1
|
Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 2013; 113:6621-58. [PMID: 23767781 PMCID: PMC3895110 DOI: 10.1021/cr300463y] [Citation(s) in RCA: 1337] [Impact Index Per Article: 111.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
Review |
12 |
1337 |
2
|
|
|
29 |
1243 |
3
|
|
Review |
11 |
454 |
4
|
Abstract
Molybdenum is the only second-row transition metal that is required by most living organisms, and the few species that do not require molybdenum use tungsten, which lies immediately below molybdenum in the periodic table. Because of their unique chemical versatility and unusually high bioavailability these two transition metals have been incorporated into the active sites of enzymes over the course of evolution. Enzymes that contain molybdenum or tungsten continue to be discovered and several crystal structures have become available recently. This new structural information has been complemented by spectroscopic and kinetic methods, as well as computational approaches. Together, these studies provide an increasingly detailed view of the reaction mechanisms and the correlation between the electronic structure of the active site and catalytic function, one of the fundamental goals in metallobiochemistry.
Collapse
|
Review |
23 |
332 |
5
|
|
|
30 |
308 |
6
|
Abstract
Unlike monooxygenases, molybdenum-containing hydroxylases catalyze the hydroxylation of carbon centers using oxygen derived ultimately from water, rather than O(2), as the source of the oxygen atom incorporated into the product, and do not require an external source of reducing equivalents. The mechanism by which this interesting chemistry takes place has been the subject of investigation for some time, and in the last several years the chemical course of the reaction has become increasingly well understood. The present minireview summarizes recent mechanistic and structure/function studies of members of this large and growing family of enzymes.
Collapse
|
Review |
20 |
248 |
7
|
Okamoto K, Matsumoto K, Hille R, Eger BT, Pai EF, Nishino T. The crystal structure of xanthine oxidoreductase during catalysis: implications for reaction mechanism and enzyme inhibition. Proc Natl Acad Sci U S A 2004; 101:7931-6. [PMID: 15148401 PMCID: PMC419534 DOI: 10.1073/pnas.0400973101] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molybdenum is widely distributed in biology and is usually found as a mononuclear metal center in the active sites of many enzymes catalyzing oxygen atom transfer. The molybdenum hydroxylases are distinct from other biological systems catalyzing hydroxylation reactions in that the oxygen atom incorporated into the product is derived from water rather than molecular oxygen. Here, we present the crystal structure of the key intermediate in the hydroxylation reaction of xanthine oxidoreductase with a slow substrate, in which the carbon-oxygen bond of the product is formed, yet the product remains complexed to the molybdenum. This intermediate displays a stable broad charge-transfer band at approximately 640 nm. The crystal structure of the complex indicates that the catalytically labile Mo-OH oxygen has formed a bond with a carbon atom of the substrate. In addition, the MoS group of the oxidized enzyme has become protonated to afford Mo-SH on reduction of the molybdenum center. In contrast to previous assignments, we find this last ligand at an equatorial position in the square-pyramidal metal coordination sphere, not the apical position. A water molecule usually seen in the active site of the enzyme is absent in the present structure, which probably accounts for the stability of this intermediate toward ligand displacement by hydroxide.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
215 |
8
|
Huber R, Hof P, Duarte RO, Moura JJ, Moura I, Liu MY, LeGall J, Hille R, Archer M, Romão MJ. A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes. Proc Natl Acad Sci U S A 1996; 93:8846-51. [PMID: 8799115 PMCID: PMC38556 DOI: 10.1073/pnas.93.17.8846] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The crystal structure of the xanthine oxidase-related molybdenum-iron protein aldehyde oxido-reductase from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas (Mop) was analyzed in its desulfo-, sulfo-, oxidized, reduced, and alcohol-bound forms at 1.8-A resolution. In the sulfo-form the molybdenum molybdopterin cytosine dinucleotide cofactor has a dithiolene-bound fac-[Mo, = O, = S, ---(OH2)] substructure. Bound inhibitory isopropanol in the inner compartment of the substrate binding tunnel is a model for the Michaelis complex of the reaction with aldehydes (H-C = O,-R). The reaction is proposed to proceed by transfer of the molybdenum-bound water molecule as OH- after proton transfer to Glu-869 to the carbonyl carbon of the substrate in concert with hydride transfer to the sulfido group to generate [MoIV, = O, -SH, ---(O-C = O, -R)). Dissociation of the carboxylic acid product may be facilitated by transient binding of Glu-869 to the molybdenum. The metal-bound water is replenished from a chain of internal water molecules. A second alcohol binding site in the spacious outer compartment may cause the strong substrate inhibition observed. This compartment is the putative binding site of large inhibitors of xanthine oxidase.
Collapse
|
research-article |
29 |
207 |
9
|
Ellis PJ, Conrads T, Hille R, Kuhn P. Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 A and 2.03 A. Structure 2001; 9:125-32. [PMID: 11250197 DOI: 10.1016/s0969-2126(01)00566-4] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Arsenite oxidase from Alcaligenes faecalis NCIB 8687 is a molybdenum/iron protein involved in the detoxification of arsenic. It is induced by the presence of AsO(2-) (arsenite) and functions to oxidize As(III)O(2-), which binds to essential sulfhydryl groups of proteins and dithiols, to the relatively less toxic As(V)O(4)(3-) (arsenate) prior to methylation. RESULTS Using a combination of multiple isomorphous replacement with anomalous scattering (MIRAS) and multiple-wavelength anomalous dispersion (MAD) methods, the crystal structure of arsenite oxidase was determined to 2.03 A in a P2(1) crystal form with two molecules in the asymmetric unit and to 1.64 A in a P1 crystal form with four molecules in the asymmetric unit. Arsenite oxidase consists of a large subunit of 825 residues and a small subunit of approximately 134 residues. The large subunit contains a Mo site, consisting of a Mo atom bound to two pterin cofactors, and a [3Fe-4S] cluster. The small subunit contains a Rieske-type [2Fe-2S] site. CONCLUSIONS The large subunit of arsenite oxidase is similar to other members of the dimethylsulfoxide (DMSO) reductase family of molybdenum enzymes, particularly the dissimilatory periplasmic nitrate reductase from Desulfovibrio desulfuricans, but is unique in having no covalent bond between the polypeptide and the Mo atom. The small subunit has no counterpart among known Mo protein structures but is homologous to the Rieske [2Fe-2S] protein domain of the cytochrome bc(1) and cytochrome b(6)f complexes and to the Rieske domain of naphthalene 1,2-dioxygenase.
Collapse
|
|
24 |
198 |
10
|
Abstract
Recent progress in our understanding of the structural and catalytic properties of molybdenum-containing enzymes in eukaryotes is reviewed, along with aspects of the biosynthesis of the cofactor and its insertion into apoprotein.
Collapse
|
research-article |
14 |
159 |
11
|
Eilers T, Schwarz G, Brinkmann H, Witt C, Richter T, Nieder J, Koch B, Hille R, Hänsch R, Mendel RR. Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase. A new player in plant sulfur metabolism. J Biol Chem 2001; 276:46989-94. [PMID: 11598126 DOI: 10.1074/jbc.m108078200] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammals and birds, sulfite oxidase (SO) is a homodimeric molybdenum enzyme consisting of an N-terminal heme domain and a C-terminal molybdenum domain (EC ). In plants, the existence of SO has not yet been demonstrated, while sulfite reductase as part of sulfur assimilation is well characterized. Here we report the cloning of a plant sulfite oxidase gene from Arabidopsis thaliana and the biochemical characterization of the encoded protein (At-SO). At-SO is a molybdenum enzyme with molybdopterin as an organic component of the molybdenum cofactor. In contrast to homologous animal enzymes, At-SO lacks the heme domain, which is evident both from the amino acid sequence and from its enzymological and spectral properties. Thus, among eukaryotes, At-SO is the only molybdenum enzyme yet described possessing no redox-active centers other than the molybdenum. UV-visible and EPR spectra as well as apparent K(m) values are presented and compared with the hepatic enzyme. Subcellular analysis of crude cell extracts showed that SO was mostly found in the peroxisomal fraction. In molybdenum cofactor mutants, the activity of SO was strongly reduced. Using antibodies directed against At-SO, we show that a cross-reacting protein of similar size occurs in a wide range of plant species, including both herbacious and woody plants.
Collapse
|
|
24 |
159 |
12
|
Hille R, Olson J, Palmer G. Spectral transitions of nitrosyl hemes during ligand binding to hemoglobin. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(19)86436-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
|
46 |
130 |
13
|
Fee JA, Findling KL, Yoshida T, Hille R, Tarr GE, Hearshen DO, Dunham WR, Day EP, Kent TA, Münck E. Purification and characterization of the Rieske iron-sulfur protein from Thermus thermophilus. Evidence for a [2Fe-2S] cluster having non-cysteine ligands. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43630-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
|
41 |
118 |
14
|
Wei CC, Wang ZQ, Wang Q, Meade AL, Hemann C, Hille R, Stuehr DJ. Rapid kinetic studies link tetrahydrobiopterin radical formation to heme-dioxy reduction and arginine hydroxylation in inducible nitric-oxide synthase. J Biol Chem 2001; 276:315-9. [PMID: 11020389 DOI: 10.1074/jbc.m008441200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand how heme and (6R)-5,6,7,8-tetrahydro-l-biopterin (H(4)B) participate in nitric-oxide synthesis, we followed ferrous-dioxy heme (Fe(II)O(2)) formation and disappearance, H(4)B radical formation, and Arg hydroxylation during a single catalytic turnover by the inducible nitric-oxide synthase oxygenase domain (iNOSoxy). In all cases, prereduced (ferrous) enzyme was rapidly mixed with an O(2)-containing buffer to start the reaction. A ferrous-dioxy intermediate formed quickly (53 s(-1)) and then decayed with concurrent buildup of ferric iNOSoxy. The buildup of the ferrous-dioxy intermediate preceded both H(4)B radical formation and Arg hydroxylation. However, the rate of ferrous-dioxy decay (12 s(-1)) was equivalent to the rate of H(4)B radical formation (11 s(-1)) and the rate of Arg hydroxylation (9 s(-1)). Practically all bound H(4)B was oxidized to a radical during the reaction and was associated with hydroxylation of 0.6 mol of Arg/mol of heme. In dihydrobiopterin-containing iNOSoxy, ferrous-dioxy decay was much slower and was not associated with Arg hydroxylation. These results establish kinetic and quantitative links among ferrous-dioxy disappearance, H(4)B oxidation, and Arg hydroxylation and suggest a mechanism whereby H(4)B transfers an electron to the ferrous-dioxy intermediate to enable the formation of a heme-based oxidant that rapidly hydroxylates Arg.
Collapse
|
|
24 |
103 |
15
|
Abstract
A comprehensive kinetic study of sulfite oxidase has been undertaken over the pH range 6.0-10.0, including conventional steady-state work as well as rapid kinetic studies of both the reaction of oxidized enzyme with sulfite and reduced enzyme with cytochrome c (III). A comparison of the pH dependence of kcat, kred, and kox indicates that kred is principally rate limiting above pH 7, but that below this pH the pH dependence of kcat is influenced by that of kox. The pH independence of kred is consistent with our previous proposal concerning the reaction mechanism, in which attack of the substrate lone pair of electrons on a Mo(VI)O2 unit initiates the catalytic sequence. The pH dependence of kred/Kdsulfite indicates that a group on the enzyme having a pKa of approximately 9.3 must be deprotonated for effective reaction of oxidized enzyme with sulfite, possibly Tyr 322, which from the crystal structure of the enzyme constitutes part of the substrate binding site. There is no evidence for the HSO3-/SO32- pKa of approximately 7 in the pH profile for kred/Kdsulfite, suggesting that enzyme is able to oxidize the two equally well. By contrast, kcat/Kmsulfite and kred/Kdsulfite exhibit distinct pH dependence (the former is bell-shaped, the latter sigmoidal), again consistent with the oxidative half-reaction contributing to the kinetic barrier to catalysis at low pH. The pH dependence of kcat/Km(cyt c) (reflecting the second-order rate of reaction of free enzyme with free cytochrome) is bell-shaped and closely resembles that of kox/Kd(cyt c), reflecting the importance of the oxidative half-reaction in the low substrate concentration regime. The pH profile for kox/Kd(cyt c) indicates that two groups with a pKa of approximately 8 are involved in the reaction of free reduced enzyme with cytochrome c, one of which must be deprotonated and the other protonated. These results are consistent with the known electrostatic nature of the interaction of cytochrome c with its physiological partners.
Collapse
|
|
26 |
102 |
16
|
|
Review |
31 |
99 |
17
|
Abstract
A perspective is provided of recent advances in our understanding of molybdenum-containing enzymes other than nitrogenase, a large and diverse group of enzymes that usually (but not always) catalyze oxygen atom transfer to or from a substrate, utilizing a Mo=O group as donor or acceptor. An emphasis is placed on the diversity of protein structure and reaction catalyzed by each of the three major families of these enzymes.
Collapse
|
Review |
12 |
91 |
18
|
|
|
19 |
90 |
19
|
Wahl B, Reichmann D, Niks D, Krompholz N, Havemeyer A, Clement B, Messerschmidt T, Rothkegel M, Biester H, Hille R, Mendel RR, Bittner F. Biochemical and spectroscopic characterization of the human mitochondrial amidoxime reducing components hmARC-1 and hmARC-2 suggests the existence of a new molybdenum enzyme family in eukaryotes. J Biol Chem 2010; 285:37847-59. [PMID: 20861021 PMCID: PMC2988388 DOI: 10.1074/jbc.m110.169532] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/17/2010] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial amidoxime reducing component mARC is a newly discovered molybdenum enzyme that is presumed to form the catalytical part of a three-component enzyme system, consisting of mARC, heme/cytochrome b(5), and NADH/FAD-dependent cytochrome b(5) reductase. mARC proteins share a significant degree of homology to the molybdenum cofactor-binding domain of eukaryotic molybdenum cofactor sulfurase proteins, the latter catalyzing the post-translational activation of aldehyde oxidase and xanthine oxidoreductase. The human genome harbors two mARC genes, referred to as hmARC-1/MOSC-1 and hmARC-2/MOSC-2, which are organized in a tandem arrangement on chromosome 1. Recombinant expression of hmARC-1 and hmARC-2 proteins in Escherichia coli reveals that both proteins are monomeric in their active forms, which is in contrast to all other eukaryotic molybdenum enzymes that act as homo- or heterodimers. Both hmARC-1 and hmARC-2 catalyze the N-reduction of a variety of N-hydroxylated substrates such as N-hydroxy-cytosine, albeit with different specificities. Reconstitution of active molybdenum cofactor onto recombinant hmARC-1 and hmARC-2 proteins in the absence of sulfur indicates that mARC proteins do not belong to the xanthine oxidase family of molybdenum enzymes. Moreover, they also appear to be different from the sulfite oxidase family, because no cysteine residue could be identified as a putative ligand of the molybdenum atom. This suggests that the hmARC proteins and sulfurase represent members of a new family of molybdenum enzymes.
Collapse
|
research-article |
15 |
89 |
20
|
Cao H, Pauff JM, Hille R. Substrate orientation and catalytic specificity in the action of xanthine oxidase: the sequential hydroxylation of hypoxanthine to uric acid. J Biol Chem 2010; 285:28044-53. [PMID: 20615869 PMCID: PMC2934669 DOI: 10.1074/jbc.m110.128561] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/27/2010] [Indexed: 11/06/2022] Open
Abstract
Xanthine oxidase is a molybdenum-containing enzyme catalyzing the hydroxylation of a sp(2)-hybridized carbon in a broad range of aromatic heterocycles and aldehydes. Crystal structures of the bovine enzyme in complex with the physiological substrate hypoxanthine at 1.8 A resolution and the chemotherapeutic agent 6-mercaptopurine at 2.6 A resolution have been determined, showing in each case two alternate orientations of substrate in the two active sites of the crystallographic asymmetric unit. One orientation is such that it is expected to yield hydroxylation at C-2 of substrate, yielding xanthine. The other suggests hydroxylation at C-8 to give 6,8-dihydroxypurine, a putative product not previously thought to be generated by the enzyme. Kinetic experiments demonstrate that >98% of hypoxanthine is hydroxylated at C-2 rather than C-8, indicating that the second crystallographically observed orientation is significantly less catalytically effective than the former. Theoretical calculations suggest that enzyme selectivity for the C-2 over C-8 of hypoxanthine is largely due to differences in the intrinsic reactivity of the two sites. For the orientation of hypoxanthine with C-2 proximal to the molybdenum center, the disposition of substrate in the active site is such that Arg(880) and Glu(802), previous shown to be catalytically important for the conversion of xanthine to uric acid, play similar roles in hydroxylation at C-2 as at C-8. Contrary to the literature, we find that 6,8-dihydroxypurine is effectively converted to uric acid by xanthine oxidase.
Collapse
|
research-article |
15 |
86 |
21
|
Cao H, Pauff JM, Hille R. X-ray crystal structure of a xanthine oxidase complex with the flavonoid inhibitor quercetin. JOURNAL OF NATURAL PRODUCTS 2014; 77:1693-1699. [PMID: 25060641 DOI: 10.1021/np500320g] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Xanthine oxidase catalyzes the sequential hydroxylation of hypoxanthine to uric acid via xanthine as intermediate. Deposition of crystals of the catalytic product uric acid or its monosodium salt in human joints with accompanying joint inflammation is the major cause of gout. Natural flavonoids are attractive leads for rational design of preventive and therapeutic xanthine oxidase inhibitors due to their beneficial antioxidant, anti-inflammatory, and antiproliferative activities in addition to their micromolar inhibitory activities toward xanthine oxidase. We determined the first complex X-ray structure of mammalian xanthine oxidase with the natural flavonoid inhibitor quercetin at 2.0 Å resolution. The inhibitor adopts a single orientation with its benzopyran moiety sandwiched between Phe 914 and Phe 1009 and ring B pointing toward the solvent channel leading to the molybdenum active center. The favorable steric complementarity of the conjugated three-ring structure of quercetin with the active site and specific hydrogen-bonding interactions of exocyclic hydroxy groups with catalytically relevant residues Arg 880 and Glu 802 correlate well with a previously reported structure-activity relationship of flavonoid inhibitors of xanthine oxidase. The current complex provides a structural basis for the rational design of flavonoid-type inhibitors against xanthine oxidase useful for the treatment of hyperuricemia, gout, and inflammatory disease states.
Collapse
|
|
11 |
84 |
22
|
Pauff JM, Cao H, Hille R. Substrate Orientation and Catalysis at the Molybdenum Site in Xanthine Oxidase: CRYSTAL STRUCTURES IN COMPLEX WITH XANTHINE AND LUMAZINE. J Biol Chem 2009; 284:8760-7. [PMID: 19109252 PMCID: PMC2659234 DOI: 10.1074/jbc.m804517200] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 10/15/2008] [Indexed: 11/06/2022] Open
Abstract
Xanthine oxidoreductase is a ubiquitous cytoplasmic protein that catalyzes the final two steps in purine catabolism. We have previously investigated the catalytic mechanism of the enzyme by rapid reaction kinetics and x-ray crystallography using the poor substrate 2-hydroxy-6-methylpurine, focusing our attention on the orientation of substrate in the active site and the role of Arg-880 in catalysis. Here we report additional crystal structures of as-isolated, functional xanthine oxidase in the course of reaction with the pterin substrate lumazine at 2.2 A resolution and of the nonfunctional desulfo form of the enzyme in complex with xanthine at 2.6 A resolution. In both cases the orientation of substrate is such that the pyrimidine subnucleus is oriented opposite to that seen with the slow substrate 2-hydroxy-6-methylpurine. The mechanistic implications as to how the ensemble of active site functional groups in the active site work to accelerate reaction rate are discussed.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
84 |
23
|
Wei CC, Wang ZQ, Hemann C, Hille R, Stuehr DJ. A tetrahydrobiopterin radical forms and then becomes reduced during Nomega-hydroxyarginine oxidation by nitric-oxide synthase. J Biol Chem 2003; 278:46668-73. [PMID: 14504282 DOI: 10.1074/jbc.m307682200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric-oxide synthases are flavoheme enzymes that catalyze two sequential monooxygenase reactions to generate nitric oxide (NO) from l-arginine. We investigated a possible redox role for the enzyme-bound cofactor 6R-tetrahydrobiopterin (H4B) in the second reaction of NO synthesis, which is conversion of N-hydroxy-l-arginine (NOHA) to NO plus citrulline. We used stopped-flow spectroscopy and rapid-freeze EPR spectroscopy to follow heme and biopterin transformations during single-turnover NOHA oxidation reactions catalyzed by the oxygenase domain of inducible nitric-oxide synthase (iNOSoxy). Significant biopterin radical (>0.5 per heme) formed during reactions catalyzed by iNOSoxy that contained either H4B or 5-methyl-H4B. Biopterin radical formation was kinetically linked to conversion of a heme-dioxy intermediate to a heme-NO product complex. The biopterin radical then decayed within a 200-300-ms time period just prior to dissociation of NO from a ferric heme-NO product complex. Measures of final biopterin redox status showed that biopterin radical decay occurred via an enzymatic one-electron reduction process that regenerated H4B (or 5MeH4B). These results provide evidence of a dual redox function for biopterin during the NOHA oxidation reaction. The data suggest that H4B first provides an electron to a heme-dioxy intermediate, and then the H4B radical receives an electron from a downstream reaction intermediate to regenerate H4B. The first one-electron transition enables formation of the heme-based oxidant that reacts with NOHA, while the second one-electron transition is linked to formation of a ferric heme-NO product complex that can release NO from the enzyme. These redox roles are novel and expand our understanding of biopterin function in biology.
Collapse
|
|
22 |
78 |
24
|
Hoke KR, Cobb N, Armstrong FA, Hille R. Electrochemical Studies of Arsenite Oxidase: An Unusual Example of a Highly Cooperative Two-Electron Molybdenum Center. Biochemistry 2004; 43:1667-74. [PMID: 14769044 DOI: 10.1021/bi0357154] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arsenite oxidase from Alcaligenes faecalis, an unusual molybdoenzyme that does not exhibit a Mo(V) EPR signal during oxidative-reductive titrations, has been investigated by protein film voltammetry. A film of the enzyme on a pyrolytic graphite edge electrode produces a sharp two-electron signal associated with reversible reduction of the oxidized Mo(VI) molybdenum center to Mo(IV). That reduction or oxidation of the active site occurs without accumulation of Mo(V) is consistent with the failure to observe a Mo(V) EPR signal for the enzyme under a variety of conditions and is indicative of an obligate two-electron center. The reduction potential for the molybdenum center, 292 mV (vs SHE) at pH 5.9 and 0 degrees C, exhibits a linear pH dependence for pH 5-10, consistent with a two-electron reduction strongly coupled to the uptake of two protons without a pK in this range. This suggests that the oxidized enzyme is best characterized as having an L(2)MoO(2) rather than L(2)MoO(OH) center in the oxidized state and that arsenite oxidase uses a "spectator oxo" effect to facilitate the oxo transfer reaction. The onset of the catalytic wave observed in the presence of substrate correlates well with the Mo(VI/IV) potential, consistent with catalytic electron transport that is limited only by turnover at the active site. The one-electron peaks for the iron-sulfur centers are difficult to observe by protein film voltammetry, but spectrophotometric titrations have been carried out to measure their reduction potentials: at pH 6.0 and 20 degrees C, that of the [3Fe-4S] center is approximately 260 mV and that of the Rieske center is approximately 130 mV.
Collapse
|
|
21 |
76 |
25
|
Pauff JM, Hille R. Inhibition studies of bovine xanthine oxidase by luteolin, silibinin, quercetin, and curcumin. JOURNAL OF NATURAL PRODUCTS 2009; 72:725-31. [PMID: 19388706 PMCID: PMC2673521 DOI: 10.1021/np8007123] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Xanthine oxidoreductase (XOR) is a molybdenum-containing enzyme that under physiological conditions catalyzes the final two steps in purine catabolism, ultimately generating uric acid for excretion. Here we have investigated four naturally occurring compounds that have been reported to be inhibitors of XOR in order to examine the nature of their inhibition utilizing in vitro steady-state kinetic studies. We find that luteolin and quercetin are competitive inhibitors and that silibinin is a mixed-type inhibitor of the enzyme in vitro, and, unlike allopurinol, the inhibition is not time-dependent. These three natural products also decrease the production of superoxide by the enzyme. In contrast, and contrary to previous reports in the literature based on in vivo and other nonmechanistic studies, we find that curcumin did not inhibit the activity of purified XO nor its superoxide production in vitro.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
74 |