1
|
Luo Y, Zheng X, Qiu M, Gou Y, Yang Z, Qu X, Chen Z, Lin Y. Deep learning and its applications in nuclear magnetic resonance spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2025; 146-147:101556. [PMID: 40306798 DOI: 10.1016/j.pnmrs.2024.101556] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 05/02/2025]
Abstract
Nuclear Magnetic Resonance (NMR), as an advanced technology, has widespread applications in various fields like chemistry, biology, and medicine. However, issues such as long acquisition times for multidimensional spectra and low sensitivity limit the broader application of NMR. Traditional algorithms aim to address these issues but have limitations in speed and accuracy. Deep Learning (DL), a branch of Artificial Intelligence (AI) technology, has shown remarkable success in many fields including NMR. This paper presents an overview of the basics of DL and current applications of DL in NMR, highlights existing challenges, and suggests potential directions for improvement.
Collapse
Affiliation(s)
- Yao Luo
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Xiaoxu Zheng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Mengjie Qiu
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yaoping Gou
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Zhengxian Yang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Xiaobo Qu
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yanqin Lin
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
2
|
Bjørkeli EB, Johannessen K, Geitung JT, Karlberg A, Eikenes L, Esmaeili M. Deep neural network modeling for brain tumor classification using magnetic resonance spectroscopic imaging. PLOS DIGITAL HEALTH 2025; 4:e0000784. [PMID: 40202966 PMCID: PMC11981170 DOI: 10.1371/journal.pdig.0000784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/14/2025] [Indexed: 04/11/2025]
Abstract
This study is driven by the complex and specialized nature of magnetic resonance spectroscopy imaging (MRSI) data processing, particularly within the scope of brain tumor assessments. Traditional methods often involve intricate manual procedures that demand considerable expertise. In response, we investigate the application of deep neural networks directly to raw MRSI data in the time domain. Given the significant health risks associated with brain tumors, the necessity for early and accurate detection is crucial for effective treatment. While conventional MRI techniques encounter limitations in the rapid and precise spatial evaluation of diffuse gliomas, both accuracy and efficiency are often compromised. MRSI presents a promising alternative by providing detailed insights into tissue chemical composition and metabolic changes. Our proposed model, which utilizes deep neural networks, is specifically designed for the analysis and classification of spectral time series data. Trained on a dataset that includes both synthetic and real MRSI data from brain tumor patients, the model aims to distinguish MRSI voxels that indicate pathological conditions from healthy ones. Our findings demonstrate the model's robustness in classifying glioma-related MRSI voxels from those of healthy tissue, achieving an area under the receiver operating characteristic curve of 0.95. Overall, these results highlight the potential of deep learning approaches to harness raw MR data for clinical applications, signaling a transformative impact on diagnostic and prognostic assessments in brain tumor examinations. Ongoing research is focused on validating these approaches across larger datasets, to establish standardized guidelines and enhance their clinical utility.
Collapse
Affiliation(s)
- Erin B. Bjørkeli
- Department of Diagnostic Imaging, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Knut Johannessen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jonn Terje Geitung
- Department of Diagnostic Imaging, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anna Karlberg
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Morteza Esmaeili
- Department of Diagnostic Imaging, Akershus University Hospital, Lørenskog, Norway
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| |
Collapse
|
3
|
Felefly T, Roukoz C, Fares G, Achkar S, Yazbeck S, Meyer P, Kordahi M, Azoury F, Nasr DN, Nasr E, Noël G, Francis Z. An Explainable MRI-Radiomic Quantum Neural Network to Differentiate Between Large Brain Metastases and High-Grade Glioma Using Quantum Annealing for Feature Selection. J Digit Imaging 2023; 36:2335-2346. [PMID: 37507581 PMCID: PMC10584786 DOI: 10.1007/s10278-023-00886-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Solitary large brain metastases (LBM) and high-grade gliomas (HGG) are sometimes hard to differentiate on MRI. The management differs significantly between these two entities, and non-invasive methods that help differentiate between them are eagerly needed to avoid potentially morbid biopsies and surgical procedures. We explore herein the performance and interpretability of an MRI-radiomics variational quantum neural network (QNN) using a quantum-annealing mutual-information (MI) feature selection approach. We retrospectively included 423 patients with HGG and LBM (> 2 cm) who had a contrast-enhanced T1-weighted (CE-T1) MRI between 2012 and 2019. After exclusion, 72 HGG and 129 LBM were kept. Tumors were manually segmented, and a 5-mm peri-tumoral ring was created. MRI images were pre-processed, and 1813 radiomic features were extracted. A set of best features based on MI was selected. MI and conditional-MI were embedded into a quadratic unconstrained binary optimization (QUBO) formulation that was mapped to an Ising-model and submitted to D'Wave's quantum annealer to solve for the best combination of 10 features. The 10 selected features were embedded into a 2-qubits QNN using PennyLane library. The model was evaluated for balanced-accuracy (bACC) and area under the receiver operating characteristic curve (ROC-AUC) on the test set. The model performance was benchmarked against two classical models: dense neural networks (DNN) and extreme gradient boosting (XGB). Shapley values were calculated to interpret sample-wise predictions on the test set. The best 10-feature combination included 6 tumor and 4 ring features. For QNN, DNN, and XGB, respectively, training ROC-AUC was 0.86, 0.95, and 0.94; test ROC-AUC was 0.76, 0.75, and 0.79; and test bACC was 0.74, 0.73, and 0.72. The two most influential features were tumor Laplacian-of-Gaussian-GLRLM-Entropy and sphericity. We developed an accurate interpretable QNN model with quantum-informed feature selection to differentiate between LBM and HGG on CE-T1 brain MRI. The model performance is comparable to state-of-the-art classical models.
Collapse
Affiliation(s)
- Tony Felefly
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon.
- ICube Laboratory, University of Strasbourg, Strasbourg, France.
- Radiation Oncology Department, Hôtel-Dieu de Lévis, Lévis, QC, Canada.
| | - Camille Roukoz
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Georges Fares
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
- Physics Department, Saint Joseph University, Beirut, Lebanon
| | - Samir Achkar
- Radiation Oncology Department, Gustave Roussy Cancer Campus, 94805, Villejuif, France
| | - Sandrine Yazbeck
- Department of Radiology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD, 21201, USA
| | - Philippe Meyer
- Medical Physics Department, Institut de Cancérologie de Strasbourg (ICANS), 67200, Strasbourg, France
- IMAGeS Unit, IRIS Platform, ICube, University of Strasbourg, 67085, Strasbourg Cedex, France
| | | | - Fares Azoury
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Dolly Nehme Nasr
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Elie Nasr
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Georges Noël
- Radiotherapy Department, Institut de Cancérologie de Strasbourg (ICANS), 67200, Strasbourg, France
- Radiobiology Department, IMIS Unit, IRIS Platform, ICube, University of Strasbourg, 67085, Strasbourg Cedex, France
- Faculty of Medicine, University of Strasbourg, 67000, Strasbourg, France
| | - Ziad Francis
- Physics Department, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
4
|
Differentiation of Glioblastoma and Brain Metastases by MRI-Based Oxygen Metabolomic Radiomics and Deep Learning. Metabolites 2022; 12:metabo12121264. [PMID: 36557302 PMCID: PMC9781524 DOI: 10.3390/metabo12121264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GB) and brain metastasis (BM) are the most frequent types of brain tumors in adults. Their therapeutic management is quite different and a quick and reliable initial characterization has a significant impact on clinical outcomes. However, the differentiation of GB and BM remains a major challenge in today's clinical neurooncology due to their very similar appearance in conventional magnetic resonance imaging (MRI). Novel metabolic neuroimaging has proven useful for improving diagnostic performance but requires artificial intelligence for implementation in clinical routines. Here; we investigated whether the combination of radiomic features from MR-based oxygen metabolism ("oxygen metabolic radiomics") and deep convolutional neural networks (CNNs) can support reliably pre-therapeutic differentiation of GB and BM in a clinical setting. A self-developed one-dimensional CNN combined with radiomic features from the cerebral metabolic rate of oxygen (CMRO2) was clearly superior to human reading in all parameters for classification performance. The radiomic features for tissue oxygen saturation (mitoPO2; i.e., tissue hypoxia) also showed better diagnostic performance compared to the radiologists. Interestingly, both the mean and median values for quantitative CMRO2 and mitoPO2 values did not differ significantly between GB and BM. This demonstrates that the combination of radiomic features and DL algorithms is more efficient for class differentiation than the comparison of mean or median values. Oxygen metabolic radiomics and deep neural networks provide insights into brain tumor phenotype that may have important diagnostic implications and helpful in clinical routine diagnosis.
Collapse
|
5
|
Abstract
Abstract
Purpose
Gliomas, the most common primary brain tumours, have recently been re-classified incorporating molecular aspects with important clinical, prognostic, and predictive implications. Concurrently, the reprogramming of metabolism, altering intracellular and extracellular metabolites affecting gene expression, differentiation, and the tumour microenvironment, is increasingly being studied, and alterations in metabolic pathways are becoming hallmarks of cancer. Magnetic resonance spectroscopy (MRS) is a complementary, non-invasive technique capable of quantifying multiple metabolites. The aim of this review focuses on the methodology and analysis techniques in proton MRS (1H MRS), including a brief look at X-nuclei MRS, and on its perspectives for diagnostic and prognostic biomarkers in gliomas in both clinical practice and preclinical research.
Methods
PubMed literature research was performed cross-linking the following key words: glioma, MRS, brain, in-vivo, human, animal model, clinical, pre-clinical, techniques, sequences, 1H, X-nuclei, Artificial Intelligence (AI), hyperpolarization.
Results
We selected clinical works (n = 51), preclinical studies (n = 35) and AI MRS application papers (n = 15) published within the last two decades. The methodological papers (n = 62) were taken into account since the technique first description.
Conclusions
Given the development of treatments targeting specific cancer metabolic pathways, MRS could play a key role in allowing non-invasive assessment for patient diagnosis and stratification, predicting and monitoring treatment responses and prognosis. The characterization of gliomas through MRS will benefit of a wide synergy among scientists and clinicians of different specialties within the context of new translational competences. Head coils, MRI hardware and post-processing analysis progress, advances in research, experts’ consensus recommendations and specific professionalizing programs will make the technique increasingly trustworthy, responsive, accessible.
Collapse
|
6
|
Differentiating Glioblastomas from Solitary Brain Metastases: An Update on the Current Literature of Advanced Imaging Modalities. Cancers (Basel) 2021; 13:cancers13122960. [PMID: 34199151 PMCID: PMC8231515 DOI: 10.3390/cancers13122960] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Differentiating between glioblastomas and solitary brain metastases proves to be a challenging diagnosis for neuroradiologists, as both present with imaging patterns consisting of peritumoral hyperintensities with similar intratumoral texture on traditional magnetic resonance imaging sequences. Early diagnosis is paramount, as each pathology has completely different methods of clinical assessment. In the past decade, recent developments in advanced imaging modalities enabled providers to acquire a more accurate diagnosis earlier in the patient's clinical assessment, thus optimizing clinical outcome. Dynamic susceptibility contrast has been optimized for detecting relative cerebral blood flow and relative cerebral blood volume. Diffusion tensor imaging can be used to detect changes in mean diffusivity. Neurite orientation dispersion and density imaging is an innovative modality detecting changes in intracellular volume fraction, isotropic volume fraction, and extracellular volume fraction. Magnetic resonance spectroscopy is able to assist by providing a metabolic descriptor while detecting variable ratios of choline/N-acetylaspartate, choline/creatine, and N-acetylaspartate/creatine. Finally, radiomics and machine learning algorithms have been devised to assist in improving diagnostic accuracy while often utilizing more than one advanced imaging protocol per patient. In this review, we provide an update on all the current evidence regarding the identification and differentiation of glioblastomas from solitary brain metastases.
Collapse
|