1
|
Boraston A, Bolam D, Gilbert H, Davies G. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2005; 382:769-81. [PMID: 15214846 PMCID: PMC1133952 DOI: 10.1042/bj20040892] [Citation(s) in RCA: 1488] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 06/15/2004] [Accepted: 06/23/2004] [Indexed: 11/17/2022]
Abstract
The enzymic degradation of insoluble polysaccharides is one of the most important reactions on earth. Despite this, glycoside hydrolases attack such polysaccharides relatively inefficiently as their target glycosidic bonds are often inaccessible to the active site of the appropriate enzymes. In order to overcome these problems, many of the glycoside hydrolases that utilize insoluble substrates are modular, comprising catalytic modules appended to one or more non-catalytic CBMs (carbohydrate-binding modules). CBMs promote the association of the enzyme with the substrate. In view of the central role that CBMs play in the enzymic hydrolysis of plant structural and storage polysaccharides, the ligand specificity displayed by these protein modules and the mechanism by which they recognize their target carbohydrates have received considerable attention since their discovery almost 20 years ago. In the last few years, CBM research has harnessed structural, functional and bioinformatic approaches to elucidate the molecular determinants that drive CBM-carbohydrate recognition. The present review summarizes the impact structural biology has had on our understanding of the mechanisms by which CBMs bind to their target ligands.
Collapse
|
Review |
20 |
1488 |
2
|
Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95-W101. [PMID: 29771380 PMCID: PMC6031026 DOI: 10.1093/nar/gky418] [Citation(s) in RCA: 1454] [Impact Index Per Article: 207.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022] Open
Abstract
Complex carbohydrates of plants are the main food sources of animals and microbes, and serve as promising renewable feedstock for biofuel and biomaterial production. Carbohydrate active enzymes (CAZymes) are the most important enzymes for complex carbohydrate metabolism. With an increasing number of plant and plant-associated microbial genomes and metagenomes being sequenced, there is an urgent need of automatic tools for genomic data mining of CAZymes. We developed the dbCAN web server in 2012 to provide a public service for automated CAZyme annotation for newly sequenced genomes. Here, dbCAN2 (http://cys.bios.niu.edu/dbCAN2) is presented as an updated meta server, which integrates three state-of-the-art tools for CAZome (all CAZymes of a genome) annotation: (i) HMMER search against the dbCAN HMM (hidden Markov model) database; (ii) DIAMOND search against the CAZy pre-annotated CAZyme sequence database and (iii) Hotpep search against the conserved CAZyme short peptide database. Combining the three outputs and removing CAZymes found by only one tool can significantly improve the CAZome annotation accuracy. In addition, dbCAN2 now also accepts nucleotide sequence submission, and offers the service to predict physically linked CAZyme gene clusters (CGCs), which will be a very useful online tool for identifying putative polysaccharide utilization loci (PULs) in microbial genomes or metagenomes.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
1454 |
3
|
Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 1993; 293 ( Pt 3):781-8. [PMID: 8352747 PMCID: PMC1134435 DOI: 10.1042/bj2930781] [Citation(s) in RCA: 1396] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
301 glycosyl hydrolases and related enzymes corresponding to 39 EC entries of the I.U.B. classification system have been classified into 35 families on the basis of amino-acid-sequence similarities [Henrissat (1991) Biochem. J. 280, 309-316]. Approximately half of the families were found to be monospecific (containing only one EC number), whereas the other half were found to be polyspecific (containing at least two EC numbers). A > 60% increase in sequence data for glycosyl hydrolases (181 additional enzymes or enzyme domains sequences have since become available) allowed us to update the classification not only by the addition of more members to already identified families, but also by the finding of ten new families. On the basis of a comparison of 482 sequences corresponding to 52 EC entries, 45 families, out of which 22 are polyspecific, can now be defined. This classification has been implemented in the SWISS-PROT protein sequence data bank.
Collapse
|
research-article |
32 |
1396 |
4
|
Abstract
The wealth of information provided by the recent structure determinations of many different glycosyl hydrolases shows that the substrate specificity and the mode of action of these enzymes are governed by exquisite details of their three-dimensional structures rather than by their global fold.
Collapse
|
Review |
30 |
1374 |
5
|
Abstract
The diversity of oligo- and polysaccharides provides an abundance of biological roles for these carbohydrates. The enzymes hydrolysing these compounds, the glycoside hydrolases, therefore mediate a wealth of biological functions. Glycoside hydrolases fall into a number of sequence-based families. The recent analysis of these families, coupled with the burgeoning number of 3D structures, provides a detailed insight into the structure, function and catalytic mechanism of these enzymes.
Collapse
|
Review |
28 |
1194 |
6
|
Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 2005; 29:3-23. [PMID: 15652973 DOI: 10.1016/j.femsre.2004.06.005] [Citation(s) in RCA: 1047] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 06/10/2004] [Accepted: 06/14/2004] [Indexed: 11/28/2022] Open
Abstract
Xylanases are hydrolytic enzymes which randomly cleave the beta 1,4 backbone of the complex plant cell wall polysaccharide xylan. Diverse forms of these enzymes exist, displaying varying folds, mechanisms of action, substrate specificities, hydrolytic activities (yields, rates and products) and physicochemical characteristics. Research has mainly focused on only two of the xylanase containing glycoside hydrolase families, namely families 10 and 11, yet enzymes with xylanase activity belonging to families 5, 7, 8 and 43 have also been identified and studied, albeit to a lesser extent. Driven by industrial demands for enzymes that can operate under process conditions, a number of extremophilic xylanases have been isolated, in particular those from thermophiles, alkaliphiles and acidiphiles, while little attention has been paid to cold-adapted xylanases. Here, the diverse physicochemical and functional characteristics, as well as the folds and mechanisms of action of all six xylanase containing families will be discussed. The adaptation strategies of the extremophilic xylanases isolated to date and the potential industrial applications of these enzymes will also be presented.
Collapse
|
|
20 |
1047 |
7
|
Henrissat B, Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem J 1996; 316 ( Pt 2):695-6. [PMID: 8687420 PMCID: PMC1217404 DOI: 10.1042/bj3160695] [Citation(s) in RCA: 967] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
letter |
29 |
967 |
8
|
van der Maarel MJEC, van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L. Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol 2002; 94:137-55. [PMID: 11796168 DOI: 10.1016/s0168-1656(01)00407-2] [Citation(s) in RCA: 689] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Starch is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. A large-scale starch processing industry has emerged in the last century. In the past decades, we have seen a shift from the acid hydrolysis of starch to the use of starch-converting enzymes in the production of maltodextrin, modified starches, or glucose and fructose syrups. Currently, these enzymes comprise about 30% of the world's enzyme production. Besides the use in starch hydrolysis, starch-converting enzymes are also used in a number of other industrial applications, such as laundry and porcelain detergents or as anti-staling agents in baking. A number of these starch-converting enzymes belong to a single family: the alpha-amylase family or family13 glycosyl hydrolases. This group of enzymes share a number of common characteristics such as a (beta/alpha)(8) barrel structure, the hydrolysis or formation of glycosidic bonds in the alpha conformation, and a number of conserved amino acid residues in the active site. As many as 21 different reaction and product specificities are found in this family. Currently, 25 three-dimensional (3D) structures of a few members of the alpha-amylase family have been determined using protein crystallization and X-ray crystallography. These data in combination with site-directed mutagenesis studies have helped to better understand the interactions between the substrate or product molecule and the different amino acids found in and around the active site. This review illustrates the reaction and product diversity found within the alpha-amylase family, the mechanistic principles deduced from structure-function relationship structures, and the use of the enzymes of this family in industrial applications.
Collapse
|
Review |
23 |
689 |
9
|
Abstract
The determination of a large number of three-dimensional structures of glycosidases, both free and in complex with ligands, has provided valuable new insights into glycosidase catalysis, especially when coupled with results from studies of specifically labelled glycosidases and kinetic analyses of point mutants.
Collapse
|
Review |
31 |
626 |
10
|
MacGregor EA, Janecek S, Svensson B. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1546:1-20. [PMID: 11257505 DOI: 10.1016/s0167-4838(00)00302-2] [Citation(s) in RCA: 467] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The hydrolases and transferases that constitute the alpha-amylase family are multidomain proteins, but each has a catalytic domain in the form of a (beta/alpha)(8)-barrel, with the active site being at the C-terminal end of the barrel beta-strands. Although the enzymes are believed to share the same catalytic acids and a common mechanism of action, they have been assigned to three separate families - 13, 70 and 77 - in the classification scheme for glycoside hydrolases and transferases that is based on amino acid sequence similarities. Each enzyme has one glutamic acid and two aspartic acid residues necessary for activity, while most enzymes of the family also contain two histidine residues critical for transition state stabilisation. These five residues occur in four short sequences conserved throughout the family, and within such sequences some key amino acid residues are related to enzyme specificity. A table is given showing motifs distinctive for each specificity as extracted from 316 sequences, which should aid in identifying the enzyme from primary structure information. Where appropriate, existing problems with identification of some enzymes of the family are pointed out. For enzymes of known three-dimensional structure, action is discussed in terms of molecular architecture. The sequence-specificity and structure-specificity relationships described may provide useful pointers for rational protein engineering.
Collapse
|
Review |
24 |
467 |
11
|
Stam MR, Danchin EGJ, Rancurel C, Coutinho PM, Henrissat B. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. Protein Eng Des Sel 2006; 19:555-62. [PMID: 17085431 DOI: 10.1093/protein/gzl044] [Citation(s) in RCA: 458] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Family GH13, also known as the alpha-amylase family, is the largest sequence-based family of glycoside hydrolases and groups together a number of different enzyme activities and substrate specificities acting on alpha-glycosidic bonds. This polyspecificity results in the fact that the simple membership of this family cannot be used for the prediction of gene function based on sequence alone. In order to establish robust groups that show an improved correlation between sequence and enzymatic specificity, we have performed a large-scale analysis of 1691 family GH13 sequences by combining clustering, similarity search and phylogenetic methods. About 80% of the sequences could be reliably classified into 35 subfamilies. Most subfamilies appear monofunctional (i.e. contain enzymes with the same substrate and the same product). The close examination of the other, apparently polyspecific, subfamilies revealed that they actually group together enzymes with strongly related (or even sometimes virtually identical) activities. Overall our subfamily assignment allows to set the limits for genomic function prediction on this large family of biologically and industrially important enzymes.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
458 |
12
|
LACKS S, HOTCHKISS RD. A study of the genetic material determining an enzyme in Pneumococcus. ACTA ACUST UNITED AC 1998; 39:508-18. [PMID: 14413322 DOI: 10.1016/0006-3002(60)90205-5] [Citation(s) in RCA: 446] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
Journal Article |
27 |
446 |
13
|
Ndeh D, Rogowski A, Cartmell A, Luis AS, Baslé A, Gray J, Venditto I, Briggs J, Zhang X, Labourel A, Terrapon N, Buffetto F, Nepogodiev S, Xiao Y, Field RA, Zhu Y, O’Neil MA, Urbanowicz BR, York WS, Davies GJ, Abbott DW, Ralet MC, Martens EC, Henrissat B, Gilbert HJ. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 2017; 544:65-70. [PMID: 28329766 PMCID: PMC5388186 DOI: 10.1038/nature21725] [Citation(s) in RCA: 426] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/27/2017] [Indexed: 12/30/2022]
Abstract
The metabolism of carbohydrate polymers drives microbial diversity in the human gut microbiota. It is unclear, however, whether bacterial consortia or single organisms are required to depolymerize highly complex glycans. Here we show that the gut bacterium Bacteroides thetaiotaomicron uses the most structurally complex glycan known: the plant pectic polysaccharide rhamnogalacturonan-II, cleaving all but 1 of its 21 distinct glycosidic linkages. The deconstruction of rhamnogalacturonan-II side chains and backbone are coordinated to overcome steric constraints, and the degradation involves previously undiscovered enzyme families and catalytic activities. The degradation system informs revision of the current structural model of rhamnogalacturonan-II and highlights how individual gut bacteria orchestrate manifold enzymes to metabolize the most challenging glycan in the human diet.
Collapse
|
research-article |
8 |
426 |
14
|
Divne C, Ståhlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles JK, Teeri TT, Jones TA. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 1994; 265:524-8. [PMID: 8036495 DOI: 10.1126/science.8036495] [Citation(s) in RCA: 411] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cellulose is the major polysaccharide of plants where it plays a predominantly structural role. A variety of highly specialized microorganisms have evolved to produce enzymes that either synergistically or in complexes can carry out the complete hydrolysis of cellulose. The structure of the major cellobiohydrolase, CBHI, of the potent cellulolytic fungus Trichoderma reesei has been determined and refined to 1.8 angstrom resolution. The molecule contains a 40 angstrom long active site tunnel that may account for many of the previously poorly understood macroscopic properties of the enzyme and its interaction with solid cellulose. The active site residues were identified by solving the structure of the enzyme complexed with an oligosaccharide, o-iodobenzyl-1-thio-beta-cellobioside. The three-dimensional structure is very similar to a family of bacterial beta-glucanases with the main-chain topology of the plant legume lectins.
Collapse
|
|
31 |
411 |
15
|
Abstract
The use of enzymes in industrial processes can often eliminate the use of high temperatures, organic solvents and extremes of pH, while at the same time offering increased reaction specificity, product purity and reduced environmental impact. The growing use of industrial enzymes is dependent on constant innovation to improve performance and reduce cost. This innovation is driven by a rapidly increasing database of natural enzyme diversity, recombinant DNA and fermentation technologies that allow this diversity to be produced at low cost, and protein modification tools that enable enzymes to be tuned to fit into the industrial marketplace.
Collapse
|
Review |
22 |
408 |
16
|
Sturm A. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. PLANT PHYSIOLOGY 1999; 121:1-8. [PMID: 10482654 PMCID: PMC1539224 DOI: 10.1104/pp.121.1.1] [Citation(s) in RCA: 387] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|
Review |
26 |
387 |
17
|
Berger F, Lau C, Dahlmann M, Ziegler M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem 2005; 280:36334-41. [PMID: 16118205 DOI: 10.1074/jbc.m508660200] [Citation(s) in RCA: 384] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nicotinamide mononucleotide adenylyltransferase (NMNAT) is the central enzyme of the NAD biosynthetic pathway. Three human NMNAT isoforms have recently been identified, but isoform-specific functions are presently unknown, although a tissue-specific role has been suggested. Analyses of the subcellular localization confirmed NMNAT1 to be a nuclear protein, whereas NMNAT2 and -3 were localized to the Golgi complex and the mitochondria, respectively. This differential subcellular localization points to an organelle-specific, nonredundant function of each of the three proteins. Comparison of the kinetic properties showed that particularly NMNAT3 exhibits a high tolerance toward substrate modifications. Moreover, as opposed to preferred NAD+ synthesis by NMNAT1, the other two isoforms could also form NADH directly from the reduced nicotinamide mononucleotide, supporting a hitherto unknown pathway of NAD generation. A variety of physiological intermediates was tested and exerted only minor influence on the catalytic activities of the NMNATs. However, gallotannin was found to be a potent inhibitor, thereby compromising its use as a specific inhibitor of poly-ADP-ribose glycohydrolase. The presence of substrate-specific and independent nuclear, mitochondrial, and Golgi-specific NAD biosynthetic pathways is opposed to the assumption of a general cellular NAD pool. Their existence appears to be consistent with important compartment-specific functions rather than to reflect simple functional redundance.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
384 |
18
|
LEABACK DH, WALKER PG. Studies on glucosaminidase. 4. The fluorimetric assay of N-acetyl-beta-glucosaminidase. Biochem J 1998; 78:151-6. [PMID: 13759894 PMCID: PMC1205188 DOI: 10.1042/bj0780151] [Citation(s) in RCA: 377] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
Journal Article |
27 |
377 |
19
|
Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O, Klinter S, Pudlo NA, Urs K, Koropatkin NM, Creagh AL, Haynes CA, Kelly AG, Cederholm SN, Davies GJ, Martens EC, Brumer H. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 2014; 506:498-502. [PMID: 24463512 PMCID: PMC4282169 DOI: 10.1038/nature12907] [Citation(s) in RCA: 360] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 11/22/2013] [Indexed: 01/16/2023]
Abstract
A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed 'dietary fibre', from the cell walls of diverse fruits and vegetables. Owing to the paucity of alimentary enzymes encoded by the human genome, our ability to derive energy from dietary fibre depends on the saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut. The xyloglucans (XyGs) are a ubiquitous family of highly branched plant cell wall polysaccharides whose mechanism(s) of degradation in the human gut and consequent importance in nutrition have been unclear. Here we demonstrate that a single, complex gene locus in Bacteroides ovatus confers XyG catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous XyG utilization loci (XyGULs) serve as genetic markers of XyG catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
360 |
20
|
Pollard MG, Travers KJ, Weissman JS. Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol Cell 1998; 1:171-82. [PMID: 9659914 DOI: 10.1016/s1097-2765(00)80018-0] [Citation(s) in RCA: 357] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The structure of many proteins entering the secretory pathway is dependent on stabilization by disulfide bonds. To support disulfide-linked folding, the endoplasmic reticulum (ER) must maintain a strongly oxidizing environment compared to the highly reduced environment of the cytosol. We report here the identification and characterization of Ero1p, a novel and essential ER-resident protein. Mutations in Ero1p cause extreme sensitivity to the reducing agent DTT, whereas overexpression confers DTT resistance. Strikingly, compromised Ero1p function results in ER retention of disulfide-stabilized proteins in a reduced, nonnative form, while not affecting structural maturation of a disulfide-free protein. We conclude that there exists a specific cellular redox machinery required for disulfide-linked protein folding in the ER and that Ero1p is an essential component of this machinery.
Collapse
|
|
27 |
357 |
21
|
Abstract
Insights into glycosidase mechanisms have come from X-ray crystallographic studies on complexes with substrate analogs and inhibitors, representing all the intermediate species along the reaction coordinate. Site-directed mutagenesis continues to play a significant role in understanding mechanisms, but is also proving important in generating glycosidases of modified mechanism or specificity.
Collapse
|
Review |
25 |
356 |
22
|
JOHNSON MK. The intracellular distribution of glycolytic and other enzymes in rat-brain homogenates and mitochondrial preparations. Biochem J 1998; 77:610-8. [PMID: 13790316 PMCID: PMC1205083 DOI: 10.1042/bj0770610] [Citation(s) in RCA: 345] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
Journal Article |
27 |
345 |
23
|
Abstract
Hemicellulases are a diverse group of enzymes that hydrolyze hemicelluloses--one of the most abundant groups of polysaccharide in nature. These enzymes have many biotechnological applications and their structure/function relationships are a subject of intense research. During the past year, new high-resolution structures of catalytic and non-catalytic domains of hemicellulases have been elucidated, and, together with biochemical studies, they reveal the principles of catalysis and specificity for these enzymes.
Collapse
|
Review |
22 |
342 |
24
|
SELLINGER OZ, BEAUFAY H, JACQUES P, DOYEN A, DE DUVE C. Tissue fractionation studies. 15. Intracellular distribution and properties of beta-N-acetylglucosaminidase and beta-galactosidase in rat liver. Biochem J 1998; 74:450-6. [PMID: 14444755 PMCID: PMC1204241 DOI: 10.1042/bj0740450] [Citation(s) in RCA: 339] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
Journal Article |
27 |
339 |
25
|
DAHLQVIST A. Determination of maltase and isomaltase activities with a glucose-oxidase reagent. Biochem J 1998; 80:547-51. [PMID: 13719332 PMCID: PMC1243266 DOI: 10.1042/bj0800547] [Citation(s) in RCA: 326] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
Journal Article |
27 |
326 |