1
|
Martinac B. Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 2004; 117:2449-60. [PMID: 15159450 DOI: 10.1242/jcs.01232] [Citation(s) in RCA: 373] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells respond to a wide variety of mechanical stimuli, ranging from thermal molecular agitation to potentially destructive cell swelling caused by osmotic pressure gradients. The cell membrane presents a major target of the external mechanical forces that act upon a cell, and mechanosensitive (MS) ion channels play a crucial role in the physiology of mechanotransduction. These detect and transduce external mechanical forces into electrical and/or chemical intracellular signals. Recent work has increased our understanding of their gating mechanism, physiological functions and evolutionary origins. In particular, there has been major progress in research on microbial MS channels. Moreover, cloning and sequencing of MS channels from several species has provided insights into their evolution, their physiological functions in prokaryotes and eukaryotes, and their potential roles in the pathology of disease.
Collapse
|
Review |
21 |
373 |
2
|
Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA. Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 2007; 3:92. [PMID: 17353934 PMCID: PMC1847946 DOI: 10.1038/msb4100131] [Citation(s) in RCA: 345] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 12/21/2006] [Indexed: 11/24/2022] Open
Abstract
The rate of production of methane in many environments depends upon mutualistic interactions between sulfate-reducing bacteria and methanogens. To enhance our understanding of these relationships, we took advantage of the fully sequenced genomes of Desulfovibrio vulgaris and Methanococcus maripaludis to produce and analyze the first multispecies stoichiometric metabolic model. Model results were compared to data on growth of the co-culture on lactate in the absence of sulfate. The model accurately predicted several ecologically relevant characteristics, including the flux of metabolites and the ratio of D. vulgaris to M. maripaludis cells during growth. In addition, the model and our data suggested that it was possible to eliminate formate as an interspecies electron shuttle, but hydrogen transfer was essential for syntrophic growth. Our work demonstrated that reconstructed metabolic networks and stoichiometric models can serve not only to predict metabolic fluxes and growth phenotypes of single organisms, but also to capture growth parameters and community composition of simple bacterial communities.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
345 |
3
|
Ryu Y, Schultz PG. Efficient incorporation of unnatural amino acids into proteins in Escherichia coli. Nat Methods 2006; 3:263-5. [PMID: 16554830 DOI: 10.1038/nmeth864] [Citation(s) in RCA: 252] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 02/09/2006] [Indexed: 11/09/2022]
Abstract
We have developed a single-plasmid system for the efficient bacterial expression of mutant proteins containing unnatural amino acids at specific sites designated by amber nonsense codons. In this system, multiple copies of a gene encoding an amber suppressor tRNA derived from a Methanocaldococcus jannaschii tyrosyl-tRNA (MjtRNATyrCUA) are expressed under control of the proK promoter and terminator, and a gene encoding the desired mutant M. jannaschii tyrosyl-tRNA synthetase (MjTyrRS) is expressed under control of a mutant glnS (glnS') promoter.
Collapse
|
|
19 |
252 |
4
|
Karpowich N, Martsinkevich O, Millen L, Yuan YR, Dai PL, MacVey K, Thomas PJ, Hunt JF. Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC transporter. Structure 2001; 9:571-86. [PMID: 11470432 DOI: 10.1016/s0969-2126(01)00617-7] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND ATP binding cassette (ABC) transporters are ubiquitously distributed transmembrane solute pumps that play a causative role in numerous diseases. Previous structures have defined the fold of the ABC and established the flexibility of its alpha-helical subdomain. But the nature of the mechanical changes that occur at each step of the chemical ATPase cycle have not been defined. RESULTS Crystal structures were determined of the MJ1267 ABC from Methanococcus jannaschii in Mg-ADP-bound and nucleotide-free forms. Comparison of these structures reveals an induced-fit effect at the active site likely to be a consequence of nucleotide binding. In the Mg-ADP-bound structure, the loop following the Walker B moves toward the Walker A (P-loop) coupled to backbone conformational changes in the intervening "H-loop", which contains an invariant histidine. These changes affect the region believed to mediate intercassette interaction in the ABC transporter complex. Comparison of the Mg-ADP-bound structure of MJ1267 to the ATP-bound structure of HisP suggests that an outward rotation of the alpha-helical subdomain is coupled to the loss of a molecular contact between the gamma-phosphate of ATP and an invariant glutamine in a segment connecting this subdomain to the core of the cassette. CONCLUSIONS The induced-fit effect and rotation of the alpha-helical subdomain may play a role in controlling the nucleotide-dependent change in cassette-cassette interaction affinity believed to represent the power-stroke of ABC transporters. Outward rotation of the alpha-helical subdomain also likely facilitates Mg-ADP release after hydrolysis. The MJ1267 structures therefore define features of the nucleotide-dependent conformational changes that drive transmembrane transport in ABC transporters.
Collapse
|
Comparative Study |
24 |
242 |
5
|
Abstract
Methanotrophic bacteria oxidize methane to methanol in the first step of their metabolic pathway. Two forms of methane monooxygenase (MMO) enzymes catalyze this reaction: soluble MMO (sMMO) and membrane-bound or particulate MMO (pMMO). pMMO is expressed when copper is available, and its active site is believed to contain copper. Whereas sMMO is well characterized, most aspects of pMMO biochemistry remain unknown and somewhat controversial. This review emphasizes advances in the past two to three years related to pMMO and to copper uptake and copper-dependent regulation in methanotrophs. The pMMO metal centers have been characterized spectroscopically, and the first pMMO crystal structure has been determined. Significant effort has been devoted to improving in vitro pMMO activity. Proteins involved in sMMO regulation and additional copper-regulated proteins have been identified, and the Methylococcus capsulatus (Bath) genome has been sequenced. Finally, methanobactin (mb), a small copper chelator proposed to facilitate copper uptake, has been characterized.
Collapse
|
Review |
18 |
233 |
6
|
Haney PJ, Badger JH, Buldak GL, Reich CI, Woese CR, Olsen GJ. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc Natl Acad Sci U S A 1999; 96:3578-83. [PMID: 10097079 PMCID: PMC22336 DOI: 10.1073/pnas.96.7.3578] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genome sequence of the extremely thermophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their homologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50 degrees C below that of M. jannaschii, their genomic G+C contents are nearly identical. The properties most correlated with the proteins of the thermophile include higher residue volume, higher residue hydrophobicity, more charged amino acids (especially Glu, Arg, and Lys), and fewer uncharged polar residues (Ser, Thr, Asn, and Gln). These are recurring themes, with all trends applying to 83-92% of the proteins for which complete sequences were available. Nearly all of the amino acid replacements most significantly correlated with the temperature change are the same relatively conservative changes observed in all proteins, but in the case of the mesophile/thermophile comparison there is a directional bias. We identify 26 specific pairs of amino acids with a statistically significant (P < 0.01) preferred direction of replacement.
Collapse
|
research-article |
26 |
232 |
7
|
Oliva MA, Cordell SC, Löwe J. Structural insights into FtsZ protofilament formation. Nat Struct Mol Biol 2004; 11:1243-50. [PMID: 15558053 DOI: 10.1038/nsmb855] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 10/01/2004] [Indexed: 11/08/2022]
Abstract
The prokaryotic tubulin homolog FtsZ polymerizes into a ring structure essential for bacterial cell division. We have used refolded FtsZ to crystallize a tubulin-like protofilament. The N- and C-terminal domains of two consecutive subunits in the filament assemble to form the GTPase site, with the C-terminal domain providing water-polarizing residues. A domain-swapped structure of FtsZ and biochemical data on purified N- and C-terminal domains show that they are independent. This leads to a model of how FtsZ and tubulin polymerization evolved by fusing two domains. In polymerized tubulin, the nucleotide-binding pocket is occluded, which leads to nucleotide exchange being the rate-limiting step and to dynamic instability. In our FtsZ filament structure the nucleotide is exchangeable, explaining why, in this filament, nucleotide hydrolysis is the rate-limiting step during FtsZ polymerization. Furthermore, crystal structures of FtsZ in different nucleotide states reveal notably few differences.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
232 |
8
|
Klitgord N, Segrè D. Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 2010; 6:e1001002. [PMID: 21124952 PMCID: PMC2987903 DOI: 10.1371/journal.pcbi.1001002] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/20/2010] [Indexed: 11/18/2022] Open
Abstract
Interactions between microbial species are sometimes mediated by the exchange of small molecules, secreted by one species and metabolized by another. Both one-way (commensal) and two-way (mutualistic) interactions may contribute to complex networks of interdependencies. Understanding these interactions constitutes an open challenge in microbial ecology, with applications ranging from the human microbiome to environmental sustainability. In parallel to natural communities, it is possible to explore interactions in artificial microbial ecosystems, e.g. pairs of genetically engineered mutualistic strains. Here we computationally generate artificial microbial ecosystems without re-engineering the microbes themselves, but rather by predicting their growth on appropriately designed media. We use genome-scale stoichiometric models of metabolism to identify media that can sustain growth for a pair of species, but fail to do so for one or both individual species, thereby inducing putative symbiotic interactions. We first tested our approach on two previously studied mutualistic pairs, and on a pair of highly curated model organisms, showing that our algorithms successfully recapitulate known interactions, robustly predict new ones, and provide novel insight on exchanged molecules. We then applied our method to all possible pairs of seven microbial species, and found that it is always possible to identify putative media that induce commensalism or mutualism. Our analysis also suggests that symbiotic interactions may arise more readily through environmental fluctuations than genetic modifications. We envision that our approach will help generate microbe-microbe interaction maps useful for understanding microbial consortia dynamics and evolution, and for exploring the full potential of natural metabolic pathways for metabolic engineering applications.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
230 |
9
|
Sauerwald A, Zhu W, Major TA, Roy H, Palioura S, Jahn D, Whitman WB, Yates JR, Ibba M, Söll D. RNA-dependent cysteine biosynthesis in archaea. Science 2005; 307:1969-72. [PMID: 15790858 DOI: 10.1126/science.1108329] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Several methanogenic archaea lack cysteinyl-transfer RNA (tRNA) synthetase (CysRS), the essential enzyme that provides Cys-tRNA(Cys) for translation in most organisms. Partial purification of the corresponding activity from Methanocaldococcus jannaschii indicated that tRNA(Cys) becomes acylated with O-phosphoserine (Sep) but not with cysteine. Further analyses identified a class II-type O-phosphoseryl-tRNA synthetase (SepRS) and Sep-tRNA:Cys-tRNA synthase (SepCysS). SepRS specifically forms Sep-tRNA(Cys), which is then converted to Cys-tRNA(Cys) by SepCysS. Comparative genomic analyses suggest that this pathway, encoded in all organisms lacking CysRS, can also act as the sole route for cysteine biosynthesis. This was proven for Methanococcus maripaludis, where deletion of the SepRS-encoding gene resulted in cysteine auxotrophy. As the conversions of Sep-tRNA to Cys-tRNA or to selenocysteinyl-tRNA are chemically analogous, the catalytic activity of SepCysS provides a means by which both cysteine and selenocysteine may have originally been added to the genetic code.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
199 |
10
|
Kobayashi T, Nureki O, Ishitani R, Yaremchuk A, Tukalo M, Cusack S, Sakamoto K, Yokoyama S. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion. Nat Struct Mol Biol 2003; 10:425-32. [PMID: 12754495 DOI: 10.1038/nsb934] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Accepted: 04/22/2003] [Indexed: 11/09/2022]
Abstract
The archaeal/eukaryotic tyrosyl-tRNA synthetase (TyrRS)-tRNA(Tyr) pairs do not cross-react with their bacterial counterparts. This 'orthogonal' condition is essential for using the archaeal pair to expand the bacterial genetic code. In this study, the structure of the Methanococcus jannaschii TyrRS-tRNA(Tyr)-L-tyrosine complex, solved at a resolution of 1.95 A, reveals that this archaeal TyrRS strictly recognizes the C1-G72 base pair, whereas the bacterial TyrRS recognizes the G1-C72 in a different manner using different residues. These diverse tRNA recognition modes form the basis for the orthogonality. The common tRNA(Tyr) identity determinants (the discriminator, A73 and the anticodon residues) are also recognized in manners different from those of the bacterial TyrRS. Based on this finding, we created a mutant TyrRS that aminoacylates the amber suppressor tRNA with C34 65 times more efficiently than does the wild-type enzyme.
Collapse
|
|
22 |
171 |
11
|
Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, Hackett M, Haydock AK, Kang A, Land ML, Levy R, Lie TJ, Major TA, Moore BC, Porat I, Palmeiri A, Rouse G, Saenphimmachak C, Söll D, Van Dien S, Wang T, Whitman WB, Xia Q, Zhang Y, Larimer FW, Olson MV, Leigh JA. Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 2004; 186:6956-69. [PMID: 15466049 PMCID: PMC522202 DOI: 10.1128/jb.186.20.6956-6969.2004] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of the genetically tractable, mesophilic, hydrogenotrophic methanogen Methanococcus maripaludis contains 1,722 protein-coding genes in a single circular chromosome of 1,661,137 bp. Of the protein-coding genes (open reading frames [ORFs]), 44% were assigned a function, 48% were conserved but had unknown or uncertain functions, and 7.5% (129 ORFs) were unique to M. maripaludis. Of the unique ORFs, 27 were confirmed to encode proteins by the mass spectrometric identification of unique peptides. Genes for most known functions and pathways were identified. For example, a full complement of hydrogenases and methanogenesis enzymes was identified, including eight selenocysteine-containing proteins, with each being paralogous to a cysteine-containing counterpart. At least 59 proteins were predicted to contain iron-sulfur centers, including ferredoxins, polyferredoxins, and subunits of enzymes with various redox functions. Unusual features included the absence of a Cdc6 homolog, implying a variation in replication initiation, and the presence of a bacterial-like RNase HI as well as an RNase HII typical of the Archaea. The presence of alanine dehydrogenase and alanine racemase, which are uniquely present among the Archaea, explained the ability of the organism to use L- and D-alanine as nitrogen sources. Features that contrasted with the related organism Methanocaldococcus jannaschii included the absence of inteins, even though close homologs of most intein-containing proteins were encoded. Although two-thirds of the ORFs had their highest Blastp hits in Methanocaldococcus jannaschii, lateral gene transfer or gene loss has apparently resulted in genes, which are often clustered, with top Blastp hits in more distantly related groups.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
160 |
12
|
Yuan J, Palioura S, Salazar JC, Su D, O'Donoghue P, Hohn MJ, Cardoso AM, Whitman WB, Söll D. RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Proc Natl Acad Sci U S A 2006; 103:18923-7. [PMID: 17142313 PMCID: PMC1748153 DOI: 10.1073/pnas.0609703104] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The trace element selenium is found in proteins as selenocysteine (Sec), the 21st amino acid to participate in ribosome-mediated translation. The substrate for ribosomal protein synthesis is selenocysteinyl-tRNA(Sec). Its biosynthesis from seryl-tRNA(Sec) has been established for bacteria, but the mechanism of conversion from Ser-tRNA(Sec) remained unresolved for archaea and eukarya. Here, we provide evidence for a different route present in these domains of life that requires the tRNA(Sec)-dependent conversion of O-phosphoserine (Sep) to Sec. In this two-step pathway, O-phosphoseryl-tRNA(Sec) kinase (PSTK) converts Ser-tRNA(Sec) to Sep-tRNA(Sec). This misacylated tRNA is the obligatory precursor for a Sep-tRNA:Sec-tRNA synthase (SepSecS); this protein was previously annotated as SLA/LP. The human and archaeal SepSecS genes complement in vivo an Escherichia coli Sec synthase (SelA) deletion strain. Furthermore, purified recombinant SepSecS converts Sep-tRNA(Sec) into Sec-tRNA(Sec) in vitro in the presence of sodium selenite and purified recombinant E. coli selenophosphate synthetase (SelD). Phylogenetic arguments suggest that Sec decoding was present in the last universal common ancestor. SepSecS and PSTK coevolved with the archaeal and eukaryotic lineages, but the history of PSTK is marked by several horizontal gene transfer events, including transfer to non-Sec-decoding Cyanobacteria and fungi.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
155 |
13
|
Chaban B, Voisin S, Kelly J, Logan SM, Jarrell KF. Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in Archaea. Mol Microbiol 2006; 61:259-68. [PMID: 16824110 DOI: 10.1111/j.1365-2958.2006.05226.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-linked glycosylation is recognized as an important post-translational modification across all three domains of life. However, the understanding of the genetic pathways for the assembly and attachment of N-linked glycans in eukaryotic and bacterial systems far outweighs the knowledge of comparable processes in Archaea. The recent characterization of a novel trisaccharide [beta-ManpNAcA6Thr-(1-4)-beta-GlcpNAc3NAcA-(1-3)-beta-GlcpNAc]N-linked to asparagine residues in Methanococcus voltae flagellin and S-layer proteins affords new opportunities to investigate N-linked glycosylation pathways in Archaea. In this contribution, the insertional inactivation of several candidate genes within the M. voltae genome and their resulting effects on flagellin and S-layer glycosylation are reported. Two of the candidate genes were shown to have effects on flagellin and S-layer protein molecular mass and N-linked glycan structure. Further examination revealed inactivation of either of these two genes also had effects on flagella assembly. These genes, designated agl (archaeal glycosylation) genes, include a glycosyl transferase (aglA) involved in the attachment of the terminal sugar to the glycan and an STT3 oligosaccharyl transferase homologue (aglB) involved in the transfer of the complete glycan to the flagellin and S-layer proteins. These findings document the first experimental evidence for genes involved in any glycosylation process within the domain Archaea.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
128 |
14
|
Wilting R, Schorling S, Persson BC, Böck A. Selenoprotein synthesis in archaea: identification of an mRNA element of Methanococcus jannaschii probably directing selenocysteine insertion. J Mol Biol 1997; 266:637-41. [PMID: 9102456 DOI: 10.1006/jmbi.1996.0812] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Selenocysteine is encoded by a UGA codon in all organisms that synthesise selenoproteins. This codon is specified as a selenocysteine codon by an mRNA secondary structure, which is located immediately 3' of the UGA in the reading frame of selenoprotein genes in Gram-negative bacteria, whereas it is located in the 3' untranslated region of eukaryal selenoprotein genes. The location and the structure of a similar mRNA signal in archaea has so far not been determined. Seven selenoproteins were identified for the archaeon Methanococcus jannaschii by labelling with 75Se and by SDS/polyacrylamide electrophoresis. Their size could be correlated with open reading frames possessing internal UGA codons from the total genomic sequence. One of the open reading frames, that of the VhuD subunit of a hydrogenase, possesses two UGA codons and appears to code for a selenoprotein with two selenocysteine residues. A strongly conserved mRNA element was identified that is exclusively linked to selenoprotein genes. It is located in the 3' untranslated region in six of the mRNAs and in the 5' untranslated region of the fdhA mRNA. This element, which is present in the 3' non-translated region of two selenoprotein mRNAs from Methanococcus voltae, is proposed to act in decoding of the UGA with selenocysteine.
Collapse
|
|
28 |
122 |
15
|
Voisin S, Houliston RS, Kelly J, Brisson JR, Watson D, Bardy SL, Jarrell KF, Logan SM. Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus voltae. J Biol Chem 2005; 280:16586-93. [PMID: 15723834 DOI: 10.1074/jbc.m500329200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flagellum of Methanococcus voltae is composed of four structural flagellin proteins FlaA, FlaB1, FlaB2, and FlaB3. These proteins possess a total of 15 potential N-linked sequons (NX(S/T)) and show a mass shift on an SDS-polyacrylamide gel indicating significant post-translational modification. We describe here the structural characterization of the flagellin glycan from M. voltae using mass spectrometry to examine the proteolytic digests of the flagellin proteins in combination with NMR analysis of the purified glycan using a sensitive, cryogenically cooled probe. Nano-liquid chromatography-tandem mass spectrometry analysis of the proteolytic digests of the flagellin proteins revealed that they are post-translationally modified with a novel N-linked trisaccharide of mass 779 Da that is composed of three sugar residues with masses of 318, 258, and 203 Da, respectively. In every instance the glycan is attached to the peptide through the asparagine residue of a typical N-linked sequon. The glycan modification has been observed on 14 of the 15 sequon sites present on the four flagellin structural proteins. The novel glycan structure elucidated by NMR analysis was shown to be a trisaccharide composed of beta-ManpNAcA6Thr-(1-4)-beta-Glc-pNAc3NAcA-(1-3)-beta-GlcpNAc linked to Asn. In addition, the same trisaccharide was identified on a tryptic peptide of the S-layer protein from this organism implicating a common N-linked glycosylation pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
120 |
16
|
Gasper R, Scrima A, Wittinghofer A. Structural insights into HypB, a GTP-binding protein that regulates metal binding. J Biol Chem 2006; 281:27492-502. [PMID: 16807243 DOI: 10.1074/jbc.m600809200] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HypB is a prokaryotic metal-binding guanine nucleotide-binding protein that is essential for nickel incorporation into hydrogenases. Here we solved the x-ray structure of HypB from Methanocaldococcus jannaschii. It shows that the G-domain has a different topology than the Ras-like proteins and belongs to the SIMIBI (after Signal Recognition Particle, MinD and BioD) class of NTP-binding proteins. We show that HypB undergoes nucleotide-dependent dimerization, which is apparently a common feature of SIMIBI class G-proteins. The nucleotides are located in the dimer interface and are contacted by both subunits. The active site features residues from both subunits arguing that hydrolysis also requires dimerization. Two metal-binding sites are found, one of which is dependent on the state of bound nucleotide. A totally conserved ENV/IGNLV/ICP motif in switch II relays the nucleotide binding with the metal ionbinding site. The homology with NifH, the Fe protein subunit of nitrogenase, suggests a mechanistic model for the switch-dependent incorporation of a metal ion into hydrogenases.
Collapse
|
Journal Article |
19 |
115 |
17
|
Kim R, Kim KK, Yokota H, Kim SH. Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc Natl Acad Sci U S A 1998; 95:9129-33. [PMID: 9689045 PMCID: PMC21303 DOI: 10.1073/pnas.95.16.9129] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Small heat shock proteins (sHSPs) belong to a family of 12- to 43-kDa proteins that are ubiquitous and are conserved in amino acid sequence among all organisms. A sHSP homologue of Methanococcus jannaschii, a hyperthermophilic Archaeon, forms a homogeneous multimer comprised of 24 monomers with a molecular mass of 400 kDa in contrast to other sHSPs that show heterogeneous oligomeric complexes. Electron microscopy analysis revealed a spherically shaped oligomeric structure approximately 15-20 nm in diameter. The protein confers thermal protection of other proteins in vitro as found in other sHSPs. Escherichia coli cell extracts containing the protein were protected from heat-denatured precipitation when heated up to 100 degreesC, whereas extracts from cells not expressing the protein were heat-sensitive at 60 degreesC. Similar results were obtained when purified sHSP protein was added to an E. coli cell lysate. The protein also prevented the aggregation of two purified proteins: single-chain monellin (SCM) at 80 degreesC and citrate synthase at 40 degreesC.
Collapse
|
research-article |
27 |
115 |
18
|
Abstract
We report a general method to display peptide-containing unnatural amino acids on filamentous M13 phage. Five distinct unnatural amino acids were site-specifically incorporated at the N-terminal of the M13 phage minor coat protein pIII. Phages that contain p-azidophenylalanine can undergo a highly specific azide-alkyne [3 + 2] cycloaddition reaction with an alkyne-derivatized fluorophore. The generalization of phage display to include unnatural amino acids should significantly increase the scope of phage display technology.
Collapse
|
|
21 |
109 |
19
|
Bardy SL, Jarrell KF. Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae. Mol Microbiol 2004; 50:1339-47. [PMID: 14622420 DOI: 10.1046/j.1365-2958.2003.03758.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The differences between archaeal and bacterial flagella are becoming more apparent as research on the archaeal structure progresses. One crucial difference is the presence of a leader peptide on archaeal preflagellins, which is removed from the flagellin prior to its incorporation into the flagellar filament. The enzyme responsible for the removal of the flagellin leader peptide was identified as FlaK. FlaK of Methanococcus voltae retains its preflagellin peptidase activity when expressed in Escherichia coli and used in an in vitro assay. Homologous recombination of an integration vector into the chromosomal copy of flaK resulted in a non-motile, non-flagellated phenotype. The flagellins of the mutant had larger molecular weights than their wild-type counterparts, as expected if they retained their 11- to 12-amino-acid leader peptide. Membranes of the flaK mutant were unable to process preflagellin in the in vitro assay. Site-directed mutagenesis demonstrated that two aspartic acid residues conserved with ones in type IV prepilin peptidases were necessary for proper recognition or processing of the preflagellin. As bacterial flagellins lack a leader peptide and a peptidase is not required for export and assembly, the requirement for FlaK further emphasizes the similarity archaeal flagella have with type IV pili, rather than with bacterial flagella.
Collapse
|
Journal Article |
21 |
106 |
20
|
Ouhammouch M, Dewhurst RE, Hausner W, Thomm M, Geiduschek EP. Activation of archaeal transcription by recruitment of the TATA-binding protein. Proc Natl Acad Sci U S A 2003; 100:5097-102. [PMID: 12692306 PMCID: PMC154304 DOI: 10.1073/pnas.0837150100] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hyperthermophilic archaeon Methanococcus jannaschii encodes two putative transcription regulators, Ptr1 and Ptr2, that are members of the Lrp/AsnC family of bacterial transcription regulators. In contrast, this archaeon's RNA polymerase and core transcription factors are of eukaryotic type. Using the M. jannaschii high-temperature in vitro transcription system, we show that Ptr2 is a potent transcriptional activator, and that it conveys its stimulatory effects on its cognate eukaryal-type transcription machinery from an upstream activating region composed of two Ptr2-binding sites. Transcriptional activation is generated, at least in part, by Ptr2-mediated recruitment of the TATA-binding protein to the promoter.
Collapse
|
research-article |
22 |
105 |
21
|
Li W, Schulman S, Boyd D, Erlandson K, Beckwith J, Rapoport TA. The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. Mol Cell 2007; 26:511-21. [PMID: 17531810 DOI: 10.1016/j.molcel.2007.05.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 04/27/2007] [Accepted: 05/01/2007] [Indexed: 11/29/2022]
Abstract
Proteins are translocated across membranes through a channel that is formed by the prokaryotic SecY or eukaryotic Sec61 complex. The crystal structure of the SecY channel from M. jannaschii revealed a plug domain that appears to seal the channel in its closed state. However, the role of the plug remains unclear, particularly because plug deletion mutants in S. cerevisiae are functional. Here, we demonstrate that plug deletion mutants in E. coli SecY are also functional and even efficiently translocate proteins with defective or missing signal sequences. The crystal structures of equivalent plug deletions in SecY of M. jannaschii show that, although the overall structures are maintained, new plugs are formed. These lack many interactions that normally stabilize the closed channel, explaining why the channels can open for proteins with signal-sequence mutations. Our data show that the plug domain is required to maintain a closed state of the channel and suggest a mechanism for channel gating.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
100 |
22
|
Vamvaca K, Vögeli B, Kast P, Pervushin K, Hilvert D. An enzymatic molten globule: efficient coupling of folding and catalysis. Proc Natl Acad Sci U S A 2004; 101:12860-4. [PMID: 15322276 PMCID: PMC516485 DOI: 10.1073/pnas.0404109101] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Indexed: 11/18/2022] Open
Abstract
A highly active, monomeric chorismate mutase, obtained by topological redesign of a dimeric helical bundle enzyme from Methanococcus jannaschii, was investigated by NMR and various other biochemical techniques, including H/D exchange. Although structural disorder is generally considered to be incompatible with efficient catalysis, the monomer, unlike its natural counterpart, unexpectedly possesses all of the characteristics of a molten globule. Global conformational ordering, observed upon binding of a transition state analog, indicates that folding can be coupled to catalysis with minimal energetic penalty. These results support the suggestion that many modern enzymes might have evolved from molten globule precursors. Insofar as their structural plasticity confers relaxed substrate specificity and/or catalytic promiscuity, molten globules may also be attractive starting points for the evolution of new catalysts in the laboratory.
Collapse
|
research-article |
21 |
98 |
23
|
Bova MP, Huang Q, Ding L, Horwitz J. Subunit exchange, conformational stability, and chaperone-like function of the small heat shock protein 16.5 from Methanococcus jannaschii. J Biol Chem 2002; 277:38468-75. [PMID: 12176992 DOI: 10.1074/jbc.m205594200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hsp16.5, isolated from the hyperthermophilic Archaea Methanococcus jannaschii, is a member of the small heat-shock protein family. Small Hsps have 12- to 42-kDa subunit sizes and have sequences that are conserved among all organisms. The recently determined crystal structure of Hsp16.5 indicates that it consists discretely of 24 identical subunits. Using fluorescence resonance energy transfer, we show that at temperatures above 60 degrees C, the subunits of MjHsp16.5 freely and reversibly exchange with a rate constant of exchange at 68 degrees C of 0.067 min(-1). The subunit exchange reactions were strongly temperature-dependent, similar to the exchange reactions of the alpha-crystallins. The exchange reaction was specific to MjHsp16.5 subunits, as other sHsps such as alpha-crystallin were not structurally compatible and could not integrate into the MjHsp16.5 oligomer. In addition, we demonstrate that at temperatures as high as 70 degrees C, MjHsp16.5 retains its multimeric structure and subunit organization. Using insulin and alpha-lactalbumin as model target proteins, we also show that MjHsp16.5 at 37 degrees C is a markedly inefficient chaperone compared with other sHsps with these substrates. The results of this study support the hypothesis that MjHsp16.5 has a dynamic quaternary structure at temperatures that are physiologically relevant to M. jannaschii.
Collapse
|
|
23 |
97 |
24
|
Kral TA, Brink KM, Miller SL, McKay CP. Hydrogen consumption by methanogens on the early Earth. ORIGINS LIFE EVOL B 1998; 28:311-9. [PMID: 9611769 DOI: 10.1023/a:1006552412928] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is possible that the first autotroph used chemical energy rather than light. This could have been the main source of primary production after the initial inventory of abiotic organic material had been depleted. The electron acceptor most readily available for use by this first chemoautotroph would have been CO2. The most abundant electron donor may have been H2 that would have been outgassing from volcanoes at a rate estimated to be as large as 10(12) moles yr-1, as well as from photo-oxidation of Fe+2. We report here that certain methanogens will consume H2 down to partial pressures as low as 4 Pa (4 x 10(-5) atm) with CO2 as the sole carbon source at a rate of 0.7 ng H2 min-1 microgram-1 cell protein. The lower limit of pH2 for growth of methanogens can be understood on the basis that the pH2 needs to be high enough for one ATP to be synthesized per CO2 reduced. The pH2 values needed for growth measured here are consistent with those measured by Stevens and McKinley for growth of methanogens in deep basalt aquifers. H2-consuming autotrophs are likely to have had a profound effect on the chemistry of the early atmosphere and to have been a dominant sink for H2 on the early Earth after life began rather than escape from the Earth's atmosphere to space.
Collapse
|
|
27 |
92 |
25
|
Leibundgut M, Frick C, Thanbichler M, Böck A, Ban N. Selenocysteine tRNA-specific elongation factor SelB is a structural chimaera of elongation and initiation factors. EMBO J 2004; 24:11-22. [PMID: 15616587 PMCID: PMC544917 DOI: 10.1038/sj.emboj.7600505] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 11/12/2004] [Indexed: 11/08/2022] Open
Abstract
In all three kingdoms of life, SelB is a specialized translation elongation factor responsible for the cotranslational incorporation of selenocysteine into proteins by recoding of a UGA stop codon in the presence of a downstream mRNA hairpin loop. Here, we present the X-ray structures of SelB from the archaeon Methanococcus maripaludis in the apo-, GDP- and GppNHp-bound form and use mutational analysis to investigate the role of individual amino acids in its aminoacyl-binding pocket. All three SelB structures reveal an EF-Tu:GTP-like domain arrangement. Upon binding of the GTP analogue GppNHp, a conformational change of the Switch 2 region in the GTPase domain leads to the exposure of SelB residues involved in clamping the 5' phosphate of the tRNA. A conserved extended loop in domain III of SelB may be responsible for specific interactions with tRNA(Sec) and act as a ruler for measuring the extra long acceptor arm. Domain IV of SelB adopts a beta barrel fold and is flexibly tethered to domain III. The overall domain arrangement of SelB resembles a 'chalice' observed so far only for initiation factor IF2/eIF5B. In our model of SelB bound to the ribosome, domain IV points towards the 3' mRNA entrance cleft ready to interact with the downstream secondary structure element.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
90 |