176
|
Pannunzio NR, Lieber MR. Concept of DNA Lesion Longevity and Chromosomal Translocations. Trends Biochem Sci 2018; 43:490-498. [PMID: 29735400 DOI: 10.1016/j.tibs.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/07/2018] [Accepted: 04/08/2018] [Indexed: 01/11/2023]
Abstract
A subset of chromosomal translocations related to B cell malignancy in human patients arises due to DNA breaks occurring within defined 20-600 base pair (bp) zones. Several factors influence the breakage rate at these sites including transcription, DNA sequence, and topological tension. These factors favor non-B DNA structures that permit formation of transient single-stranded DNA (ssDNA), making the DNA more vulnerable to agents such as the enzyme activation-induced cytidine deaminase (AID) and reactive oxygen species (ROS). Certain DNA lesions created during the ssDNA state persist after the DNA resumes its normal duplex structure. We propose that factors favoring both formation of transient ssDNA and persistent DNA lesions are key in determining the DNA breakage mechanism.
Collapse
|
Review |
7 |
6 |
177
|
Duncan JR, Lieber MR, Adachi N, Wahl RL. DNA Repair After Exposure to Ionizing Radiation Is Not Error-Free. J Nucl Med 2017; 59:348. [DOI: 10.2967/jnumed.117.197673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
|
8 |
6 |
178
|
Karanjawala ZE, Shi X, Hsieh CL, Lieber MR. The mammalian FEN-1 locus: structure and conserved sequence features. MICROBIAL & COMPARATIVE GENOMICS 2001; 5:173-7. [PMID: 11252354 DOI: 10.1089/omi.1.2000.5.173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Flap endonuclease 1 (FEN-1) is an enzyme that is very important for DNA replication in all eukaryotes because it cleaves the 5' DNA flaps that arise between Okazaki fragments. In addition, FEN-1 is important for base excision repair and for nonhomologous DNA end joining in all eukaryotes from yeast to human. Here we report the structure and sequence of the murine genomic FEN-1 locus, and we compare it to the human FEN-1 locus. The transcriptional initiation zone of FEN-1 is within a CpG island, and the coding region of FEN-1 is a single exon in both the murine and human genomes. There are striking regions of nucleotide sequence homology within the 5' or 3'UTR or immediately upstream of the 5'UTR. These regions range from 30 to 230 bp. The functions of these conserved sequence blocks could be in transcriptional regulation, or they may represent a gene that overlaps in its initiation zone with FEN-1, but is oriented in the opposite transcriptional direction.
Collapse
|
Comparative Study |
24 |
6 |
179
|
Liu D, Lieber MR. The mechanisms of human lymphoid chromosomal translocations and their medical relevance. Crit Rev Biochem Mol Biol 2021; 57:227-243. [PMID: 34875186 DOI: 10.1080/10409238.2021.2004576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The most common human lymphoid chromosomal translocations involve concurrent failures of the recombination activating gene (RAG) complex and Activation-Induced Deaminase (AID). These are two enzymes that are normally expressed for purposes of the two site-specific DNA recombination processes: V(D)J recombination and class switch recombination (CSR). First, though it is rare, a low level of expression of AID can introduce long-lived T:G mismatch lesions at 20-600 bp fragile zones. Second, the V(D)J recombination process can occasionally fail to rejoin coding ends, and this failure may permit an opportunity for Artemis:DNA-dependent kinase catalytic subunit (DNA-PKcs) to convert the T:G mismatch sites at the fragile zones into double-strand breaks. The 20-600 bp fragile zones must be, at least transiently, in a single-stranded DNA (ssDNA) state for the first step to occur, because AID only acts on ssDNA. Here we discuss the key DNA sequence features that lead to AID action at a fragile zone, which are (a) the proximity and density of strings of cytosine nucleotides (C-strings) that cause a B/A-intermediate DNA conformation; (b) overlapping AID hotspots that contain a methyl CpG (WRCG), which AID converts to a long-lived T:G mismatch; and (c) transcription, which, though not essential, favors increased ssDNA in the fragile zone. We also summarize chromosomal features of the focal fragile zones in lymphoid malignancies and discuss the clinical relevance of understanding the translocation mechanisms. Many of the key principles covered here are also relevant to chromosomal translocations in non-lymphoid somatic cells as well.
Collapse
|
|
4 |
5 |
180
|
Hsieh CL, McCloskey RP, Radany E, Lieber MR. V(D)J recombination: evidence that a replicative mechanism is not required. Mol Cell Biol 1991; 11:3972-7. [PMID: 2072902 PMCID: PMC361195 DOI: 10.1128/mcb.11.8.3972-3977.1991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We examined a series of extrachromosomal DNA substrates for V(D)J recombination under replicating and nonreplicating conditions. Complete and partial replications were examined by monitoring the loss of prokaryote-specific adenine methylation at 14 to 22 MboI-DpnI restriction sites (GATC) on the substrates. Some of these sites are within 2 bases of the signal sequence ends. We found that neither coding joint nor signal joint formation requires substrate replication. After ruling out replication as a substrate requirement, we determined whether replication had any effect on the efficiency of V(D)J recombination. Quantitation of V(D)J recombination efficiency on nonreplicating substrates requires some method of monitoring the entry of substrate molecules into the cells. We devised such a method by monitoring DNA repair of substrates into which we had substituted deoxyuridine for 10 to 20% of the thymidine nucleotides in the DNA. The substrates which enter the lymphoid cells were repaired efficiently in vivo by the eukaryotic uracil DNA repair system. Upon plasmid harvest, we distinguished repaired (entered) from unrepaired (not entered) plasmids by cleaving unrepaired molecules with uracil DNA glycoylase and Escherichia coli endonuclease IV in vitro. This method of monitoring DNA entry does not appear to underestimate or overestimate the amount of DNA entry. By using this method, we found no significant quantitative effect of DNA replication on V(D)J recombination efficiency.
Collapse
|
research-article |
34 |
5 |
181
|
Gu J, Lu H, Tippin B, Shimazaki N, Goodman MF, Lieber MR. XRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps. EMBO J 2007. [DOI: 10.1038/sj.emboj.7601729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
|
18 |
4 |
182
|
Lieber MR, Hesse JE, Lewis S, Bosma GC, Rosenberg N, Mizuuchi K, Bosma MJ, Gellert M. Abnormal V(D)J recombination in murine severe combined immune deficiency: absence of coding joints and formation of alternative products. Abnormal V(D)J recombination in murine severe combined immune deficiency: absence of coding joints and formation of alternative products. Curr Top Microbiol Immunol 1989; 152:69-75. [PMID: 2805799 DOI: 10.1007/978-3-642-74974-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
|
36 |
4 |
183
|
Zhang ZZ, Hsieh CL, Okitsu CY, Han L, Yu K, Lieber MR. Effect of CpG dinucleotides within IgH switch region repeats on immunoglobulin class switch recombination. Mol Immunol 2015; 66:284-9. [PMID: 25899867 DOI: 10.1016/j.molimm.2015.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/31/2015] [Accepted: 04/04/2015] [Indexed: 12/30/2022]
Abstract
Immunoglobulin (Ig) heavy chains undergo class switch recombination (CSR) to change the heavy chain isotype from IgM to IgG, A or E. The switch regions are several kilobases long, repetitive, and G-rich on the nontemplate strand. They are also relatively depleted of CpG (also called CG) sites for unknown reasons. Here we use synthetic switch regions at the IgH switch alpha (Sα) locus to test the effect of CpG sites and to try to understand why the IgH switch sequences evolved to be relatively depleted of CpG. We find that even just two CpG sites within an 80 bp synthetic switch repeat iterated 15 times (total switch region length of 1200 bp containing 30 CpG sites) are sufficient to dramatically reduce both Ig CSR and transcription through the switch region from the upstream Iα sterile transcript promoter, which is the promoter that directs transcripts through the Sα region. De novo DNA methylation occurs at the four CpG sites in and around the Iα promoter when each 80 bp Iα switch repeat contains the two CpG sites. Thus, a relatively low density of CpG sites within the switch repeats can induce upstream CpG methylation at the IgH alpha locus, and cause a substantial decrease in transcription from the sterile transcript promoter. This effect is likely the reason that switch regions evolved to contain very few CpG sites. We discuss these findings as they relate to DNA methylation and to Ig CSR.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
3 |
184
|
Okitsu CY, Van Den Berg DJ, Lieber MR, Hsieh CL. Reproducibility and reliability of SNP analysis using human cellular DNA at or near nanogram levels. BMC Res Notes 2013; 6:515. [PMID: 24314330 PMCID: PMC4029319 DOI: 10.1186/1756-0500-6-515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Illumina SNP arrays have been routinely used for genome-wide association studies to identify potential biomarkers for various diseases. The recommended 200 ng of DNA for high-quality results is a roadblock to utilizing this assay when such quantities of DNA are not available. The goal of this study is to determine the reproducibility and reliability of the assay when reduced amounts of DNA are used for the SNP arrays. FINDINGS A serial 3-fold reduction of DNA from 200 ng to 0.8 ng was used for an Illumina SNP array in duplicates (200 ng, 66.7 ng, 22,2 ng, and 7.4 ng) or triplicates (2.47 ng and 0.8 ng). The reproducibility of the assay was determined by comparing allele calls (genotypes) at each locus within the duplicates or triplicates. The reliability of samples of reduced quantity was determined by comparing allele calls from samples of different quantities. As expected, the reproducibility and reliability both decrease with decreasing amounts of DNA used for the arrays. However, results of comparable quality to the 200 ng DNA recommended by Illumina can be obtained with much reduced amounts of DNA. CONCLUSION Reasonably reproducible and reliable results can be obtained with quantities of DNA, as low as 0.8 ng (equivalent to 133 human cells), well below the manufacturer's recommendation. Results of nearly equal quality to that of using 200 ng DNA can be obtained with 22.2 ng of DNA reliably, and clearly acceptable data can be obtained using 7.4 ng of DNA for Illumina SNP arrays.
Collapse
|
|
12 |
3 |
185
|
Duncan JR, Lieber MR, Adachi N, Wahl RL. Reply: Radiation Dose Does Matter: Mechanistic Insights into DNA Damage and Repair Support the Linear No-Threshold Model of Low-Dose Radiation Health Risks. J Nucl Med 2018; 59:1780-1781. [DOI: 10.2967/jnumed.118.218321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
|
7 |
2 |
186
|
Daniels GA, Lieber MR. Transcription targets recombination at immunoglobulin switch sequences in a strand-specific manner. Curr Top Microbiol Immunol 1996; 217:171-89. [PMID: 8787625 DOI: 10.1007/978-3-642-50140-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
|
29 |
2 |
187
|
Zhao B, Naila T, Lieber MR, Tomkinson AE. NAD+ is not utilized as a co-factor for DNA ligation by human DNA ligase IV. Nucleic Acids Res 2020; 48:12746-12750. [PMID: 33264406 PMCID: PMC7736778 DOI: 10.1093/nar/gkaa1118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/29/2020] [Accepted: 11/27/2020] [Indexed: 02/05/2023] Open
Abstract
As nucleotidyl transferases, formation of a covalent enzyme-adenylate intermediate is a common first step of all DNA ligases. While it has been shown that eukaryotic DNA ligases utilize ATP as the adenylation donor, it was recently reported that human DNA ligase IV can also utilize NAD+ and, to a lesser extent ADP-ribose, as the source of the adenylate group and that NAD+, unlike ATP, enhances ligation by supporting multiple catalytic cycles. Since this unexpected finding has significant implications for our understanding of the mechanisms and regulation of DNA double strand break repair, we attempted to confirm that NAD+ and ADP-ribose can be used as co-factors by human DNA ligase IV. Here, we provide evidence that NAD+ does not enhance ligation by pre-adenylated DNA ligase IV, indicating that this co-factor is not utilized for re-adenylation and subsequent cycles of ligation. Moreover, we find that ligation by de-adenylated DNA ligase IV is dependent upon ATP not NAD+ or ADP-ribose. Thus, we conclude that human DNA ligase IV cannot use either NAD+ or ADP-ribose as adenylation donor for ligation.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
2 |
188
|
Duncan JR, Lieber MR, Adachi N, Wahl RL. Reply: Radiation Dose Does Matter: Mechanistic Insights into DNA Damage and Repair Support the Linear No-Threshold Model of Low-Dose Radiation Health Risks. J Nucl Med 2019; 60:437-438. [DOI: 10.2967/jnumed.118.223461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
|
6 |
2 |
189
|
Lieber MR. Transposons to V(D)J Recombination: Evolution of the RAG Reaction. Trends Immunol 2019; 40:668-670. [PMID: 31307890 DOI: 10.1016/j.it.2019.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 11/28/2022]
Abstract
Evolutionarily, how RAG endonucleases in vertebrate immune systems could shed dangerous transposon-like propensities, and instead, support the organized assembly of antigen receptor variable domains, has been unclear. Recent structural work by Schatz and colleagues (Nature, 2019) identifies features of the RAG endonuclease deemed to be key in supporting this critical change in vertebrate advancement.
Collapse
|
Comment |
6 |
2 |
190
|
Zhang ZZ, Pannunzio NR, Lu Z, Hsu E, Yu K, Lieber MR. The repetitive portion of the Xenopus IgH Mu switch region mediates orientation-dependent class switch recombination. Mol Immunol 2015; 67:524-31. [PMID: 26277278 DOI: 10.1016/j.molimm.2015.07.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/26/2022]
Abstract
Vertebrates developed immunoglobulin heavy chain (IgH) class switch recombination (CSR) to express different IgH constant regions. Most double-strand breaks for Ig CSR occur within the repetitive portion of the switch regions located upstream of each set of constant domain exons for the Igγ, Igα or Igϵ heavy chain. Unlike mammalian switch regions, Xenopus switch regions do not have a high G-density on the non-template DNA strand. In previous studies, when Xenopus Sμ DNA was moved to the genome of mice, it is able to support substantial CSR when it is used to replace the murine Sγ1 region. Here, we tested both the 2kb repetitive portion and the 4.6 kb full-length portions of the Xenopus Sμ in both their natural (forward) orientation relative to the constant domain exons, as well as the opposite (reverse) orientation. Consistent with previous work, we find that the 4.6 kb full-length Sμ mediates similar levels of CSR in both the forward and reverse orientations. Whereas, the forward orientation of the 2kb portion can restore the majority of the CSR level of the 4.6 kb full-length Sμ, the reverse orientation poorly supports R-looping and no CSR. The forward orientation of the 2kb repetitive portion has more GG dinucleotides on the non-template strand than the reverse orientation. The correlation of R-loop formation with CSR efficiency, as demonstrated in the 2kb repetitive fragment of the Xenopus switch region, confirms a role played by R-looping in CSR that appears to be conserved through evolution.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
2 |
191
|
|
Retraction of Publication |
25 |
1 |
192
|
Ruan Y, Kim HN, Ogana HA, Wan Z, Hurwitz S, Nichols C, Abdel-Azim N, Coba A, Seo S, Loh YHE, Gang EJ, Abdel-Azim H, Hsieh CL, Lieber MR, Parekh C, Pal D, Bhojwani D, Durden DL, Kim YM. Preclinical Evaluation of a Novel Dual Targeting PI3Kδ/BRD4 Inhibitor, SF2535, in B-Cell Acute Lymphoblastic Leukemia. Front Oncol 2021; 11:766888. [PMID: 34926269 PMCID: PMC8671162 DOI: 10.3389/fonc.2021.766888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
The PI3K/Akt pathway—and in particular PI3Kδ—is known for its role in drug resistant B-cell acute lymphoblastic leukemia (B-ALL) and it is often upregulated in refractory or relapsed B-ALL. Myc proteins are transcription factors responsible for transcribing pro-proliferative genes and c-Myc is often overexpressed in cancers. The chromatin regulator BRD4 is required for expression of c-Myc in hematologic malignancies including B-ALL. Previously, combination of BRD4 and PI3K inhibition with SF2523 was shown to successfully decrease Myc expression. However, the underlying mechanism and effect of dual inhibition of PI3Kδ/BRD4 in B-ALL remains unknown. To study this, we utilized SF2535, a novel small molecule dual inhibitor which can specifically target the PI3Kδ isoform and BRD4. We treated primary B-ALL cells with various concentrations of SF2535 and studied its effect on specific pharmacological on-target mechanisms such as apoptosis, cell cycle, cell proliferation, and adhesion molecules expression usingin vitro and in vivo models. SF2535 significantly downregulates both c-Myc mRNA and protein expression through inhibition of BRD4 at the c-Myc promoter site and decreases p-AKT expression through inhibition of the PI3Kδ/AKT pathway. SF2535 induced apoptosis in B-ALL by downregulation of BCL-2 and increased cleavage of caspase-3, caspase-7, and PARP. Moreover, SF2535 induced cell cycle arrest and decreased cell counts in B-ALL. Interestingly, SF2535 decreased the mean fluorescence intensity (MFI) of integrin α4, α5, α6, and β1 while increasing MFI of CXCR4, indicating that SF2535 may work through inside-out signaling of integrins. Taken together, our data provide a rationale for the clinical evaluation of targeting PI3Kδ/BRD4 in refractory or relapsed B-ALL using SF2535.
Collapse
|
|
4 |
1 |
193
|
Ogana HA, Hurwitz S, Hsieh CL, Geng H, Müschen M, Bhojwani D, Wolf MA, Larocque J, Lieber MR, Kim YM. Artemis inhibition as a therapeutic strategy for acute lymphoblastic leukemia. Front Cell Dev Biol 2023; 11:1134121. [PMID: 37082620 PMCID: PMC10111164 DOI: 10.3389/fcell.2023.1134121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
As effective therapies for relapse and refractory B-cell acute lymphoblastic leukemia (B-ALL) remain problematic, novel therapeutic strategies are needed. Artemis is a key endonuclease in V(D)J recombination and nonhomologous end joining (NHEJ) of DNA double-strand break (DSB) repair. Inhibition of Artemis would cause chromosome breaks during maturation of RAG-expressing T- and B-cells. Though this would block generation of new B- and T-cells temporarily, it could be oncologically beneficial for reducing the proliferation of B-ALL and T-ALL cells by causing chromosome breaks in these RAG-expressing tumor cells. Currently, pharmacological inhibition is not available for Artemis. According to gene expression analyses from 207 children with high-risk pre-B acute lymphoblastic leukemias high Artemis expression is correlated with poor outcome. Therefore, we evaluated four compounds (827171, 827032, 826941, and 825226), previously generated from a large Artemis targeted drug screen. A biochemical assay using a purified Artemis:DNA-PKcs complex shows that the Artemis inhibitors 827171, 827032, 826941, 825226 have nanomolar IC50 values for Artemis inhibition. We compared these 4 compounds to a DNA-PK inhibitor (AZD7648) in three patient-derived B-ALL cell lines (LAX56, BLQ5 and LAX7R) and in two mature B-cell lines (3301015 and 5680001) as controls. We found that pharmacological Artemis inhibition substantially decreases proliferation of B-ALL cell lines while normal mature B-cell lines are not markedly affected. Inhibition of DNA-PKcs (which regulates Artemis) using the DNA-PK inhibitor AZD7648 had minor effects on these same primary patient-derived ALL lines, indicating that inhibition of V(D)J hairpin opening requires direct inhibition of Artemis, rather than indirect suppression of the kinase that regulates Artemis. Our data provides a basis for further evaluation of pharmacological Artemis inhibition of proliferation of B- and T-ALL.
Collapse
|
research-article |
2 |
1 |
194
|
Hsieh CL, Okitsu CY, Lieber MR. Temporally uncoupled signal and coding joint formation in human V(D)J recombination. Mol Immunol 2020; 128:227-234. [PMID: 33157352 DOI: 10.1016/j.molimm.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022]
Abstract
In vertebrate antigen receptor gene rearrangement, V(D)J recombination events can occur by deletion or by inversion. For deletional events, the signal joint is deleted from the genome. Nearly half of the immunoglobulin light chain genes undergo V(D)J recombination in an inversional manner, and both signal and coding joint formation must occur to retain chromosomal integrity. But given the undetermined amount of pre-B and pre-T cell death that occurs during V(D)J recombination, the efficiency with which both joints are completed is not known, nor is the relative efficiency (balance) of signal versus coding joint formation. Signal joint formation only requires Ku and XRCC4:DNA ligase 4 of the nonhomologous DNA end joining repair pathway. Coding joint formation requires these proteins as well, but in addition requires Artemis and DNA-dependent protein kinase to open the hairpin DNA coding ends, which the RAG complex generated; and further processing is required because the hairpin opening generates incompatible 3' overhangs. Mutations in some of the end processing enzymes affect one, but only minimally the other joint. We have devised a precise cellular assay that does not have any cellular, enzymatic or biochemical selective bias to assess signal and coding joint formation independently, and it can detect intermediates for which one joint has formed but not the other. We find that intermediates with only one completed joint are more abundant than molecules with both joints completed. This indicates that either joint can form independent of the other and joint formation can be a relatively slow process.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
1 |
195
|
Pannunzio NR, Lieber MR. Constitutively active Artemis nuclease recognizes structures containing single-stranded DNA configurations. DNA Repair (Amst) 2019; 83:102676. [PMID: 31377101 DOI: 10.1016/j.dnarep.2019.102676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/03/2023]
Abstract
The Artemis nuclease recognizes and endonucleolytically cleaves at single-stranded to double-stranded DNA (ss/dsDNA) boundaries. It is also a key enzyme in the non-homologous end joining (NHEJ) DNA double-strand break repair pathway. Previously, a truncated form, Artemis-413, was developed that is constitutively active both in vitro and in vivo. Here, we use this constitutively active form of Artemis to detect DNA structures with ss/dsDNA boundaries that arise under topological stress. Topoisomerases prevent abnormal levels of torsional stress through modulation of positive and negative supercoiling. We show that overexpression of Artemis-413 in yeast cells carrying genetic mutations that ablate topoisomerase activity have an increased frequency of DNA double-strand breaks (DSBs). Based on the biochemical activity of Artemis, this suggests an increase in ss/dsDNA-containing structures upon increased torsional stress, with DSBs arising due to Artemis cutting at these ss/dsDNA structures. Camptothecin targets topoisomerase IB (Top1), and cells treated with camptothecin show increased DSBs. We find that expression of Artemis-413 in camptothecin-treated cells leads to a reduction in DSBs, the opposite of what we find with topoisomerase genetic mutations. This contrast between outcomes not only confirms that topoisomerase mutation and topoisomerase poisoning have distinct effects on cells, but also demonstrates the usefulness of Artemis-413 to study changes in DNA structure.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
1 |
196
|
Pannunzio NR, Lieber MR. AID and Reactive Oxygen Species Can Induce DNA Breaks within Human Chromosomal Translocation Fragile Zones. Mol Cell 2019; 73:639. [PMID: 30735656 DOI: 10.1016/j.molcel.2019.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
Published Erratum |
6 |
1 |
197
|
Liu T, Xu K, Pardeshi A, Myint SS, Kang AY, Morimoto LM, Lieber MR, Wiemels JL, Kogan SC, Metayer C, de Smith AJ. Early-life tobacco exposure is causally implicated in aberrant RAG-mediated recombination in childhood acute lymphoblastic leukemia. Leukemia 2024; 38:2492-2496. [PMID: 39251742 PMCID: PMC11518992 DOI: 10.1038/s41375-024-02407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
|
research-article |
1 |
|
198
|
Poltoratsky VP, Shi X, York JD, Lieber MR, Carter TH. Human DNA-activated protein kinase (DNA-PK) is homologous to phosphatidylinositol kinases. THE JOURNAL OF IMMUNOLOGY 1995. [DOI: 10.4049/jimmunol.155.10.4529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
DNA-activated protein kinase (DNA-PK) is a serine/threonine protein kinase that interacts with a DNA end-binding heterodimeric protein, Ku, and is activated by double-stranded DNA. Genomic clones that contain the DNA-PK gene complement the murine scid defect, indicating that DNA-PK affects double-strand break repair and V(D)J recombination. Here we describe the cDNA sequence of the region that corresponds to about 100 kDa of C-terminal sequence of this large (> p350 kDa) protein. This region contains a kinase domain that has strong homology to phosphatidylinositol kinases.
Collapse
|
|
30 |
|
199
|
Liu D, Hsieh CL, Lieber MR. The RNA tether model for human chromosomal translocation fragile zones. Trends Biochem Sci 2024; 49:391-400. [PMID: 38490833 PMCID: PMC11069435 DOI: 10.1016/j.tibs.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
One of the two chromosomal breakage events in recurring translocations in B cell neoplasms is often due to the recombination-activating gene complex (RAG complex) releasing DNA ends before end joining. The other break occurs in a fragile zone of 20-600 bp in a non-antigen receptor gene locus, with a more complex and intriguing set of mechanistic factors underlying such narrow fragile zones. These factors include activation-induced deaminase (AID), which acts only at regions of single-stranded DNA (ssDNA). Recent work leads to a model involving the tethering of AID to the nascent RNA as it emerges from the RNA polymerase. This mechanism may have relevance in class switch recombination (CSR) and somatic hypermutation (SHM), as well as broader relevance for other DNA enzymes.
Collapse
|
Review |
1 |
|
200
|
Anne-Esguerra Z, Wu M, Watanabe G, Flint AJ, Lieber MR. Partial deletions of the autoregulatory C-terminal domain of Artemis and their effect on its nuclease activity. DNA Repair (Amst) 2022; 120:103422. [PMID: 36332285 PMCID: PMC9691611 DOI: 10.1016/j.dnarep.2022.103422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
Abstract
Artemis is a 692 aa nuclease that is essential for opening hairpins during vertebrate V(D)J recombination. Artemis is also important in the DNA repair of double-strand breaks via the nonhomologous DNA end joining (NHEJ) pathway. Therefore, absence of Artemis has been shown to result not only in the blockage of lymphocyte development in vertebrates, but also sensitivity of organisms and cells to double-strand break-inducing events that arise in the course of normal metabolism. Nonhomologous DNA end joining (NHEJ) is the major pathway for the repair of double-strand DNA breaks in most vertebrate cells during most of the cell cycle, including in resting cells. Artemis is the primary nuclease for resection of damaged DNA at double-strand breaks. Artemis alone is inactive as an endonuclease, though it has 5'-exonuclease activity. The endonuclease activity requires physical interaction with DNA-PKcs and subsequent activation steps. Truncation of the C-terminal half of Artemis permits Artemis to be active, even without DNA-PKcs. Here we create a systematic set of deletions from the Artemis C-terminus to determine the minimal extent of C-terminal deletion for Artemis to function in a DNA-PKcs-independent manner. We discuss these data in the context of recent structural studies. The results will be useful in future studies to determine the full range of functions of the C-terminal region of Artemis in the regulation of its endonuclease activity.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
|