common powdery mildew species infecting Catalpa spp. (Cook et al., 2006), Plumeria rubra (Wu et al., 2019; Yeh et al., 2019) and Eucalyptus camaldulensis (Meeboon and Takamatsu, 2017). However, no powdery mildew were found on P. rubra nearby. To our knowledge, this is the first report of this fungus infecting T. divaricata.
Collapse
|
172
|
Zhu JZ, Li CX, Ma YM, Zhong J, Li XG. First Report of Fusarium xylarioides Causing Root and Stem Rot on Aloe vera in China. PLANT DISEASE 2020; 105:1202-1202. [PMID: 33048590 DOI: 10.1094/pdis-07-20-1514-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aloe vera (L.) Burm f. is a perennial herb belonging to the family liliaceae. It is widely grown for medicinal, cosmetic and vegetable use. In 2018 and 2019, a root rot disease occurred on potted A. vera plants in a nursery in the Hunan Province of China. Symptoms of the disease include water soaking lesions, brown spots on taproot or basal part of the stem. The plants were easy to pull out when the taproot is rotten or necrotic. As the disease progressed upward, leaves in the basal part of stems became red-brown and gradually fell off. In severe cases, the whole plants became rotten and wilted. For isolation purposes, diseased tissues were excised from the lesion margins, surface disinfested with 70% ethanol for 10 s, 0.1% HgCl2 for 2 min, rinsed with sterile water thrice, and then placed on potato dextrose agar (PDA) and incubated at 26°C for 3 days in the dark. When cultured on PDA, fungal strains with similar morphology were consistently isolated and purified by single spore isolation. Colonies showed thick, pink aerial mycelium with a growth rate of 1.3 cm /day. The pigmentation was more intense in the colony center and became pale orange and white at the edge of colony. When cultured on SNA (Spezieller Nährstoffarmer agar), the fungus showed less pigmentation and thinner hyphae. Microconidia were abundantly produced, clavate and oval to kidney shaped, 7.1 to 15.2 μm × 2.5 to 5.1 μm, with 0 to 1 transverse septa. Macroconidia were sickle shaped, slender, slightly incurved in apical cell and foot-shaped in the basal cell, measured 27.9 to 53.2 μm × 2.5 to 3.5 μm, with 3 to 5 septa. These morphological characteristics were similar with those of Fusarium spp. (Booth 1971). For molecular identification, genomic DNA of the fungus was extracted by cetyl trimethyl ammonium bromide method. A portion of EF-1α (translation elongation factor 1-α) and RPB1 (the largest subunit of RNA polymerase) genes were amplified and directly sequenced using the EF-1/EF-2 and Fa/G2R primers (O'Donnell et al. 2010). The EF-1α and RPB1 were deposited in the GenBank with accession numbers MT755386 and MT755387. The EF-1α and RPB1 had 97.14% (ID FD_01334) and 99.62% identity (FD_03853), respectively, to F. xylarioides strains in the Fusarium-ID database (Geiser et al. 2004). In addition, the EF1-a showed 96.825% identity to the F. lateritium CBS 119871(AM295281) (a synonym of F. xylarioides), and the RPB1 showed 99.623% identity to the F. xylarioides NRRL 25486 (JX171517.1). Accordingly, the fungus was putatively identified to be F. xylarioides. For pathogenicity assay, A.vera seedlings were pot planted using sterilized nursery soil and inoculated with conidia suspension (1 × 105 conidia/ml), which were eluted from 7-day-old PDA cultures with sterilized water, according to the method described previously (Vakalounakis et al. 2015). The collar of each potted plant was poured with 20 ml of conidia suspensions. Plants mock inoculated with sterile water were used as control. All the inoculated plants were placed in a growth chamber at 25°C under 12/12 h light/dark cycle. The inoculation assays were carried out twice, with each one had three replicated plants. After 30 days, rot symptoms seen from the roots and basal part of stems were observed on the inoculated plants, but no visible symptoms were observed on control plants. The fungus was re-isolated from the inoculated plants and identified to be F. xylarioides by morphological and molecular characteristics, thus confirming Koch's postulates. As we know, many Fusarium species have been reported to cause root and stem rot disease in A.vera such as the F. oxysporum (Ji et al. 2007) and F. solani (Vakalounakis et al. 2015). However, to the best of our knowledge, this is the first report of F. xylarioides causing root and stem rot disease of A.vera in China. The identification of the pathogen fungus might provide a foundation for taking appropriate control strategies to this disease.
Collapse
|
173
|
Huang S, Zheng XL, Yang D, An J, Wang L, Pang F, Tao AL, Fu G. First Report of Soft Rot Caused by Aspergillus niger sensu lato on Mother-in-law's Tongue in China. PLANT DISEASE 2020; 105:703-703. [PMID: 33026304 DOI: 10.1094/pdis-03-20-0678-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
"Mother-in-law's tongue" (MLT) [Dracaena trifasciata (Prain) Mabb. (syn. Sansevieria trifasciata Prain.)], also known as "Saint George's sword", "snake plant", "tiger's tail orchid", etc., is an evergreen perennial ornamental plant grown worldwide. In September 2016, severe soft rot occurred on the leaves of MLT in a flower market in Nanyang city (32º56´N, 112º32´E), Henan province, China with 25% disease incidence (n=100). Water-soaked spots initially appeared on the leaf margin, enlarged rapidly, and became soft rot under excessively watered conditions. A blight zone was visualized at the margin of a developing lesion in backlit conditions. Severely affected leaves folded down from the lesions. Lesion expansion stopped under dry conditions. Grey or dark brown mycelia were frequently seen on the lesions. Tissue pieces (4×4 mm2) at the margin of lesions were cut out, treated with 75% ethanol for 10 s, followed by 70 s in 0.1% HgCl2, rinsed eight times with sterile water, and plated on potato dextrose agar (PDA) medium. Pure Aspergillus cultures were obtained from the surface-disinfected lesions after 4 days of incubation at 26°C. Two single-spore-derived isolates (An-1 and An-2) were randomly selected and used for morphological and molecular identifications as well as pathogenicity tests. The isolates formed round dark brown colonies with a large number of conidia after 5 days of incubation on PDA at 28°C. Conidia were subsphaeroidal or oblate, unicellular, dark brown, 2.9-4.2(3.5) × 1.9-3.4(2.7) μm in size (n=100), developed from a two-series of strigmata born on a conidial head, with ridge or stab-shaped prominences. For pathogenicity tests, the two isolates were separately grown on oatmeal agar and incubated at 30°C for 6 days. Mycelial plugs (5 mm diam.) were inoculated on the scalpel incision X-shaped wounds of surface-disinfected leaves of MLT. The inoculated leaves were kept on a two-layer of wet napkin in a steel basin covered with a plastic film. Soft rot symptoms developed from the wounds 6 days after incubation, similar to those observed on naturally affected leaves. The An-1- and An-2-inoculated unwounded leaves remained symptomless during the pathogenicity tests. Fungal cultures with the same phenotypes as the inocula were consistently reisolated from the lesions of the leaves inoculated by each of the two isolates, verifying the isolates as the causal agent of the disease based on Koch's postulates. Both β-tubulin gene and rDNA-ITS (internal transcribed spacer) sequences of the two isolates were separately amplified and sequenced. Sequences were submitted to GenBank with accession numbers MN259522 and MN259523 for the β-tubulin gene sequences, and accession numbers MN227322 and MN227324 for the rDNA-ITS sequences of An-1 and An-2, respectively. Both An-1 and An-2 were clustered with members of Aspergillus niger van Tieghem in the phylogenetic tree of rDNA-ITS, clearly separated from other Aspergillus spp. In the phylogenetic tree of β-tublin gene, both An-1 and An-2 formed a subclade inside a large clade consisting of members of A. niger in strict sense. Based on the molecular and morphological results, both An-1 and An-2 clearly separated from other Aspergillus spp. and can be considered as A. niger sensu lato. Foliar diseases of MLT are known to be caused by a few fungal species such as Chaetomella spp. (Li et al. 2014) and Colletotrichum sansevieriae (Nakamura et al. 2006). This is the first report of A. niger sensu lato causing soft rot on MLT in China.
Collapse
|
174
|
Elliott M, Rollins L, Bourret T, Chastagner G. First report of leaf blight caused by Phytophthora ramorum on cherry laurel (Prunus laurocerasus) in Washington State, USA. PLANT DISEASE 2020; 105:712-712. [PMID: 33021922 DOI: 10.1094/pdis-07-20-1489-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In April 2014, Phytophthora ramorum (Werres, De Cock & Man in't Veld) was recovered from symptomatic foliage of cherry laurel (Prunus laurocerasus) at an ornamental plant nursery in Washington State. Cherry laurel, also known as English laurel, is widely propagated in WA because it is commonly used in landscaping. It is invasive in forests near the urban/wildland interface in the western US and in Europe (Rusterholz et al. 2018). Given its popularity as an ornamental species, the potential of this host to spread P. ramorum is of regulatory concern due to possible long distance spread to other states via nursery stock. Foliar symptoms consisted of dark brown lesions near wounds or around leaf margins where water collected. Shot-hole symptoms characterized by abscission zones and dropping of infected tissues were also observed. Lesions expanded beyond the margin of the shot-hole in some cases (Figure S1A). Phytophthora was isolated from symptomatic foliage by surface-sterilizing leaf pieces in 0.6% sodium hypochlorite and 2 rinses in sterile water. They were plated on PARP medium (Ferguson and Jeffers 1999). After 2-3 days, a slow-growing dense colony with coralloid hyphae was isolated onto V8 agar. P. ramorum was identified by observing morphological features (Figure S1B). Colony and spore morphology matched that of P. ramorum (Werres et al. 2001). The isolate was confirmed as P. ramorum by PCR and sequencing of ITS and COX1 regions using primers ITS1/ITS4 (White et al. 1990) and COX1F1/COX1R1 (Van Poucke et al. 2012). Sequences were submitted to GenBank (accession nos. ITS MT031969, COX1 MT031968). BLAST results showed at least 99% similarity with sequences of P. ramorum (ITS, KJ755124 [100%]; COX1, EU124926 [99%]). Multilocus genotyping with microsatellite markers placed the isolate in the EU1 clonal lineage. Pathogenicity of P. ramorum on cherry laurel was confirmed by completing Koch's Postulates using the isolate taken from this host. Two trials were done in a biocontainment chamber (USDA-APHIS permit # 65857) since P. ramorum is a quarantine pathogen and greenhouse trials could not be conducted, using detached stems from mature, visibly healthy cherry laurel plants growing in a landscape. Phytophthora ramorum inoculum was grown on V8A plates at 20®C for 2 weeks until sporangia were abundant. A zoospore suspension was produced by flooding plates with 7 ml sterile water, incubating for 2 hours at 5®C, then 1 hour at 24®C. Zoospores were observed with light microscopy, quantified with a hemocytometer and diluted to 1 x 104 zoospores/ml. A 10 µl droplet was placed at 3 wounded and 3 unwounded sites on 4 leaves per branch. In addition, a set of samples was inoculated by dipping foliage into the zoospore suspension for 30 seconds. A set of controls was mock inoculated using sterile water. Four branches per inoculation treatment were used and the trial was repeated once. Inoculated plant materials were incubated in moist chambers for 3-5 days at 20®C. Free moisture was present on foliage upon removal. Symptom development was assessed after incubation in the biocontainment chamber at 20®C for 7 days (Figure S1C). Phytophthora ramorum was reisolated from symptomatic tissue and the recovered culture was verified morphologically and by PCR and sequencing. It was isolated more often from foliage dipped in zoospore suspension than droplet inoculated, and more from wounded than unwounded sites. None of the water-inoculated controls were positive for P. ramorum. The presence of P. ramorum was also confirmed with DNA extraction from surface-sterilized symptomatic foliage followed by PCR and sequencing of the COX1 gene (EU124926, 100%) (Figure S2). To our knowledge, this is the first report of P. ramorum naturally infecting cherry laurel in the United States. Acknowledgements This work was supported by the USDA National Institute of Food and Agriculture, McIntire-Stennis project 1019284 and USDA APHIS Cooperative Agreement AP17PPQS&T00C070 Literature cited Ferguson and Jeffers, 1999. Plant Disease 83:1129-1136 Van Poucke, K. et al. 2012. Fungal Biology 116: 1178-1191. http://dx.doi.org/10.1016/j.funbio.2012.09.003 Werres, S. et al. 2001. Mycol. Res. 105:1155-1165. White, T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA.
Collapse
|
175
|
Chen Z, Yang X, Xue J, Jiao B, Li Y, Xu Y, Dai T. First Report of Phytopythium helicoides Causing Crown and Root Rot on Rhododendron pulchrum in China. PLANT DISEASE 2020; 105:713-713. [PMID: 33006523 DOI: 10.1094/pdis-08-20-1798-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During a 2019-2020 survey of plant pathogenic oomycetes in Nanjing, China, a cluster of five adjacent Rhododendron pulchrum plants in Xuanwuhu Park exhibited symptoms including crown and root rot and wilting. foliage blight caused due to collar and had rotting crown and root tissues resultingrot foliage blight. Diseased roots were rinsed in water, cut into 10 mm pieces, immersed in 70% ethanol for 60 sec, and plated onto clarified V8 juice agar (cV8A) containingamended with pimaricin (20 mg/liter), ampicillin (125 mg/liter), rifampicin (10 mg/liter), and pentachloronitrobenzene (20 mg/liter). After three3 days of incubation at 26°C, Ffive Pythium-like isolatescoloniesisolates were obtained using hypalhyphal-tipping after 3 days of incubation at 25°C. Ten agar plugs (2×2 mm2) of each isolate were growntransferred into 10 mLl of 10% clarified V8 juice (cV8) in a 100 -mm plate at 26°C to produce mycelial mats. After 3three days, cV8 was replaced with sterile water. To stimulate sporangial production, 3-5 drops of soil extract solution were added to each plate. Five isolates had identical morphological features. Sporangia were terminal, ovoid to globose, andmeasuring 34.2 ± 6.2 µm (24.0-42.5 µm range) in length and 30.7 ± 6.6 µm (20.9-41.1 µm range) in width. Oogonia were not observed. The following primers were used to amplify the rDNA internal transcribed spacer (ITS) region and the mitochondrial cytochrome c oxidase subunit 1 (cox1COI) and 2 (cox2COII) genes of from aA representative isolate, PH-C were amplified using the primer pairs ITS6 and ITS4 (Cooke et al. 2000), OomCoxI-Levup and OomCoxI-Levlo (Robideau et al. 2011) and Cox2-F and Cox2-RC4 (Hudspeth et al. 2000), respectivelyPhe-1. Isolate A xxx675 bp, xxx657 bp and 561xxx bp fragmentPH-C , respectively were amplified and had have identical sequences of the ITS (GenBank ACN. MT824568), and cox1 (MT834959), COI and cox2 COII genes the rDNA internal transcribed spacer (ITS) region and the mitochondrial cytochrome c oxidase subunit 1 and 2 genes (GenBank ACN. MT824568, MT834959, (MT834958, respectively) sequences identical to those of Phytopythium helicoides (MN541109, MK879709, KT595689, respectively). Based on the morphological and molecular characters, all five isolatesthe causal agent waswere identified the species represented by Phe-1 was identified as P. helicoides. One-year-old R. pulchrum plants (approx. 0.3 m in height) grown in 8×8 cm2 pots were used in to test the pathogenicity trials. Ten plants wasere carefully dug up to expose root ballsclusterballs. TenThree- days -old cultures of the isolate PH-Che-1 were used as the inoculum. Five The pplantss wereere inoculated by inserting 10 agar plugs into thee root ball of each plantcluster. For inoculatingfive control plants, sterile cV8A discsplugs were used. All inoculated plants were re-potted using original fresh potting mix and potsture .Ten 3-day-old cV8A cultural plugs (5×5 mm2) of Phe-1 were evenly insert into the root ball of each of five plants, while sterile cV8A plugs were used for five control plants. All were then planted into their original pots. Plants were maintained in a growth chamber set at 26°C with a 12/12 h light/dark cycle and irrigated as needed. After 21-25 days, the inoculated plants had symptoms identical to those in the field, while the controls remained asymptomatic. Identical outcomes were obtained from two repeated The pathogenicity trials. test was repeatedconducted twice . and the coutcome was identical. Phytopythium. helicoides (Phe-1) was reisolated from all symptomatic plants inemerging from the pathogenicity trials. Phytopythium helicoides was found causing diseases of Asian lotus (Yin et al. 2015), mandarin orange (Chen et al. 2016), and kiwifruit (Wang et al. 2015) plants in China. Phytopythium isolates with identical morphological features to those of Phe-1 were recovered from rotted crown and root tissues of all inoculated plants. In this note, P. helicoides causing crown and root rot on R. pulchrum is reported for the first time. Globally, this is the first report of P. helicoides causing crown blight and root rot of R. pulchrum. Additional surveys are being conducted forto mapping the distribution of P. helicoides in Nanjing, Province of China.
Collapse
|